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Figure 4
Off-axis circle criterion

case that a’ and B are positive, as in Fig. 4, it states that
the feedback system is stable given that G(s) is stable
and there exists a disk passing through —a~! and —f~!
which is not intersected or encircled by the plot of G(jw)
for o = 0.

All these criteria have been generalized in some form
to the multivariable case, where the signals are vectors
and F and G are matrices. Graphical representations of
the circle criterion can still be given, provided that G(s)
satisfies some form of diagonal dominance condition
(Rosenbrock 1974). For the generalized Popov criterion
(Jury and Lee 1965), some progress towards graphical
application has been made by Shankar and Atherton
(1977). In the case of the off-axis circle criterion, the
multivariable version has only been shown to exclude
the possibility of sustained oscillations, although it is
conjectured to be sufficient for stability as well (Cook
1978).

3. Approximate Results

One of the most widely used techniques for the analysis
of nonlinear feedback systems is the describing-function
method (Atherton 1975). Stability criteria can be based
on this approach but are unreliable because the method
assumes that all signals in the feedback loop are sinus-
oids of the same frequency; the results can, however,
be improved by taking harmonics into account (Mees
and Bergen 1975).

It has also been conjectured that a nonlinear system
will be stable if all the linear systems obtained by replac-
ing the nonlinearities by all possible values within their
sector bounds (Aizerman 1949) or slope bounds (Kal-
man 1957) are stable. These predictions can normally
be relied on in practice but are not rigorously valid, and
counter-examples have in fact been discovered (Willems
1970).

See also: Nonlinear Systems: Circle Criterion Extensions;
Nonlinear Systems: Lyapunov Stability; Sinusoidal Input
Describing Function: Evaluation and Properties; Non-
linear Systems Stability: Vector Norm Approach; Stability:
Dissipativeness Concept
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Nonlinear Filtering and Quantum
Physics

Until quite recently, the basic approach to nonlinear
filtering theory was by using the “innovations method”
originally proposed by Kailath in 1967 and subsequently
rigorously developed by Fujisaki, Kallianpur and
Kunita (1972) in their seminal paper. The difficulty with
this approach is that the innovations process is not, in
general, explicitly computable (except in the well-
known Kalman-Bucy case). To circumvent this dif-
ficulty the construction of the filter can be divided into
two parts: (a) a universal filter which is the evolution
equation describing the unnormalized conditional den-
sity, the Duncan-Mortensen-Zakai (DMZ) equation,
and (b) a state-output map, which depends on the
statistic to be computed, where the state of the filter is
the unnormalized conditional density. The reason for
focusing on the DMZ equation is that it is an infinite-
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dimensional bilinear system driven by the incremental
observation process, and a much simpler object than
the conditional density equation (which is a nonlinear
equation) and can be treated using geometric ideas.
Moreover, it was noticed by the present author that this
equation bears striking similarities to the equations
arising in (Euclidean) quantum mechanics and it was
felt that many of the ideas and methods used there could
be used in this context. The ideas and methods referred
to here are the functional integration view of Feynman
(for a modern exposition see Glimm and Jaffe 1981).
In many senses, this viewpoint has been remarkably
successful—although the results obtained so far have
been of a negative nature. Nevertheless the recent work
has given us a deeper understanding of the DMZ
equation which has been essential for progress in non-
linear filtering, as well as in stochastic control. The
variational interpretation of nonlinear filtering given by
Fleming and Mitter (1982) and Mitter (1983a,b) and
the work on the partially observable stochastic control
problem by Fleming and Pardoux (1982) can be con-
sidered to have arisen from the ‘‘state-space” inter-
pretation given to the filter.

1. The Filtering Problem Considered, and the
Basic Questions

We consider the signal-observation model:
dx, =b(x,)dt+ o(x,)dw, x(0)=x,
dy, =h(x,)dr +dn,

where x, w and y are R”, R™ and RP-valued processes,
and it is assumed that the drift velocities b, h and
the density p are, respectively, vector-valued, matrix-
valued and vector-valued functions which are smooth
(which means C*-functions). It is further assumed that
the stochastic differential equation (1) has a global
solution in the sense of Ito. It is further assumed that x,
and 7, are independent and

0=t sl} (1)

!
Ef th(x,)|? dt < e
0

For much of our considerations, the function A(-) will
be a polynomial.

It is well known that the unnormalized conditional
density p(t, x) (where we have suppressed the y(-) and
w-dependence) satisfies the DMZ equation:

1 P
dp(t, x) = (.se* - 521 h,?(x)\’ p(t, x) dr

P
+ gh.-(x)P(l, x)edy, (2)

where

gg*¢=.2 a3 (a(x)a’(x))i,¢—'§£bi(x)¢ (3)

ij=10X;0X;
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and the o denotes the Stratanovich differential. It is
imperative that we consider Eqn. (2) as a Stratanovich
differential equation, since the Ito integral, because it
“points to the future,” is not invariant under smooth
diffeomorphisms of the x space, and we want to study
Eqn. (2) in an “invariant manner.”

We think of p(t, -) as the “state” of the filter, pre-
viously referred to as the universal part of the filter. If
@, say, is a bounded, continuous function then the filter
typically is required to compute E{¢(x,|F;}, where
F = ofy,; 0ss<1}. If we write

. = Elp(x,)|%1)

then ¢, is obtained from p(t, x) by integration:

¢, = L _$()p(t, x) dx / L px)de (4)

d3, will be referred to as a “conditional statistic,” and no
matter what ¢, we wish to compute, p(t, x) serves as a
“sufficient statistic.”

