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Probabilistic Solution of III-Posed Problems in 
Computational Vision 

J. MARROQUIN, S. MITTER, and T. POGGIO* 

Computational vision is a set of inverse problems. We review standard 
regularization theory, discuss its limitations, and present new stochastic 
(in particular, Bayesian) methods for their solution. We derive efficient 
algorithms and describe parallel implementations on digital parallel SIMD 
architectures, as well as a new class of parallel hybrid computers. 
KEY WORDS: Computer vision; Markov random fields; Parallel pro- 
cessing. 

1. INTRODUCTION 

1.1 Computational Vision 

Computational vision denotes a new field in artificial 
intelligence that has developed in the last 15 years. Its two 
main goals are to develop image understanding systems 
that automatically could provide scene descriptions from 
real images and to understand biological vision. Its main 
focus is on theoretical studies of vision, considered as an 
information processing task. 

Since at least the work of David Marr (Marr 1982; see 
also Marr and Poggio 1977), it has been customary to 
consider vision as an information processing system that 
could be divided into several modules at different theo- 
retical levels, at least as a first approximation. In partic- 
ular, Marr suggested that the goal of the first step of vision 
is to obtain descriptions of physical properties of three- 
dimensional surfaces around the viewer, such as distance, 
orientation, texture, and reflectance. This first step of vi- 
sion, up to what has been called 21-D sketch or intrinsic 
images, is mainly bottom-up relying on general knowledge 
but no special high-level information about the scene to 
be analyzed. 

The first part of vision-from images to surfaces-has 
been termed early vision. Although this point of view has 
been embraced widely (see a set of recent reviews, e.g., 
Barrow and Tennenbaum 1981; Brady 1982; Brown 1984; 
Poggio 1984), it is important to observe that its correctness 
is still to be proven. In particular, it is still unclear what 
the nature of the 2-D sketch representation is, how dif- 
ferent visual modules interact, how their output is fused, 
and what the role of high-level knowledge on early visual 
processes is. The critical problem of the organization of 
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vision and of the control of the flow of information from 
the different modules and how high-level knowledge is 
used is still very much an open problem. 

In this article, we do not consider this larger issue. Our 
point of view is that a rigorous analysis of individual mod- 
ules of vision is bound to play an important role in any 
full theory of vision. 

1.2 Early Vision 

Early vision consists of a set of processes that recover 
physical properties of visible three-dimensional surfaces 
from the two-dimensional images. Computational, biolog- 
ical, and epistemological arguments (see Marr and Poggio 
1976) suggest that early vision processes are generic ones 
that correspond to conceptually independent modules that 
can be studied, at least to a very first approximation, in 
isolation. Some examples of early vision modules are edge 
detection, spatio-temporal interpolation and approxima- 
tion, computation of optical flow, computation of lightness 
and albedo, shape from contours, shape from texture, shape 
from shading, binocular stereo, structure from motion, 
structure from stereo, surface reconstruction, and com- 
putation of surface color. 

The standard definition of computational vision is that 
it is inverse optics. The direct problem-the problem of 
classical optics or of computer graphics-is to determine 
the images of three-dimensional objects. Computational 
vision is confronted with inverse problems of recovering 
surfaces from images. Much information is lost during the 
imaging process that projects a three-dimensional world 
into two-dimensional arrays (images). As a consequence, 
vision must rely on natural constraints, that is, general 
assumptions about the physical world, to derive an un- 
ambiguous output. This is typical of many inverse prob- 
lems in mathematics and physics. 

In fact, the common characteristics of most early vision 
problems, in a sense their deep structure, can be formal- 
ized: early vision problems are ill posed in the sense defined 
by Hadamard (1923). A problem is well posed when its 
solution (a) exists, (b) is unique, and (c) depends contin- 
uously on the initial data. Ill-posed problems fail to satisfy 
one or more of these criteria. 

Bertero, Poggio, and Torre (1986) show precisely the 
mathematically ill-posed structure of several problems listed 
in Table 1 (see also Poggio and Torre 1984). The recog- 
nition that early vision problems are ill posed suggests 
immediately the use of regularization methods developed 
in mathematics and mathematical physics for solving the 
ill-posed problems of early vision (Poggio and Torre 1984). 
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Table 1. Regularization in Early Vision 

Problem Regularization principle 

Edge detection f [(Sf - j)2 + Af(f2)] dx 

(area ased) [(iXu + i v + j)2 + A(U2 + u2 + V2 + v2)] dx dy 

Optical flow ia 21 
(contour based) af [(V x N -N)2 + i(j V,)1 ds 

Surface [(S x f - d)2 + A(f2 + 2f2 + f2 )2] dx dy 
reconstruction [(S >(y 

approximationt [(Sf - i)2 + A(Vf x V + f t)2] dx dy dt 

Color llyv - AzJl2 + .lPzIl2 

Shape from | [(E - R(f, g))2 + Af2 + f2 + g2 + g2)] dx dy 

shading (E - R( x + x y 
Stereo f [V2G * (L(x, y) - R(x + d (x, y), y))f2 + 1A(Vd)2}I dx dy 

1.3 Standard Regularization in Early Vision 

The main idea for "solving" ill-posed problems is to 
restrict the class of admissible solutions by introducing 
suitable a priori knowledge. In standard regularization 
methods, due mainly to Tikhonov (Tikhonov and Arsenin 
1977), the regularization of the ill-posed problem of find- 
ing z from the data y, Az = y, requires the choice of 
norms 1111 and of a stabilizing functional lIPzll. In standard 
regularization theory, A is a linear operator, the norms 
are quadratic, and P is linear. A method that can be ap- 
plied follows. 

Find z that minimizes 

IIAz - yll + AIIPzll2, (1) 

where A is a so-called regularization parameter. 
In this method, A controls the compromise between the 

degree of regularization of a solution and its closeness to 
the data [the first term in Eq. (1)]. P embeds the physical 
constraints of the problem. It can be shown for quadratic 
variational principles that under mild conditions the so- 
lution space is convex and a unique solution exists. 

Poggio, Torre, and Koch (1985) showed that several 
problems in early vision can be "solved" by standard reg- 
ularization techniques. Surface reconstruction, optical flow 
at each point in the image, optical flow along contours, 
color, and stereo can be computed by using standard reg- 
ularization techniques. Variational principles that are not 
exactly quadratic but have the same form as Equation (1) 
can be used for other problems in early vision. The main 
results of Tikhonov can, in fact, be extended to some cases 
in which the operators A and P are nonlinear, provided 
that they satisfy certain conditions (Morozov 1984). 