2. Pathwise Nonlinear Filtering and Analogy of
the DMZ Equation to Schrédinger Equation

The DMZ equation bears a close resemblance to the
Schrodinger equation with a random potential if we
formally rewrite it as

dp i
= (63) = £*p(1,%)

—%[;h?(x)—2(‘§lh.-(x)(y',).)]p(r.x) )

where y, is the formal derivative of y,. However, since
the operator p(t, x) — Z?_, h,(x)(y,);p(t, x) is a mul-
tiplication operator we can transform this equation by
utilizing a time-dependent gauge transformation. To
simplify the notation, we assume y is scalar and hereafter
we use subscript x to denote the partial derivative with
respect to x.

This leads us to ideas of pathwise nonlinear filtering
(Clark 1978, Davis 1980, Mitter 1980).

There is as yet no theory of nonlinear filtering for
observations

Y(9) = h[x(D)] + w(0) (6)

where w is a physical wide-band noise and hence
smooth. (To conform to a partial differential equation
viewpoint we are writing processes as w(t), etc., instead
of w,, etc.) Define Y(¢) = y(¢r) and w(t) = 7j(r) where the
overdot denotes differentiation. Then (6) can be written
as

dy(r) = A[x(0)] dt + drj(1) M
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or '
(1) =f0 hlx(6)] dt + (1) (®)

Equation (8) is a mathematical model of the physical
observation (6) where the wide-band noise w(f) has
been approximated as “white noise” 7(f), and hence
n(t) is a Wiener process.

Now, if we wish to compute

E{o(x(1))| 77}
= functional of y a.s. Wiener measure

then this filter does not accept the physical observation
y. The idea is to at least construct a suitable version of
the conditional expectation so that the performance of
the filter as measured by the mean-square error remains
close when the physical observation Y is replaced by
the mathematical model of the observation.

This is most easily done by eliminating the stochastic
integral in Egn. (2) by a gauge transformation.

Define g(t, x) by

p(t, x) = exp[h(x)y()]q(t, x) &)
Then q(t, x) satisfies the parabolic differential equation
g,=(L*)*q+V?q where
L'¢=Lo-y(a(x)h (x)¢,. a(x)=o0(x)o'(x)
V2 (t,x) = 4h*(x) = y() Lh(x) + 1y? (Dh (x)a(x)h, (x)
(10)
Equation (10) is the pathwise nonlinear filtering
equation and should be solved for each (physical)
observation path y. Equation (10) can be written
explicitly as
q,=ttrfa(x)q,, +g’ (x,0q, +(x,0)q]
q(0,x) = p"(x), the density of x(0) where

n

-

24y j=i2
y J=1,4,...,n

Y=—h+ + v, =
g b+y(ah, +v, v, &,

vy =vr —div(b — y(t h)+1é 9ay
Y — | iv(b —y(t)ah, 2,2, 9x,0x,

(11)
Equation (11) can be considered to be a rigorous
version of Eqn. (5).

3. Schrédinger Operators, Diffusion Operators
and Time Reversibility

Under suitable hypotheses (e.g., uniform ellipticity,
growth conditions on g¥, V» bounded above) we can
express the solution of (11) as a Feynman-Kac integral:

q(t,x) =E, {p"(x.)eXP(L,)eXP [L V’(t,x,)ds]}
(12)

ESCS-N*

where

!
Ll = f a_l(xs)gy(xsvs) dW,
0

- f 0™ (x,)g7 x,. )1 ds
0

and where E, denotes expectation with respect to the
path space of &, where & satisfies

dg, = a(&,) dw,

Ey=x

(13)

We may ask whether the functional integration (12)
can be reduced to quadratures. This leads us to consider
the relation between Schrodinger operators and dif-
fusion operators, or what is equivalent, the relation
between the Feynman-Kac formula and the Girsanov
formula (see Mitter 1980).

Let us suppose that V:R"— R be measurable,
bounded below and tends to + as |x| — = and consider
the Schrodinger operator H = —A + V where A is the
n-dimensional Laplacian. The H defines a self-adjoint
operator on L*(R"; dx) which is bounded below and the
lower bound A of the spectrum of H is an eigenvalue of
H. Let y(x) be the corresponding eigenfunction of H,
the so-called ground state, and assume y{(x) > 0. We
normalize y(x), that is,

f [p(x)|? dx =1
an

and define the probability measure

dp = |y(x)|* dx
and the unitary operator

U:L*(R"; dx) = L*(R"; du(x))
Sfoyf
If we define the Dirichlet form for f, g € C7(R"),

1
6(f,8) =3 J;. Vf(x) Vg(x) dx (14)

then a calculation shows

5(f.8) = (£f.8)u (15)

where (,), denotes the scalar product in L*(R"; du) and
& is the diffusion operator (self-adjoint, positive):

Py=—4Ayp+Vb-Vy b=—logy (16)

Now since y satisfies

= 3Ay(x) + V(x)y(x) =0 (17a)
then assuming A = 0 we get
V(x) = §(|Vb(x)|> — Ab(x)] (17b)
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where differentials have to be interpreted in the sense
of distributions.
Let &, satisfy the stochastic differential equation

d§, = —Vb(§)dr+dw, & =x (18)

where w, is standard Brownian motion. Define

L.=exp[—f %(&)-ds‘—%f Vb(.s‘)zzds]
, (19)
=exp[—j Vb(E,)-dw,ﬁ--;-J Vb(E‘)|2ds}

which can be shown to be a %, martingale where §, =
o{w,|0 < s < 1}. Then if u,, denotes Wiener measure and
if we denote a new probability measure y¢ on the path
space of & by dug/du, = L,, then from the Girsanov
theorem &, is a Brownian motion under the measure u;
and hence we can write the solution of

dp

+Zp=0 0ss<
T Lo s<t

(20)
plt, x) = y(x)

as p(s, x) = E,[y(&)] where E denotes integration with
respect to .