Standard regularization methods can be implemented 
efficiently by parallel architectures of the fine-grain type, 
such as the Connection Machine (Hillis 1985). Analog 
networks, either electrical or chemical, can also be a nat- 
ural way of solving the variational principles dictated by 
standard regularization theory (Poggio and Koch 1984; 

Poggio et al. 1985). A list of the problems that can be 
regularized by standard regularization theory or slightly 
nonlinear versions of it is shown in Table 1, together with 
the associated regularization principle. 

1.4 Limitations of Standard Regularization Theory 

This new theoretical framework for early vision shows 
clearly not only the attractions but also the limitations that 
are intrinsic to the standard Tikhonov form of regulari- 
zation theory. Standard regularization methods lead to 
satisfactory solutions of early vision problems but cannot 
deal effectively and directly with a few general problems, 
such as discontinuities and fusion of information from mul- 
tiple modules. 

Standard regularization theory with linear A and P is 
equivalent to restricting the space of solution to general- 
ized splines, whose order depends on the order of the 
stabilizer P. This means that in some cases the solution is 
too smooth and cannot be faithful in locations where dis- 
continuities are present. In optical flow, surface recon- 
struction, and stereo, discontinuities are in fact not only 
present but are also the most critical locations for subse- 
quent visual information processing. Standard regulari- 
zation cannot deal well with another critical problem of 
vision, the problem of fusing information from different 
early vision modules. Since the regularizing principles of 
the standard theory are quadratic, they lead to linear 
Euler-Lagrange equations. The output of different mod- 
ules can, therefore, be combined only in a linear way. 
Terzopoulos (1984; see also Poggio et al. 1985) showed 
how standard regularization techniques can be used in the 
presence of discontinuities in the case of surface inter- 
polation. After standard regularization, locations where 
the solution f originates a large error in the second term 
of Equation (1) are identified (this needs setting a thresh- 
old for the error in smoothness). A second regularization 
step is then performed by using the location of discontinu- 
ities as boundary conditions. 
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A similar method could be used for fusing information 
from multiple sources: a regularizing step could be per- 
formed, and locations where terms of the type of the first 
term of Equation (1) give large errors would be identified. 
A decision step would then follow by setting appropriately 
various controlling parameters in those locations, thereby 
weighting in an appropriate way (for instance, vetoing 
some of) the various contributing processes. 

In any case, one would like a more comprehensive and 
coherent theory capable of dealing directly with the prob- 
lem of discontinuities and the problem of fusing infor- 
mation. So the challenge for a regularization theory of 
early vision is to extend it beyond standard regularization 
methods and their most obvious nonlinear versions. 

1.5 Stochastic Route to Regularizing Early Vision 
In this article, we will outline a rigorous approach to 

overcome part of the ill-posedness of vision problems, 
based on Bayes estimation and Markov random field (MRF) 
models, that effectively deals with the problems faced by 
the standard regularization approach. In this approach, 
the a priori knowledge is represented in terms of an ap- 
propriate probability distribution, whereas in standard 
regularization a priori knowledge leads to restrictions on 
the solution space. This distribution, together with a prob- 
abilistic description of the noise that corrupts the obser- 
vations, allows one to use Bayes theory to compute the 
posterior distribution Pf g, which represents the likelihood 
of a solution f given the observations g. In this way, we 
can solve the reconstruction problem by finding the esti- 
mate f that either maximizes this a posteriori probability 
distribution [the so-called maximum a posteriori (MAP) 
estimate] or minimizes the expected value (with respect 
to Pffg) of an appropriate error function. The class of so- 
lutions that can be obtained in this way is much larger 
than in standard regularization. In particular, we will show 
under which conditions this new method leads to solutions 
that are of the standard regularization type (see Sec. 3). 
The price to be paid for this increased flexibility is com- 

putational complexity. New parallel architectures and pos- 
sibly hybrid computers of the digital-analog type promise, 
however, to deal effectively with the computational re- 
quirements of the methods proposed here. We will discuss 
at the end of the article in some detail these new parallel 
architectures. 

2. PROBABILISTIC MODELS 

The key to success in the use of this approach is our 
ability to find a class of stochastic models (i.e., random 
fields) that have the following characteristics: 

1. The probabilistic dependencies between the ele- 
ments of the field should be local. This condition is nec- 
essary if the field is to be used to model surfaces that are 
only piecewise smooth; besides, if it is satisfied, the re- 
construction algorithms are likely to be distributed and 
thus efficiently implementable in parallel hardware. 

2. The class should be rich enough for a wide variety 
of qualitatively different behaviors to be modeled. 

3. The relation between the parameters of the models 
and the characteristics of the corresponding sample fields 
should be relatively transparent, so that the models are 
easy to specify. 

4. It should be possible to represent the prior proba- 
bility distribution Pf explicitly, so that Bayes theory can 
be applied. 

5. It should be possible to specify efficient Monte Carlo 
procedures, both for generating sample fields from the 
distribution so that the capability of the model to represent 
our prior knowledge can be verified and for computing 
the optimal estimators. 

A class of random fields that satisfies these requirements 
is the class of MRF's on finite lattices (see Wong 1968; 
Woods 1972). An MRF has the property that the proba- 
bility distribution of the configurations of the field can 
always be expressed in the form of a Gibbs distribution, 

Pf(f) = l/Z(e1-1To(u(f)), 

where Z is a normalizing constant, To is a parameter (known 
as the "natural temperature" of the field), and the "energy 
function" U(f) is of the form 

U(f) = E VC(A 
c 

where C ranges over the "cliques" associated with the 
neighborhood system of the field and the potentials Vc(f) 
are functions supported on them (a clique is either a single 
site or a set of sites such that any two sites belonging to 
it are neighbors of each other). 

As an example, the behavior of piecewise constant func- 
tions can be modeled using first-order MRF models on a 
finite lattice L with generalized Ising potentials (Geman 
and Geman 1984): 

VC(fi fj) = - 1, if Ii - il = 1 and fi = fj, 
= 1 if ji - ji 1 and fi 0 fi, 

= 0, otherwise; 

fi E Qi ={ql , qM} for all i E L. 
We will use a free boundary model, so that the neigh- 

borhood size for a given site will be: 4, if it is in the interior 
of the lattice; 3, if it lies at a boundary, but not at a corner; 
and 2 for the corners. 

The Gibbs distribution, 

Pf(f) = 1exp[ T UO(f)1, 

UO(f) = E V(fi, fj), (2) 
i,j 

defines a one-parameter family of models (indexed by To) 
describing piecewise constant patterns with varying de- 
grees of granularity. 