On the other hand, by the generalized Ito-differential
rule,

db(§,) = Vb(§,) dE, + 1Ab(E,) dt

and hence (19) reduces to

L,=exp [—b(&,) + b(&) — %j- [Vb(E,)|* ds

l 1
+§J; Ab(E’)ds]

= y(dzy) 'y(&) CXP[ ‘L V(E;)dSJ

and therefore

‘

y(x) =E.[p(&,) exp [ —fo V(E,)dS} (21)

where E denotes expectation with respect to Wiener
measure and we have derived the Feynman-Kac
formula.

Equation (18) denotes a stationary, reversible Mar-
kov process—since &(r) and &(—r) are stochastically
equivalent with invariant measure u. Thus with the
Hamiltonian H = -A+V having V satisfying the
hypotheses given above, we have a unique stationary,
reversible Markov process built into it.
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These ideas have a bearing on nonlinear filtering
(Benes 1981). Consider the scalar nonlinear filtering
problem

dx, = —b(x,) dr + dw,

(22)
dy, =x,dr +dn,
and assume that
b(x,) =f.(x,)
and f satisfies
(] = fu) =1x? (23)

The DMZ equation for this problem is
dp(r,x) = (£* = 1x*)p(t,x)dt +xp(1,x)-dy, (24)

We may write its solution as (using previous
considerations)

x? ds]

0

1] 1 !
X exp [J- x, dy, — EJ x2 ds]} (25)
0 0

Because of the quadratic nature of the potential this
function space integration can essentially be reduced to
Gaussian integrals (see Mitter 1983a,b for an illumi-
nating discussion). Indeed the filter for this problem is
essentially a Kalman filter.

p(l,X) = Ex {CXP |:—f(xr)+f(x0)_%J

4. Variational Interpretation of Nonlinear
Filtering

We now give a stochastic variational interpretation of
nonlinear filtering in the spirit of the work of Feynman
(Feynman and Hibbs 1965). We do this by associating
a stochastic control problem with the DMZ equation.
This section provides a justification of the ideas of
Kalman on the duality between filtering and control.
The original ideas of this section are due to Fleming
and Mitter (see Fleming and Mitter 1982, Pardoux
1981). We follow the exposition of Pardoux and for
simplicity consider the scalar case.

Let us formally denote the differential dy, as y.ds and
consider the DMZ equation

‘l_"’ = (L™ = D)p(t, x) + h(x)p(t, )y,
p(0,x) = py(x)

(26)

Now p(t, x) admits the factorization
p(t, x) = I, x)p(t, x)
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where p(t, x) is the density of the x process and [(t, x)
is the likelihood function given by

I(t,x) =E {exp [ - f h(x,)y, ds

1 ‘
-2 f ) ds]

Then a calculation shows that [ satisfies the equation

X, = x} (27)

al 5 .
e (L = $h*)l + hy I 28)
1(0)=1
where
1 2 - a
L= Ea(x) ) + bg
with

;i
b =;a[a(X)P] =b

Here L is the infinitesimal generator of the time-
reversed x process with x, = x.
Now consider the transformation

L(t, x) = exp[—5(t, x)]
Then S satisfies the Bellman equation

as -1 [as\?

—_— ot P ) R=32

Y LS 2a(ax) +ih—y |*—y? (29)
S(0)=0

Denote by ¥ the reverse x Markov process conditioned
on x, = x. Then (29) corresponds to the following stoch-
astic control problem:
d, +[b(%,) +u,]ds + o(x,)Bdw, =0, s<t

(30)
where @ denotes the backward Ito differential and,
where the control u, is to be chosen as a Markovian
feedback control to minimize the cost function

E{j’[a"(i,)luslz +4lh(z,) -y, ? -)’f}dS] (1)

and S(t, x) Is the optimal value function of this stochastic
control problem.

In the situation that the dynamics are linear and the
observation map is linear we have a linear filtering
problem and the stochastic control problem of Eqns.
(30-31) corresponds to a linear quadratic Gaussian
problem with full observations. But the theory of this
problem is essentially the same as the linear quadratic
deterministic optimal control problem. This explains in
a clear manner the duality principle first enunciated by
Kalman.

This stochastic variational interpretation can be effec-
tively used to construct maximum a posteriori density
filters and maximum likelihood filters and allow us to
give a derivation of the extended-Kalman filter (Mitter
1983a, b).

5. Geometric Theory of Nonlinear Filtering

In the introduction we have suggested that the fact that
the DMZ equation is in infinite-dimensional bilinear
equation allows us tc develop a geometricat theory of
nonlinear filtering. This geometrical theory, originally
independently suggested by Brockett and Clark (1980),
Brockett (1980) and Mitter (1980) was motivated by the
desire to measure the complexity of nonlinear filters
and to discover whether finite-dimensional filters existed
for nonlinear problems. The present exposition follows
Mitter (1983b).

To proceed further, we need to make a definition.
By a finite-dimensional filter for a conditional statistic
¢, we mean a stochastic dynamical system derived by
the observation

dg, = a(§,) dr + B(&,) » dy,

defined on a finite-dimensional manifold M, so that
E €M, and a(§) and B(&,) are smooth vector fields on
M, together with a smooth output map ¢, = y(&,), which
computes the conditional statistic. Equation (5) s to be
interpreted in the Stratanovich sense for reasons we
have mentioned above. We shall also assume that the
stochastic dynamical system of Eqns. (5, 6) is minimal
in the sense of Sussmann (1977).

For the definition and properties of Lie algebras and
Lie groups the reader is referred to the Appendix (see
Lie Brackets; Lie Groups: Controllability).

5.1 Lie Algebra of Operators Associated with the
Filtering Problem

Consider the Lie algebra generated by the unbounded
operators

19
h,-(x)andL=££‘—§2h,2(x) i=1,...,p
i=1

where the operators & and h,(x), with the h, considered
as multiplication operators ¢(x)— h(x)¢(x), act on
some common dense invariant domain @, say @ =
C3(R") or F(R").

This Lie algebra contains important information, and
if it is finite dimensional it is a guide that a finite-
dimensional universal filter for computing p(t, x) may
exist.

Care should be taken in interpreting this statement.
First, referring to the definition of a finite-dimensional
filter in Eqn. (5), there is a Lie algebra of vector fields
associated with it which in general is infinite dimen-
sional. Therefore, the fact that the Lie algebra
LA{L,h,, ..., h,}isinfinite dimensional does not pre-
clude the filtering problem having a finite-dimensional
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solution. Secondly, even if $A{L, h,,...,h} is finite-
dimensional it does not mean that a finite-dimensional
filter exists. The reason for this is that constructing the
filter requires integrating the Lie algebra, and it is a well-
known fact from the theory of unitary representations of
Lie groups that not all Lie algebra representations
extend to a group representation (see the Appendix).
However, it is still a good question to ask whether
examples of filtering problems exist where the Lie
algebra A{L,h,,. .., h,} is finite dimensional and also
how big is this class. The answer to the first part of this
question is positive but the answer to the second part
appears to be that this class is small.

EXAMPLE 1. The case of Kalman filtering is now
discussed

dx,=Ax,dt+bdw, A=nXn matrix

b=n X1 matrix (32)
dy,=c'x,dt+dW, ¢'=nx1 matrix
Then
1o @2 o :
=3.& 5m0x, 2 ”,,%a_x,. (Axin  O=bb (33)
L=2*—-14(c'x)?

Define the Hamiltonian matrix

-A" ¢’
S

bb' A
the vector
o= [c] € R>
0

and the controllability matrix
W=|a:Ea... E¥ 'a]
and assume that W is nonsingular. Define Z, = ¢'x and
Z,=[ad L)' Z,

Then one can show that

n ; n ) a
Z=3(E'a)x+ 2 (E™'a),,,— (34)
j=1 j=1 ox;

. 0 —-1|
(Z,,Z)=[E"'a] [1 0][E/—la] (35)
and ¥F=span {L, Z,...,Z,, I}, where the,
Z,,...,Z,, are independent by hypothesis. Hence, ¥

has dimension 2n + 2, and this algebra is isomorphic
to the oscillator algebra of dimension 2n + 2 (see the
Appendix).
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5.2 Invariance Properties of the Lie Algebra and the
Benes Problem

The filter algebra is invariant under certain trans-
formations, namely, diffeomorphisms on the x space
and gauge transformations to be discussed below. These
ideas are best discussed in an example.

Consider the filtering problem

xl = w[
] (36)
dy, = x,dt + dn,

A basis for the filter algebra F is {L, x, d/dx, I} where

1 d? 2
Lesan &
and this is the four-dimensional oscillator algebra. It is
easy to see that if we perform a smooth change of
coordinates x — ¢(x) then the filter algebra gives rise
to an isomorphic Lie algebra, and two filtering problems
with isomorphic Lie algebras should have the same
filter.

EXAMPLE 2. The following was first treated by Benes
(1981).

dx, = f(x,) dr + dw,

(37
dy, =x,dt +dp,

where fis the solution of the Riccati equation

df :
% +f=ax*+bx+c
and the coefficients @, b and ¢ are so chosen that the
equation has a global solution on all of R. We want to
show that by introducing gauge transformations we can
transform the filter algebra of (37) to one which is
isomorphic to the four-dimensional oscillator algebra.
Hence, the Benes filtering problem is essentially the
same as the Kalman filtering problem considered in
Example 1.

To see this, first note that for (37)

(Lox)= o~ f

where the brackets are computed on C3(R).
Now consider the commutative diagram

d
Ci(R) > C5(R)
v lw
Ci(R)7— C3(R)
o =k
Here ¥ is the multiplication operator ¢(x) — ¥(x)¢(x)

and it is assumed that ¥ is invertible. Then it is easy to
see that

x

Y(x) = exp f f(z)dz
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Under the transformation ¥, the operator

192 d
*-——————
2 9x? axf
transforms to
14?
-——14V
2 9x? V)
where
df
Vix)=—+
0)=3 +F

It is easy to see that the filter algebra # is isomorphic
to the Lie algebra with generators

By

1d

Jay @B x
We now see that if V(x) is a quadratic, then this Lie
algebra is essentially the four-dimensional oscillator
algebra corresponding to the Kalman filter in Example

What we have done is to introduce the gauge

transformation

p(t, x) = ¥ (X)p(t, x)
where p(t, x) is the solution of the DMZ equation, and
what we have shown is that the filter algebra is invariant
under this isomorphism.