We will assume that the available observations g are 
obtained from a typical realization f of the field by a de- 
grading operation (such as sampling) followed by corrup- 
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tion with iid noise (the form of whose distribution is known), 
so the conditional distribution can be written as 

Pgj f(g;f) = exp -aP E 1i(f, gi)j (3) 
iES 

where {La} are some known functions and a is a parameter. 
The posterior distribution is obtained from Bayes's rule, 

as follows: 

Pfig(f;g) exp[-Up(f;g)J (4) 

with 

Up(f; g) = + U0(f) + E PD(f, gi). (5) 
To iES 

For example, in the case of binary fields (M = 2) with 
the observations taken as the output of a binary symmetric 
channel (BSC) with error rate e (Gallager 1968), we have 

P(gz I fi) = (1 - 8), for gi = fi, 

=, for gi f. 
The posterior energy reduces to 

Up(f; g) = T E V(f1, fj) + aE (1 - 3(fi - gi)), (6) 

where fi E {q1, q2}; 

6(a) = 1, if a = 0, 
= 0, otherwise; (7) 

and 

a = ln((1 - 6)18). (8) 

3. COST FUNCTIONALS 
The Bayesian approach to the solution of reconstruction 

problems has been adopted by several researchers. In most 
cases, the criterion for selecting the optimal estimate has 
been the maximization of the posterior probability (the 
MAP estimate). It has been used, for example, by Geman 
and Geman (1984) for the restoration of piecewise con- 
stant images, by Grenander (1984) for pattern reconstruc- 
tion, and by Elliot, Derin, Christi, and Geman (1983) and 
Hansen and Elliot (1982) for the segmentation of textured 
images [a similar criterion-the maximization of a suitably 
defined likelihood function-has been used by Cohen and 
Cooper (1984) for the same purposes]. 

In some other cases, a performance criterion, such as 
the minimization of the mean squared error, has been 
implicitly used for the estimation of particular classes of 
fields. For example, for continuous-valued fields with ex- 
ponential autocorrelation functions, corrupted by additive 
white Gaussian noise, Nahi and Assefi (1972) and Habibi 
(1972) have used causal linear models and optimal (Kal- 
man) linear filters for solving the reconstruction problem. 

The minimization of the expected value of error func- 
tionals, however, has not been used as an explicit criterion 

for designing optimal estimators in the general case. We 
will show that this design criterion is in fact more appro- 
priate in our case, for the following reasons: 

1. It permits one to adapt the estimator to each partic- 
ular problem. 

2. It is in closer agreement with one's intuitive assess- 
ment of the performance of an estimator. 

3. It leads to attractive computational schemes. 

As an example, we will now propose design criteria for 
two particular problems: image segmentation and surface 
reconstruction. 

Consider a field f with N elements, each of which can 
belong to one of a finite set Qi of classes. Let fi denote 
the class to which the ith element belongs. The segmen- 
tation problem is to estimate f from a set of observations 
{gl, * . * , gp}. Note that fi does not necessarily correspond 
to the image intensity. It may represent, for example, the 
texture class for a region in the image (as in Elliot et al. 
1983). 

A reasonable criterion for the performance of an esti- 
mate f is the number of elements that are not classified 
correctly. Therefore, we define the segmentation error es 
as 

N 

es(f, f) = , (1 - 5(fi - f.)), , iIf, E Q1. (9) 
1=1 

In the case of the reconstruction problem, an estimate 
f should be considered "good" if it is close to f in the 
ordinary sense, so the total squared error, 

N 

er(f, f) = , (fi - fi)2I (10) 

will be a reasonable measure for its performance. 
To derive the optimal estimators with respect to the 

criteria stated previously, we first present the general re- 
sult (which can be found, e.g., in Abend 1968), which 
states that if the posterior marginal distributions for every 
element of the field are known, the optimal Bayesian es- 
timator with respect to any additive, positive-definite cost 
functional C may be found by independently minimizing 
the marginal expected cost for each element. 

In more precise terms, we will consider cost functionals 
C(f, f) of the form 

C(f, f) = > C1(fi, fi) 
iEL 

with 

Ci(a, b) = 0, if a =b, 

> 0, if a b, for all i. 

We will assume that the value of each element fi of the 
field f is constrained to belong to some finite set Qi (the 
generalization to the case of compact sets is straightfor- 
ward). The optimal Bayesian estimator f* with respect to 
the cost functional C is defined as the global minimizer of 
the expected value of C over all possible f and g. One can 
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prove that this estimate can be found by minimizing in- 
dependently the marginal expected cost for each element, 
that is, 

f* = q 2 Ci(r, q)Pi(r I g) < E C.(r, s)Pi(r I g) 
rEQi rEQi 

for all s =# q and for all i E L, 

where P1(r I g) is the posterior marginal distribution of the 
element i, as follows: 

Pi(r I g) = > Pflg(f; g). 
f:fi=r 

The optimal estimators for the error criteria defined 
previously can be easily derived from this result: In the 
case of the segmentation problem, we get that 

f*= q E Qi: Pi(q I g) 2 Pi(s I g) for all s =# q. (11) 

We will call this estimate the "maximizer of the posterior 
marginals" (fMPM) 

For the reconstruction problem, the optimal estimate is 

f*= qE Qi: (fi- q)2 (fi-S)2 forall s=#q. (12) 

We will call this estimate the "thresholded posterior mean" 
(!TPM). 

The main obstacle for the practical application of these 
results lies in the formidable computational cost associated 
with the exact computation of the marginals and the mean 
of the posterior distribution given by (5), even for lattices 
of moderate size. In the next section we will present a 
general distributed procedure that will permit us to ap- 
proximate these quantities as precisely as we may want. 

4. ALGORITHMS 

The algorithms that we will propose are based on the 
use of the Metropolis (Metropolis et al. 1953) or Gibbs 
sampler (Geman and Geman 1984) schemes to simulate 
the equilibrium behavior of the coupled MRF described 
by Equation (5). We recall that the Markov chain gen- 
erated by these algorithms is regular and their invariant 
measure is the posterior distribution Pf Ig. The law of large 
numbers for regular chains (see, e.g., Kemeny and Snell 
1960) establishes that the fraction of time that the chain 

will spend on a given state f will tend to Pflg(f; g) as the 
number of steps gets large, independently of the initial 
state. This means that we can approximate the posterior 
marginals by 

1n 

Pi (q Ig) 6 5(f t) - q) (13) n-k t=k 

and f by 
n 

fi 1 EfYt) (14) n - kt=k 

where f (t) is the configuration generated by the Metropolis 
algorithm at time t and k is the time required for the system 
to be in thermal equilibrium. From these values, fMpM and 
fTPM can be easily computed using (11) and (12). 