However, for the class of scalar models considered in
(11) with general drifts f, the Benes problem is the only
one with a finite-dimensional Lie algebra (we restrict
ourselves to diffusions defined on the whole real line).
For further details on this point the reader should con-
sult Ocone (1980).

There is no difficulty in generalizing these con-
siderations to the vector case, provided f is a gradient
vector field.

5.3 The Weyl Algebras and the Cubic Sensor Problem

The Weyl algebra W, is the algebra of all polynomial
differential operators

R( ] a)
x"""x"’ax,""'ax,,

A basis for W, consists of all monomial expressions

Xaaﬁ aﬂ| aﬂ,,
e SUEEEP e S

where «, B range over all multi-indices

B=(B.-.B,)

W, can be endowed with a Lie algebra structure in the
usual way. The center of W,, that is the ideal § =
{ZeW,|[x,Z] =0, VxEw,, is the one-dimensional
space R-1 and the Lie algebra W,/R-1 is simple.

a=(a,,...,a,),

Consider the cubic sensor filtering problem

x, =W, dy,=x}dt+dn,
Then the filter algebra & generated by the operators
1 d? 3 .
L= EF == ix . ff] =X

is the Weyl algebra W /R. A proof of this can be
constructed by performing calculations similar to that
of Avez and Heslot (1979).

5.4 Example with Pro-Finite-Dimensional Lie Algebra

Consider the filtering problem (Hazewinkel and Marcus
1982)

x, =W,
dg, =x?dt
dy, = x, dt + dv,

It can be shown that all conditional moments of &,
can be computed using recursive filters. For this problem
% is generated by

d ]
—xza—§+ia——2— x* = x=2,
A basis for F is given by £ and
a' 39’ a' .
xa_gi’ FE,, a—Ei, i=0,1,...

Defining §; to be the ideal generated by x(8'/9&"), i =
0,1,2,...itcan be shown that & is a pro-finite-dimen-
sional filtered Lie algebra which is solvable, and that
%/$, is finite dimensional and can be realized in terms
of finite-dimensional filters corresponding to conditional
statistics.

REMARK 1. Other examples of finite-dimensional fil-
ters can be constructed by combining the attributes of
the Benes example considered in Sect. 5.2 and the above
example. Thus, in the above example the process x, may
be replaced by

dx, = f(x,) dt + dw,
where f satisfies

d

a-xf +ff=ax’ +bx+c

and a, b and c are chosen so that this equation has a
global solution. Then it can be shown that all conditional
moments of &, can be computed using finite-dimensional
recursive filters (Ocone et al. 1982).

REMARK 2. The Lie algebraic and representation
approach to the filtering problem is really concerned
with the “classification™ question for filters. The actual
construction of the filter can apparently be achieved
using probabilistic techniques.
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5.5 Existence and Nonexistence of Finite-Dimensional
Filters and the Homomorphism Ansatz of Brockett

Earlier we have given the definition of a finite-dimen-
sional filter. We would consider this definition to be the
description of a control system with inputs y, and output
¢,. Furthermore, as we have said we may assume that
this representation is minimal in the sense of Sussmann.
We thus have two ways of computing ¢—one via the
DMZ equation and the other via the control system.
The ansatz of Brockett says: suppose there exists a
finite-dimensional filter and consider the Lie algebra of
vector fields generated by a(&,) and B(&,) and call this
Lie algebra L(Z). Then there must exist a nontrivial
antihomomorphism between the filter algebra % and
L(Z) such that L — « and h,— B, where S, is the ith
row of f.

Conversely, suppose that the Lie algebra # cannot
be generated as the Lie algebra of vector fields with
smooth coefficients on some finite-dimensional
manifold. Then there exists no such homomorphism
and hence no conditional statistic can be computed
using a finite-dimensional filter.

The Brockett ansatz suggests a possible strategy for
obtaining finite-dimensional filters for computing cer-
tain conditional statistics. Suppose we are in the situa-
tion of the example given in Sect. 5.4, that is, the Lie
algebra 7 is pro-finite-dimensional. Since %/, is finite-
dimensional it has a faithful finite-dimensional rep-
resentation (by Ado’s theorem) and hence can be real-
ized with linear vector fields on a finite-dimensional
manifold which may give rise to a bilinear filter
computing some conditional statistic. However, what
statistic this filter computes is in general difficult to
determine, and one has to resort to indirect and pro-
babilistic techniques for this determination. One should
alSo remark again that & (or any of its quotients) need
not be finite-dimensional for a finite-dimensional filter
to exist.

5.6 The Kalman Filter Revisited

It is instructive to view the Kalman filter in the light of
the above discussion and solve explicitly the cor-
responding DMZ equation. We shall consider the
special case where the filter Lie algebra is generated by

For a rigorous justification of the calculations which
follow see Ocone (1980).
The basicidea is to do the following formal calculation
which needs to be justified.
Suppose that we want to solve the evolution equation
dp
o = Liptu(@Lp (38)
where L, and L, are in general unbounded linear oper-
ators and u(r) is a given continuous function. Let us
assume that the Lie algebra of operators A{L,, L,} has
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a finite set of generators {L,, L,,...,L,. We try a
solution
p(t) =exp(g, (1)L ,)exp(cy(1)L,). .. exp(g, (1)L ,)p(0)
(39)

where p(0) is the initial condition. For ideas similar to
this in the context of ordinary stochastic differential
equations, see Kunita (1981).

Differentiating the above, we obtain

dp | :

1 =g, ()L p+g,(t) exp(g,(1)L,)L,

X exp(g,(1)L,). .. exp(g ()L 4)p(0)

+84(0) exp(q,(L,)... L, exp(q (1)L ,)p(0)

Now, we use the Campbell-Baker-Hausdorff formula:
for1=<i,j=d,
d
exp(tL,)L, = 2 c;/(0L,, exp(tL))

m=1

repeatedly to obtain

d
Ef: =F,(8(t),g())L,p+ -+ F,(g(1),8(t))L,p (40)

for some nonlinear functions F, of g(r) = (g,(¢), . . . ,
g4(1)) and g(¢). For (40) to define a solution of (38), we
need

Fi(g(®),8(1) =1
Fy(g(1), £(0)) = u(r)
Fi(g(1),8(t)) =0 forj>2

For the Kalman filter problem considered, one obtains
(formally)

g:i(=1
y(1) = §,(t) cosh g, (1) + g5() sinh g, (1)
0 =g,(¢) sinh g, (r) + g,(r) coshg, (1)
0=4.(0 — £:(Ng.(1)
g0)=0 i=12.34

One can explicitly solve the above set of equations to
obtain

g = L cosh(s) dy(s)

gsp)=— fo sinh(s)dy(s)

’

gi(t) = f sinh(s) cosh(s) ds — J’ g-(s) sinh(s) dy(s)
[} 0

where we have now used stochastic integrals.
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Substituting the above in (39) and using

exp(rL,)¢(s)=j_ Gx,y,0¢(y)dy, =0

where
G(x.y,t) = (2usinh?)~'?
x exp[—1% coth(x? + y?) + xy/sinh 1)]
one obtains

p(x, 1) =J' k(z, 1)

x exp(—4p ! (O)x = m(0)]*)po(2) dz

where p(t) = tanh t and
"sinh s
+ d
J., cosh t y(s)

mit) =
@) cosh t
(and k(z, ) is a function which can be computed), which
is the familiar Kalman filter solution.

The essential point in proving the above results rig-
orously is to note that

Y

1 d*

a7 T

generates a positively-preserving hypercontractive
semigroup and that the operators
1 d2 i d
T L <
2dx? " dx

have a common dense set of analytic vectors.

Finally, since the Lie algebra corresponding to the
Kalman filter is solvable, Eqn. (39) is a global rep-
resentation for the solution. We remark that the Benes
problem considered in Sect. 3.1 can be integrated in
exactly the same fashion. Note also that this method
computes the fundamental solution of the DMZ
equation and hence these ideas can be applied to solve
Kalman filtering problems with non-Gaussian initial
conditions.

5.7 Nonexistence of Finite-Dimensional Filters

In an earlier part of this section we have suggested a
strategy for obtaining finite-dimensional filters when the
Lie algebra of the filter has a “good” ideal structure
using the Brockett homomorphism ansatz. We have
also remarked how the same ansatz may lead to negative
results.

Now, in Sect. 3.2 we have shown that for the cubic-
sensor problem the Lie algebra of the filter is isomorphic
to the W,/R. Hazewinkel and Marcus (1982) have shown
that W, /R cannot be realized as the Lie algebra of vector
fields with smooth coefficients on a finite-dimensional
smooth manifold. On the other hand, Sussmann (1981)
has shown that if there is a finite-dimensional filter
for a conditional statistic then there exists a nonzero

homomorphism of Lie algebras according to the Brock-
ett prescription. Some further work combining these
two ideas shows that no conditional statistic for the
cubic-sensor problem can be computed using finite-
dimensional filters.

We conjecture that essentially similar results can be
proved for the following ::lass of filtering problems:

dx, = f(x,) dt + dw,
dy, = x,dr + dy,
Suppose that f satisfies

PR

where V(x) is an even-positive polynomial. Then the
Lie algebra for this filtering problem is an algebra which
is isomorphic to the Weyl algebra W,/R, and hence all
the above results of this section will hold.

5.8 Some Positive Results

There have been some recent positive results using the
Lie algebra formalism. One such result is concerned
with the asymptotic expansion in € of the unnormalized
conditional density for the filtering problem

dx, = ax, dr + dw,

dy, =[x, + €(x))*]dt +dy, k=1

y§ =0 .py(x)Gaussian

where € is some small positive answer.

For this class of problems it has been shown
(Sussmann 1982) that the various terms in the formal
asymptotic expansion of p*(r,x) can be computed by
finite-dimensicnal filters using the ideas developed in
this section.

We close this section with a remark on the identi-
fication problem for linear stochastic dynamical systems.
These problems can be viewed as nonlinear filtering
problems and lead to Lie algebras which are known as
“current algebras” in mathematical physics. The inte-
gration of these Lie algebras in a rigorous manner has
recently been performed Hazewinkel er al. (1982).
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Appendix A.
A.l On Lie Algebras, Lie Groups and
Representations.