This procedure is related to the use of simulated an- 
nealing (Kirkpatrick, Gelatt, and Vecchi 1983) for finding 
the global minimum of Up (i.e., the MAP estimate; see 
Geman and Geman 1984). In our case, however, we are 
interested in gathering statistics about the equilibrium be- 
havior of the coupled field at a fixed temperature T = 1, 
rather than in finding the ground state of the system. This 
fact gives our procedure some distinct advantages, as fol- 
lows: 

1. It is difficult to determine in general the descent rate 
of the temperature (annealing schedule) that will guar- 
antee the convergence of the annealing process in a rea- 
sonable time (it usually involves a trial-and-error proce- 
dure). Since we are running the Metropolis algorithm at 
a fixed temperature, this issue becomes irrelevant. 

2. Since in our case we are using a Monte Carlo pro- 
cedure to approximate the values of some integrals, we 
should expect a nice convergence behavior, in the sense 
that coarse approximations can be computed very rapidly 
and then refined to an arbitrary precision [in fact, it can 
be proved (see Feller 1950) that the expected-value of the 
squared error of the estimates (13) and (14) is inversely 
proportional to n]. 

The main disadvantage of this procedure is that in the 
case of the segmentation problem, a large amount of mem- 
ory might be required if the number of classes per element 
m is large [we need to store the N(m - 1) numbers that 
define the posterior marginals]. 

(a) (b) (c) (d) 
Figure 1. (a) Sample Function of a Binary MRF. (b) Output of a BSC (error rate: .4). (c) MAP Estimate. (d) Monte Carlo Approximation to the 

MPM estimate. 
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Table 2. Comparison of the Performance of the MAP and MPM Estimators 

f g fMAP fMPM(M.C.) fMpM(det.) 

Energy -5594.8 -226.0 -6660.9 -6460.0 -6427.0 
Segmentation - .4 .33 .128 .124 

error 

With respect to the relative performance, we point out 
that in many cases, particularly for high signal-to-noise 
ratios, the MAP estimate is usually close to the optimal 
one. If the noise level is high, however, the difference in 
the performances of the two estimators may be dramatic. 
This is illustrated in the example portrayed in Figure 1. 
Panel (a) represents a typical realization of a 64 x 64 
binary Ising net with free boundaries, using a value of To 
= 1.74 (.75 times the critical temperature of the lattice); 
panel (b) represents the output of a binary symmetric 
channel with error rate ? = .4; panel (c) represents the 
MAP estimate; and panel (d) represents an approximation 
to the MPM estimate [which we will label "MPM (M.C.)"] 
obtained by using the Metropolis algorithm and Equation 
(10) to estimate the posterior density. The corresponding 
values of the posterior energy Up [Eq. (13)] and the rel- 
ative segmentation error (e4/642) are shown in Table 2. It 
is clear that the approximation to the MPM estimates shown 
in panel (d) is better than the MAP from almost any view- 
point. 

An intuitive explanation for this. behavior comes from 
the fact that the MAP estimator is implicitly minimizing 
the expected value of a cost functional CMAP(f, f ), which 
is equal to zero only if f, = fi for all i, and is equal to, 
say, M otherwise. If the signal-to-noise ratio is sufficiently 
high, the expected value of the optimal segmentation error 
will be very close to zero, so fMPM and .fMAP will coincide. 
In a high noise situation, however, the MAP estimator 
will tend to be too conservative, since from its viewpoint 
it is equally costly to make one or one thousand mistakes. 
The MPM estimator, in contrast, can make a better (al- 
though more risky) guess, since making a few mistakes 
has only a marginal effect on the expected cost. 

1.7 

eMAP 

i~~~ eMpM 
1.0 

80 

TO ~~~~~0.1 
0.1 

Figure 2. Ratio of the Average Errors of the MAP and MPM Estimators 
for a 2 x 2 Ising Net. 

A quantitative comparison of the performances of the 
MAP and MPM estimators, with respect to the segmen- 
tation error, can be obtained using the following ratio: 

eMAP _ f,g exp[ - Up(f; g)]es(f, fMAP(g)) 

eTPM Yf,g exp[- Up(f; g)]es(f, fTPM(g)) 

In Figure 2 we show a plot of the ratio r for a 2 x 2 
lattice, for different values of the error rate e and the 
natural temperature To. As expected, r is never less than 
1. In the worst case (for e = .1 and To = .2) the error of 
the MAP estimate is 1.17 times that of the MPM estimate; 
if To is not too small and e is not too large, both estimates 
coincide, and as e approaches .5 (low signal-to-noise ratio), 
the MPM estimate is consistently better than the MAP. 
An experimental analysis of larger lattices reveals a similar 
qualitative behavior, but the values of r are much larger 
in this case (see Table 2). 

5. EXAMPLES OF APPLICATIONS IN VISION 

5.1 Reconstruction of Piecewise 
Constant Functions 

The efficient solution of this problem is relevant for 
several reasons: binary images (or images consisting of 
only a few gray levels) are directly useful in many inter- 
esting applications [e.g., object recognition and manipu- 
lation in restricted (industrial) environments]; besides, 
several perceptual problems, such as the segmentation of 
textured images (Cohen and Cooper 1984; Cross and Jain 
1983; Elliot et al. 1983; Hansen and Elliot 1982) or the 
formation of perceptual clusters (Marroquin 1985), can be 
reduced to the problem of reconstructing a piecewise con- 
stant surface. 

The prior model for this kind of function is given by 
Equations (1) and (2), and the posterior distribution is 
given by Equation (4). If the parameters that character- 
ize the system (namely, the "natural temperature" To and 
the noise parameter a) are known, the MPM estimator 
produces excellent results, such as the one illustrated in Fig- 
ure 1. 

In most practical cases, however, we are only given the 
noisy observations g and general qualitative information 
about the structure of the field and the noise, so f , a (which 
stands, e.g., for the error rate e when the noise corruption 
corresponds to a BSC or for the variance a2 in the case of 
additive Gaussian noise), and To have to be simultaneously 
estimated. 

In principle, one could use again a Bayesian approach 
and, assuming prior independent uniform distributions for 
a and To (in the ranges [aO, a'] and [T?, To], respectively), 
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(a) (b) (c) 

Figure 3. (a) Original Ternary MRF. (b) Noisy Observations (additive Gaussian noise). (c) Optimal (maximum likelihood) Estimate. 

A A 

find those a^, ITo and f that jointly maximize the posterior 
distribution: 

P(f, a, T0 | g) - exp[ - Up(a, To, f)] 
(a' - a0)(TO' - TO)Z(To)Pg(g) 

The main difficulty here is the extraordinary computa- 
tional complexity of the partition function 

Z (TO) = exp [-~uo(f)J 
f [To ] 

which makes this approach impractical, except for very 
small lattices. 