For most of this article, the C*-manifold that is of
interest is R” (which is covered by a single coordinate
system).
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A vector space &£ over R is a real Lie algebra, if in
addition to its vector space structure it possesses a
product £ x£—£: (X,Y)—[X, Y] which has the
following properties:

(a) it is bilinear over R,
(b) it is skew commutative: [X, Y] +[Y, X] =0,
(c) it satisfies the Jacobi identity
(X, [V, Z]]=[Y,[Z, X]| + [Z,[X, Y]] = 0
where X, Y, Z€ ¥.
EXAMPLE 3. Let M, (R) be the algebra of nXxn
matrices over R. If we denote [X, Y] by XY - YX,

where XY is the usual matrix product, then this com-
mutator defines a Lie algebra structure on M, ().

EXAMPLE 4. Let #(M) denote the C” vector fields on
a C”* manifold M. Z(M) is a vector space over R and a
C"(M) module. (Recall, a vector field X on M is a
mapping: M — T, »(M): p—x where p EM and T, (M)
is the tangent space to the point p in M). We can give
a Lie algebra structure to (M) by defining

F,f=XY-YX),f=X,(Y)) - Y,(Xf) fEC(p)
with the C” functions in a neighborhood of p, and

[X,Y]=XY-YX
Both of these examples will be useful to us later on.
Let & be a Lie algebra over R and let {X|,..., X,}

be a basis of £ (as a vector space). There are uniquely

determined constants c,,, € R (1 <r,s, p < n) such that

[XnX]— 2 CI!p P

The c,,, are called the structure constants of ¥ relative
to the basis {X,,....X,}. From the definition of a Lie
algebra,

(a) ¢y + ¢, =0

(b) Elip‘n( sp piu + Cx(pcpru
u<n).

(1<rs.p<n)
)=0 (I=<nrs,t,

rrp psu

Let & be a Lie algebra over R. Given two linear
subspaces M, N of £ we denote by [M, N] the linear
space spanned by [X, Y], X€M and YE N. A linear
subspace K of & is called a subalgebra if [K, K] C K,
and ideal if [£, K] C K.

If £ and &' are Lie algebras over R and
m:¥— L' :X— n(X), alinear map, x is called a homo-
morphism if it preserves brackets:

[(7(X), x(V)] = 2([X, Y]), (X, YEH)

In that case 7(¥) is a subalgebra of £’ and ker 7 is an
ideal in £. Conversely, let & be a Lie algebra over R
and K an ideal of £. Let £' = £/K be the quotient
vector space and w:¥— £’ the canonical linear map.
For X' = 2(X) and Y' = a(Y), let

(X', V'] = =([X, Y])
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This mapping is well-defined and makes &' a Lie algebra
over R and x is then a homomorphism of ¥ into &’
with K as the kernel. £’'= ¥/K is called the quotient of
£ by K.

Let U be any algebra over R, whose multiplication is
bilinear but not necessarily associative. An endo-
morphism D of U (considered as a vector space) is
called a derivation if

D(ab) = (Da)b + a(Db),
If D, and D, are derivations so is
(D, D,]= DD, - D,D,

The set of all derivations on U (assumed finite dimen-
sional) is-a subalgebra of g/(A), the Lie algebra of all
endomorphisms of @. The notion of a representation
of a Lie algebra is very important.

Let & be a Lie algebra over R and V" a vector space
over R, not necessarily finite dimensional. By a rep-
resentation of £ in ¥ we mean a map.

n: X—=n(X): £+ gl(V) (all endomorphisms of V),
such that

a,be

(a) m is linear,

(b) =([X, Y]) = #(X)2(Y) — 2(Y)7(X).
For any X € ¥ let ad X denote the endomorphism of £

adX:Y—>[X,Y] (Y€

ad X is a derivation of £ and X—adX is a rep-
resentation of £ in &£, called the adjoint representation.

Let G be a topological group and at the same time a
differentiable manifold. G is a Lie group if the mapping

x,y)—=xy:GXG—>G

and the mapping x — x~!: G— G are both C* mappings.

Given a Lie group G there is an essentially unique
way to define its Lie algebra. Conversely, every finite-
dimensional Lie algebra is the Lie algebra of some
simply connected Lie group.

In filtering theory some special Lie algebras seem to
arise. We give the basic definitions for three such Lie
algebras.

A Lie algebra & over R is said to be nilpotent if ad X
is a nilpotent endomorphism of £, VX € £. Let the
dimension of &£ be m. Then there are ideals $; of £ such
that

(@) dm$, =m —j,0sj<sm
(b) $,=¥£29%9,2:--%,,=0and
(C) [sevyllgs’jd-ls Osjsm-l

Let g be a Lie algebra of finite-dimension over R and
write @g = (g, g]. @g is a subalgebra of g called the
derived algebra. Define &g (p = 0) inductively by

%% =
Y= 'g) (p=1)
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We then get a sequence %'g D @'g D - - - of subalgebras
of g; g is said to be solvable if g = 0 for some p = 1.

EXAMPLE 5. Let n =0 and let

(pl~' s Pnsqys - 'qn»z)

be a basis for a real vector space V. Define a Lie algebra
structure on V" by

(gl =lgp)l=2

the other brackets being zero. This nilpotent Lie algebra
N is the so-called Heisenberg algebra.

EXAMPLE 6. The real Lie algebra with basis

(h.pys- s P Grs- - 4ns Z)
satisfying the bracket relations
(h.p)l=a; [h.g)=p; [Pg)=2Z

(the other brackets being zero) is a solvable Lie algebra,
the so-called oscillator algebra. Its derived algebra is
the Heisenberg algebra N.