Another approach, with which we have obtained very 
good results, consists of defining a merit function for an 
estimate (obtained by using a particular value for the pa- 
rameters) that is related to the degree of uniformity in the 
spatial distribution of the corresponding residuals. We have 
used, for example, a likelihood function $, which we ob- 
tain by covering the lattice with a set of m nonoverlapping 
squares (say, 8 pixels wide), computing the relative vari- 
ance of the noise parameter, estimated over each square, 
and adding all of these terms together, as follows: 

m A A 2 (f) = - a -j 
j= a / 

where a and aj denote the conditional (on f) maximum 
likelihood estimates (MLE's) of the noise parameter, ob- 
tained by using the residuals over the whole lattice and 
over the jth square, respectively. The optimal estimate for 
f is then obtained as the global maximizer of $ over the 
appropriate region of the parameter space. An example 
of the performance of this scheme is presented in Figure 

3, which shows the restoration of a ternary pattern cor- 
rupted by additive, white Gaussian noise. 

Note that this estimation algorithm allows us to recon- 
struct a pattern f from the noisy observations g. without 
having to adjust any free parameters. The only prior as- 
sumptions correspond to the qualitative structure of the 
field f (first-order, isotropic MRF) and to the nature of 
the noise process. In practice, this means that we can apply 
it to restore any piecewise uniform image with uniform 
granularity, even if it has not been generated by a Markov 
random process. In the particular case of a binary field 
sent through a BSC, we have developed a very efficient 
procedure for approximating the MPM estimator, which 
also permits us to find the optimal (maximum likelihood) 
estimate using only a one-dimensional search [see Mar- 
roquin (1985) for details]. We have used this algorithm to 
reconstruct a variety of binary images, with excellent re- 
sults. In Figure 4 we show such a restoration. The obser- 
vations (b) were generated from the synthetic image (a) 
with an actual error rate of .35 (assumed unknown). The 
MLE for f is shown in (c). 

5.2 Reconstruction of Piecewise 
Continuous Functions 

In this section we will illustrate the application of the 
local spatial interaction models and estimation techniques 
that we have described to the reconstruction of piecewise 
continuous functions from noisy observations taken at sparse 
locations. 

In this reconstruction, it will be important not only to 
interpolate smooth patches over uniform regions, but to 
locate and preserve the discontinuities that bound these 
regions, since very often they are the most important parts 

(a) (b) (c) 
Figure 4. (a) Synthetic Image. (b) Noisy Observations. (c) Maximum Likelihood Estimate. 
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of the function. They may represent object boundaries in 
vision problems (such as image segmentation, depth from 
stereo, shape from shading, structure from motion, etc.), 
geological faults in geophysical information processing, 
and so on. 

As we mentioned in Section 1.4, an approach to this 
problem (see Terzopoulos 1984; Grimson 1982) consists 
of, first, interpolating an everywhere smooth function over 
the whole domain, then applying some kind of disconti- 
nuity detector (followed by a thresholding operation) to 
try to find the significant boundaries, and, finally, rein- 
terpolating smooth patches over the continuous subre- 
gions. 

The results that have been obtained with this technique, 
however, are not completely satisfactory. The main prob- 
lem is that the task of the discontinuity detector is hindered 
by the previous smooth interpolation operation. This be- 
comes critical when the observations are sparsely located, 
since in this case the discontinuities may be smeared in 
the interpolation phase to such a degree that it may be- 
come impossible to recover them in the detection phase. 

In contrast, in the Bayesian approach, the boundary 
detection and interpolation tasks are performed at the same 
time. In applying the general reconstruction algorithms 
developed previously to this problem, the main issue is 
the representation, in a meaningful way, of the concept 
of "piecewise continuity" in the form of a prior Gibbs 
distribution. 

A flexible construction involves the use of two coupled 
MRF models: one to represent the function (the "sur- 
face") itself, and another to model the curves where the 
field is discontinuous. A coupled model of this kind was 
first used by Geman and Geman (1984) in the context of 
the restoration of piecewise constant images. Terzopoulos 
(in press) recently attempted to translate this idea in the 
continuous and deterministic framework of standard reg- 
ularization. 

This model can be adapted to our problem by modifying 
the choice of the potentials and the neighborhood struc- 
ture of the coupled MRF's. Specifically, the following 
modifications are needed: 

1. Since in our case the observations are sparse, it be- 
comes necessary to expand the size of the neighborhoods 
of the line field, to prevent the formation of "thick" 
boundaries between the smooth patches (i.e., adjacent, 
parallel segments of active lines in these regions). In par- 
ticular, we propose that the dual lattice be 8-connected, 
with nonzero potentials for the cliques of the form illus- 
trated in Figure 5(a) and 5(b). The inclusion of the cliques 
of Figure 5(b) has the additional advantage of penalizing 

x x 0 
Ox O xx 

(a) (b) 
Figure 5. (a) and (b) show different clique types for the line process. 

the occurrence of sharp turns, permitting us to model the 
formation of piecewise smooth boundaries by using a bi- 
nary line process instead of the 4-valued process proposed 
by Geman and Geman (1984). The potentials for these 
cliques are computed in the following way: Let Va, Vb 
denote the potentials associated with the cliques Ca, Cb of 
Figure 5(a) and 5(b), respectively, and let Sk(k E {a, b}) 
denote the number of line elements belonging to Ck that 
are "on"~ at a given time, that is, 

Sk = i i, k = a, b. 
iE Ck 

The potentials Vk are given by 

Vk = fAk(Sk), k = a, b, 
where fi is a constant, and the functions 44 are defined by 
the following: 

Sa 0 1 2 3 4 
Oa 0 .4 .25 1.2 2.0 

Sb 0 1 2 
'b 0 0 10 

It is not difficult to see that this choice of potentials will 
effectively discourage both the formation of thick bound- 
aries (Sb = 2) and the presence of sharp turns (Sa = 3 
and/or Sb = 2). 

2. The potentials of the depth process, which is now 
continuous-valued, have to be modified to express the 
more relaxed condition of piecewise continuity (instead of 
piecewise constancy). Specifically, we propose 

V(fi, fi, lii) = (fi - fj)2(1 - l1j), for Ji - jl = 1, 

= 0, otherwise 

(note that lij E {0, 1}). 
3. Unlike the case of piecewise constant surfaces, we 

now have to worry about the maximum absolute difference 
in the values of two adjacent depth sites that we are willing 
to consider as a "smooth" gradient (and not a disconti- 
nuity). This value, which in general is problem dependent, 
determines the magnitude of the constant f, in Equation 
(2), which can be interpreted as the coupling strength be- 
tween the two processes. 

Assuming that the observations are corrupted by iid 
Gaussian noise, we get the following expression for the 
posterior energy: 

Up(f, 1; g) =-L (fi - fj)2(1 - li,j) To i,j 

+ - > (f- gi)2 + > Va(l) + > Vb(l), 
? iES Ca Cb 

where S is the set of sites where an observation is present. 
As a performance criterion we will use a mixed cost func- 
tional of the form 

em(f, 1,!f, i) = 2 (fi - fi)2 + > (1 - 5(l, - 2,)), 
ieLf jeL, 
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4I/a 

I/a 

Figure 6. Hybrid Network Implementing the Surface Reconstruction 
Algorithm of Section 4. The voltage at every node represents the height 
of the surface. Inside every rectangular box there is a resistance of unit 
magnitude and a switch whose state is controlled by the corresponding 
line element. 

where Lf, LI denote the depth and line lattices, respec- 
tively. This error criterion means that the reconstructed 
surface should be as close as possible to the true (un- 
known) surface and that we should commit as few errors 
as possible in the assertions about the presence or absence 
of discontinuities. 

Applying the results of Section 3, we find that the op- 
timal estimators will be the posterior mean for f and the 
maximizer of the posterior marginals for 1. 

There is one serious difficulty that prevents us from 
applying directly the general Monte Carlo procedure that 
was derived previously to the computation of these optimal 
estimates: since the depth variables are continuous-valued, 
if we discretize them finely enough to guarantee sufficient 
precision of the results, the computational complexity of 
either the Metropolis or Gibbs sampler algorithms will be 
very large. One way around this difficulty is to note that 
for any fixed configuration of the line field, the posterior 
energy becomes a nonnegative definite quadratic form 

U(f 1, g) = a (fK - fj)2 + a , (fj - g)2 + K 
i,j:lij=o jEs 

(15) 

where a and K are constants (note that the first sum is 
taken only over those pairs of sites whose connecting line 
element is "off" and the second one is taken over the set 
S). This means that the posterior distribution of the depth 
field is conditionally Gaussian, so for any fixed 1 we can 
find the optimal conditional estimator fz as the minimizer 
of (15). 

Let us define the set F* as 
F* = {(f, 1): f = f }o 

It is clear that, if f 1 are the optimal estimates for our 
problem, we have that (f, 1) E F*, which suggests that 
we can constrain the search for the optimal estimators to 
this set. This can be done, in principle, by replacing the 
posterior energy with the function U *(l) = U(f I I) (which 
depends only on 1) and using the standard Monte Carlo 
procedures to find the optimal estimator 1. To illustrate 
this idea, let us consider a physical model in the next 
section. 

Hybrid Parallel Computers. It is well known that the 
steady state of an electrical network that contains only 
(current or voltage) sources and linear resistors will be the 
global minimizer of a quadratic functional that corre- 
sponds to the total power dissipated as heat (Oster, Per- 
elson, and Katchalsky 1971). It is, therefore, possible to 
construct an analog network that will find the equilibrium 
state of the depth field for a given, fixed configuration of 
the line process, that is, that will minimize the conditional 
energy (8) (see Poggio and Koch 1984; see also Poggio et 
al. 1985). This suggests a hybrid computational scheme in 
which the line field (whose state is updated digitally, using, 
say, the Metropolis or Gibbs sampler algorithms) acts as 
a set of switches on the connections between the nodes of 
the analog network whose voltages represent the depth 
process. In particular, if fi represents the voltage at node 
i, the hybrid network can be represented as a 4-connected 
lattice of nodes (see Fig. 6) for which the following hold: 

1. A resistance (of unit magnitude) and a switch (con- 
trolled by the line element lIJ) is present in every link 
between pairs i, j of adjacent nodes. 

,)u av a a . 

(a) (b) (c) 
Figure 7. (a) Observations of Three Rectangles at Heights 2.0, 3.0, and 2.0 Over a Background at Height 1.0 (height coded by gray level; a 

white pixel means that the observation is absent at that point). (b) Equilibrium State of the Network With All Lines Turned "off." (c) Optimal 
Estimate. 
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2. If an observation gi is present at site i, a current of 
magnitude equal to agi is injected to the corresponding 
node, which must also be connected to a common ground 
via a resistance of magnitude 1/a [see Eq. (8)]. 

A direct application of Kirchoff current law shows that 
at each node i of this network we will have 

> (fi - fj) - -lij) + aqifi = aqigi, 
jENi 

which corresponds to the condition grad U(f i 1) = 0, so 
the equilibrium configuration coincides with f . 

This scheme can be used, in principle, to construct a 
special-purpose hybrid computer for the fast solution of 
problems of this type. In a digital machine, the exact im- 
plementation of this strategy will be, in general, very ex- 
pensive computationally, since fl must be computed every 
time a line site is updated. It is possible, however, to 
develop approximations that have an excellent experi- 
mental performance and lead to efficient implementations 
(Marroquin 1985). The performance of this method is il- 
lustrated in Figure 7, in which we show the observations 
(with height coded by gray level) (a), the initial state of 
the network (with all the lines turned "off") (b), and the 
final reconstructed surface (c), for a square at height 2.0 
over a background at constant height = 1.0. 

6. SIGNAL MATCHING 

In all of the estimation problems we have studied so far, 
the posterior energy function had the form 

Up(f; g) = Uo(f) + > bi(ff, gi), 

where Uo(f) corresponded to the MRF model for the field 
f. The functions (i, whose precise form depended on the 
particular noise model, were nondecreasing functions of 
the distance between fi and gi. 

There are some cases, however, in which the conditional 
probability distribution of the observations Pglf(g; f) is 
multimodal (as a function of f), which causes the functions 
(Di to be nonmonotonic, so the solution to the problem 
remains ambiguous, even if the observations are dense 
and the signal-to-noise ratio is arbitrarily high. To illustrate 
this situation, we will study an important instance of it- 
the "signal-matching" problem, whose one-dimensional 
version is as follows. 

Consider two one-dimensional, real-valued sequences 
hL, hR, where hL is obtained from hR by shifting some 
subinteivals according to the "disparity sequence" d, as 
follows: 

hL(i) = hR (i + di) 

with 

di E Q = {-m, -m + 1, . . ., -1, 0, 1, . . ., m}. 

The signal-matching problem is to find d given hL, hR. 
(In a more realistic situation, we do not observe hL, hR 
directly, but rather some noise-corrupted versions gL, gR). 

Some interesting instances of this problem are the match- 
ing of stereoscopic images along epipolar lines (Marr and 
Poggio 1976), the computation of the dip angle of geo- 
logical structures from electrical resistivity measurements 
taken along a bore hole, and the matching of DNA se- 
quences. 