A Lie algebra is called simple if it has no nontrivial
ideals. An infinite-dimensional Lie algebra ¥ is called
pro-finite-dimensional and filtered if there exists a se-
quence of ideals $, D %,- - - such £/9, finite-dimen-
sional for all i and NJ, = {0}.

A.2 Infinite-Dimensional Representations
Let g be a finite dimensional Lie algebra and G its
associated simply connected Lie group. Let H be a
complex Hilbert space (generally infinite-dimensional).
We are interested in representations of g by means of
linear operators on H with a common dense invariant
domain %. Let t denote this representation.
Similarly, we are also interested in representations of
G as bounded linear operators on H. Let 7 be such a
representation. That is, 7: G — L(H) satisfies

7(g,8,) = 1(g,)7(g2) £1,.8.€G

The following problem of group representation has
been considered by Nelson and others. Given a rep-
resentation st of g on H when does there exist a group
representation (strongly continuous) 7 of G on H such
that

t(exp(1X)) = exp(tm(X)) VXEG

Here exp(t(x)) is the strongly continuous group gen-
erated by 7(X) in the sense that

)
dt
and exp(zX) is the exponential mapping, mapping the
Lie algebra g into the Lie group G.

Let X,,..., X, be a basis for g. A method for con-
structing t locally is to define

7(exp(r, X,) . . . exp(t35,4))
= exp(t, (X)) . . . exp(tym(x,))

exp(tn(x))p, = (X)¢p VPED

A sufficient condition for this to work is that the
operator identity

tﬂ
exp(tA)A; = E";!—! [adA,]"A, exp(tA))
holds for A;= n(X)), 1<j,j= d.

It is a well known fact that many Lie algebra rep-
resentations do not extend to group representations.
An example is the representation of the Heisenberg
algebra consisting of three basis elements by the oper-
ators {—ix,d(-)/dx, —i} on L*R,) with domain
Cz(R,) which does not extend to a unitary rep-
resentation (since essential self-adjointness fails).

Although in filtering theory we are not interested in
a unitary group representation, nevertheless these ideas
will serve as a guide for integrating the Lie algebras
arising in filtering theory.

See also: Nonlinear Filtering: Iterated Ito Integral Expan-
sions; Nonlinear Estimation; Realization Theory, Nonlin-
ear; Nonlinear Discrete-Time Systems: Algebraic Theory;
Lie Brackets
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S. K. Mitter

Nonlinear Filtering: Iterated Ito Integral
Expansions

Iterated (or multiple) stochastic integrals (see Stochastic
Integrals and Stochastic Calculus) of a Brownian'motion
process were originally defined by Ito (1951) and Wiener
(1938) in a study of the structure of functionals of a
Brownian motion (see Brownian Motion). The Ito-
Wiener expansion theorem, their main result, shows
that a functional ®(B(-)), where @ maps continuous
functions on [0, =) to the reals and B(-) = (B(t):1=0)
represents Brownian motion paths, may be expressed
by an infinite series whose terms are iterated integrals.
In this expansion, the iterated integrals play a role
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analogous to that of polynomials in Taylor series expan-
sions and (because iterated integrals of different orders
are statistically orthogonal) to that of an orthogonal
Hilbert-space basis. As a result, the iterated integral
technique provides a clear and usable methodology for
expanding functionals of Brownian motion.

This article shows how this method of iterated Ito
integral expamsions applies to the additive Brownian
noise-filtering model. In this problem we are required
to construct estimates of a signal process X(¢) based on
observing (Y(s):0 <s =<1), where

Y(r) = f ' R[X(s)] ds + W(1)

and W(t) is a Brownian motion. Such estimates are just
functionals @(Y(s):0 <s <) of the Y(-) process; hence
construction of estimates is best achieved within a
framework for representation and expansion of func-
tionals. Because Y(r) is an Ito process closely related to
Brownian motion (see Sect. 2), iterated Ito integrals
provide an appropriate technique.

The first part of this article presents the fundamentals
of the theory of multiple stochastic integrals. The second
section treats their application to the additive noise
model, and the third section their application to filtering
polynomials of a Gauss-Markov process. The ideal goal
of filtering is to calculate the conditional expectation

P(1) = E{p[X(D]| Y(s):0< 5= 1}

which is the estimate minimizing mean square error.
Failing this, one desires a broadly applicable method
for constructing suboptimal estimates. The results of
Sect. 2 show that multiple integral expansions help to
address both issues. They can be used both to provide
an explicit representation of ¢(¢) and to build a theory
of suboptimal estimation using finite, muitiple integral
expansions.

The additive noise model involves an essentially non-
stationary observation process. Katznelson and Gould
(1962) study the case in which signal and observation
are stationary, ergodic processes and employ Volterra,
rather than Ito, iterated integral expansions. Schetzen
(1980) may be consulted for general information on the
use of functional expansions.

1. Iterated Integrals and Functional Expansions
In this section, B(t, w) denotes a Brownian motion on
the probability space (£2, %, P), and %(¢) is the o algebra
generated by B(s), 0 <s =<1 The Ito-Wiener theory
studies the space
L?[F(1)] = {@: &(w) is an F(f)-measurable r.v.

and E®? < x}
Since an %(t)-measurable @ may be written in the form
PD(w) = Y[B(s, w) 0 <s <] for some functional y, the
space L’[%(t)] consists of the square-integrable