To make the discussion more specific, we will consider 
a simple example in which the sequences hL, hR are binary 
Bernoulli sequences; we will assume that the noise cor- 
ruption process can be modeled as a BSC with known 
error rate and that d is known to be a piecewise constant 
function. A well-known instance of this problem is the 
matching of a row of a random dot stereogram with density 
p (Julesz 1960) when the components of the stereo pair 
are corrupted by noise. 

The stochastic model for the observations is then con- 
structed by assuming that the right image is a sample func- 
tion of a Bernoulli process A with parameter p: gR(i) = 

A (i). The left image is assumed to be formed from the 
right one by shifting it by a variable amount given by the 
disparity function d, except at some points where an error 
is committed with probability e. Note that some regions 
that appear in the right image will be occluded in the left 
one (see Fig. 8). The "occlusion indicator" 4d can be 
computed deterministically from d in the following way: 

bd(i) = 1 if di-k - di + k, for some integer 
k E (0, m], 

= 0, otherwise. (16) 

The occluded areas are assumed to be "filled in" by an 
independent Bernoulli process B. The final model is then 

gL(i) = gR(i + di), with Pr(1 - e), if kd(i) = 0, 

= 1 - gR(i + di), with Pr(8), if kd(i) = 0, 

= BP(i), with Pr(1), if 4d(i) = 1, (17) 

Note that in the two-dimensional case, the index i denotes 
a site of a lattice and, therefore, it can be represented as 
a two-vector (il, i2) whose components denote the column 
and row of the site, respectively. To simplify the notation, 
we will adopt the following convention throughout this 

Lines of Constant 
Disparity 

i-I d- 

i+dI 

H i 

9L 

Figure 8. Occluded Regions. The horizontal and vertical axis rep- 
resent points in one row of the left and right images, respectively. 
Matching points are represented by black circles. Any match in the 
shaded region will occlude the point i. 
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(a) (b) 
Figure 9. (a) Random Dot Stereogram. (b) Reconstructed Surface. 

section: when a scalar is added to this vector index [as in 
gR(i + di) and di+kI, it will be implicitly assumed that it 
is multiplied by the vector (1, 0) [so the above expressions 
should be understood as gR(i + (di, 0)) and di+(k,o), re- 
spectively]. Using this convention, the observation model 
of Equation (17) can be applied either to the one-dimen- 
sional or to the two-dimensional cases. 

Notice that even if the observations are noise free (e = 
0) the solution of the problem remains ambiguous, and it 
cannot be uniquely determined unless some prior knowl- 
edge about d (e.g., in the form of an MRF model) is 
introduced. The use of an MRF model in the stereo match- 
ing case corresponds to a quantification of the assumption 
of the existence of "dense solutions" [this term was intro- 
duced by Julesz (1960) and essentially corresponds to the 
assumption that the disparity d varies smoothly in most 
parts of the image; see also Marr and Poggio (1976)], and 
the use of the occlusion indicator corresponds to the "or- 
dering constraint" [i.e., the requirement that if i > j, then 
i + di > j + dj; we put qd = 1 whenever this constraint 
is violated]. 

To formulate the estimation problem, we will consider 
the sequence gL as "observations," and gR will play the 
role of a set of parameters. Thus, from (17), we have 
(assuming, for simplicity, that p = l) 

P(gL(i) = k I d, gR) = Pgjd(k) 

= 1 - , if 4d(i) = 0 and gR(i + di) = k, 

- , if qd(i) = O and gR(i + di) =I k, 

- i, if 4d(i) = 1. 

As a prior model for the disparity field, we may use a 
first-order MRF with generalized Ising potentials, such as 
the one presented in Section 5.1. Other models may also 
be used, including the coupled depth and line fields that 
we discussed in the previous section. For the present, let 
us assume that the simpler Ising model is adequate. Note 
that even when the matching problem is one-dimensional 
(we are assuming that there is no vertical disparity between 
the images, so the matching can be done on a row-by-row 
basis), the two-dimensional nature of the prior MRF model 
for the disparity introduces a coupling between matches 

at adjacent rows. The posterior energy is 

Up(d; g) = > V(di, dj) + > 4d(i) In 2 
o i,j i 

+ 2 (1 - 4d(i))9(gLQ) - gR(i + di)), 

(18) 
where a = ln(e/(1 - 

It is possible to apply the general Monte Carlo algo- 
rithms presented previously to approximate the optimal 
estimate d with respect to a given performance measure 
(such as the mean squared error). Their use in this case, 
however, is complicated by the introduction of the occlu- 
sion function 4d in the posterior energy: the size of the 
support for this function equals the total number of al- 
lowed values for the disparity [see Eq. (16)]. If this number 
is large, the computation of the increment in energy or of 
the conditional distributions (if the Gibbs sampler is used) 
may be quite expensive. In many cases, however, the size 
of the regions of constant disparity is relatively large com- 
pared with the size of the occluded areas. In these cases, 
one can approximate the posterior energy by 

Up(d) = > E V(di dj) + > (gL(i) - gR(i + di)) 
o i,j i 

and increase significantly the computational efficiency. It 
is also possible, particularly for the high signal-to-noise 
ratio case, to design deterministic, highly distributed al- 
gorithms for the efficient computation of the optimal es- 
timator. The details of these designs can be found in Mar- 
roquin (1985). 

To illustrate the performance of this approach, we pre- 
sent in Figure 9 a random dot stereogram portraying a 
square floating over a uniform background [panel (a)] and 
the reconstructed surface [panel (b)]. 

7. PARALLEL IMPLEMENTATIONS 

7.1 Connection Machine Architectures 

The general Monte Carlo procedure that we have pre- 
sented for the approximation of the optimal Bayesian es- 
timators of MRF's can be greatly accelerated if it is im- 
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plemented in a parallel architecture. A necessary condition 
for the convergence of the probability measures of the 
Markov chains defined by the Metropolis or Gibbs sampler 
algorithms to the posterior Gibbs distribution [and, there- 
fore, for the convergence of the approximations given by 
Eqs. (13) and (14) to the desired estimates] is that if two 
sites belong to the same clique, they are never updated at 
the same time. It is important to note, however, that this 
condition is also sufficient only for the case of the Gibbs 
sampler: if one updates simultaneously the states of all 
nonneighboring sites, the reversibility of the resulting chain 
will be destroyed, so it will no longer be possible to guar- 
antee the convergence of the Metropolis algorithm to the 
desired result (see Marroquin 1985). 

If one implements the Gibbs sampler in a parallel ar- 
chitecture in which a processor is assigned to each site, 
the total execution time will be reduced by a factor of 
NIK, where K is the so-called "chromatic number" of the 
graph that describes the neighborhood structure and it is 
equal to the minimum number of colors needed to color 
the sites of the lattice in such a way that no two neighbors 
are the same. 

An example of such a massively parallel architecture is 
the "Connection Machine" (Hillis 1985), constructed by 
Thinking Machines Corporation, Cambridge, Massachu- 
setts. This machine was originally designed for the parallel 
processing of structured symbolic expressions, such as frames 
and semantic networks. It is a "Single Instruction Multiple 
Data" (SIMD) array processor consisting of 256,000 pro- 
cessing units (each with a single-bit arithmetic/logical unit 
and about 4K bits of storage) organized in a 4-connected 
lattice that is 512 elements square. In addition to this near- 
est-neighbor connectivity, it will be possible (although 
computationally more expensive) to connect any two pro- 
cessors in the array using a "Cross Omega" router net- 
work. 

At each cycle of the machine, for which we will assume 
a duration of 1 microsecond, an instruction is executed by 
each processor and a single bit is transmitted to its neigh- 
bors. This means that the updating scheme can be imple- 
mented most efficiently if the field is first-order Markov, 
but higher-order processes can also be implemented with- 
out using the router by successively propagating the trans- 
mitted state (the execution time, therefore, will grow lin- 
early with the order of the field). 

To make this discussion more concrete, consider, as an 
example, the problem of finding the optimal estimate for 
a first-order MRF, where the random variable at each 
lattice site takes values on a set of cardinality M, with Ising 
potentials (i.e., the segmentation of a piecewise constant 
image) from noisy observations. Let us assume that the 
estimator is to be implemented in the "Connection Ma- 
chine" and suppose that by the use of appropriate scaling 
factors all of the numbers can be represented as 16-bit 
integers. We will use the following conservative assump- 
tions: 16 cycles of a single 1-bit processor are needed to 
perform 16-bit addition, subtraction, or comparison; 162 
cycles are needed to perform multiplication or division; 

2 x 162 cycles are needed for generating a pseudorandom 
number with uniform distribution on a given interval; 16 
cycles are needed for memory transfer operations; and 
6 x 162 cycles are needed for computing an exponential. 

Assuming that we run 250 iterations of the system and 
ignoring the overhead time, we get that 

execution time 1.4(M - 1) seconds. 

For the particular case of binary images, we have devel- 
oped a deterministic scheme for which this execution time 
can be reduced by an order of magnitude (see Marroquin 
1985). 

In the case of the reconstruction of piecewise smooth 
functions from sparse data, the optimal estimator can also 
be implemented in this machine. To study this implemen- 
tation, we first note that the chromatic numbers of the 
graphs associated with the line and depth neighborhood 
systems are 4 and 2, respectively, which means that the 
coupled process has a chromatic number of 6. In Figure 
10(a) we illustrate one possible "coloring." 

The colors of the line process are represented by the 
numbers 1, 2, 3, 4, and those of the depth process are 
represented by white and black circles. The updating pro- 
cess can be implemented in a 4-connected architecture 
such as the "Connection Machine" by assigning one pro- 
cessor to each depth site and its four adjacent line ele- 
ments. We will thus have two different populations of 
processors, whose configurations are shown in Figures 10(b) 
and 10(c), respectively. 

Each complete iteration consists of six major cycles: in 
the first two, the state of the white and black depth vari- 
ables is updated, respectively, and in the next four, the 
new states of the binary line variables stored in (say) the 
white processors are successively computed and transmit- 
ted to the corresponding memory locations of the neigh- 
boring black processors. Note that in this scheme we have 
some redundancy in the use of memory (each binary vari- 
able is stored twice), but the state of all of the elements 
needed for each updating operation is always available 
from adjacent processors. Considering that the Monte Carlo 
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(a) (c) 
Figure 10. (a) Coloring of the Coupled Line-Depth Lattice. (b), (c) 

Elements Whose State Is Stored in Each of the Two Types of Processors 
of a 4-Connected Parallel Architecture. 
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algorithm requires about 200 iterations to converge, we 
estimate in this case an execution time of approximately 
2.5 seconds, independent of the lattice size. As before, 
we have also developed in this case a deterministic scheme 
with very good experimental performance, for which the 
execution time can be reduced by at least an order of 
magnitude. 

7.2 Hybrid Analog-Digital Computers and 
Hopfield Networks 

As we mentioned in Section 5.2, the reconstruction of 
piecewise continuous functions can be achieved by cou- 
pling two MRF's, one corresponding to the continuous 
field and the other to the discontinuities. From this scheme 
we have suggested a special-purpose parallel computer 
consisting of an analog network of resistances (correspond- 
ing to the continuous intensity field) and a digital network 
(corresponding to the line process), coupled via D-A and 
A-D converters. The idea suggested by computer exper- 
iments (Marroquin 1985) is that the two processes can run 
on different time scales, a slow one for the digital part and 
a fast one for the analog network. In this way the two 
processes are effectively decoupled and the continuous 
field finds its equilibrium effective instantaneously after 
each update of the line process. Koch, Marroquin, and 
Yuille (1985) discussed implementations of this idea. This 
idea can be extended to multilayered hybrid networks, each 
layer corresponding to an MRF and being digital or analog 
depending on the continuous or binary nature of the field. 
Hybrid multilayered architectures of this type are espe- 
cially attractive for implementing the fusion of several vi- 
sion processes. 

Finally, we mention that Koch et al. (1985) have been 
experimenting successfully with a special type of analog 
networks-Hopfield networks-whose equilibrium states 
correspond to approximations of the optimal estimators. 

8. CONCLUSION 

In this article we have presented a probabilistic ap- 
proach to the solution of a class of perceptual problems. 
We showed that these problems can be reduced to the 
reconstruction of a function on a finite lattice from a set 
of degraded observations, and we derived the Bayesian 
estimators that provide an optimal solution. We also de- 
veloped efficient distributed algorithms for the computa- 
tion of these estimates and discussed their implementation 
in different kinds of hardware. To demonstrate the gen- 
erality and practical value of this approach, we studied in 
detail several applications: the segmentation of noise-cor- 
rupted images, the reconstruction of piecewise smooth sur- 
faces from sparse data, and the reconstruction of depth 
from stereoscopic measurements. 

8.1 Connection With Standard Regularization 

The MAP estimate of an MRF is obviously similar to a 
variational principle of the general form of Equation (3), 
since the use of this criterion defines the optimal estimator 
as the global minimizer of the posterior energy Up [Eq. 

(6)]: the first term measures the discrepancy between the 
data and the solution, and the second term is now an 
arbitrary "potential" function of the solution (defined on 
a discrete lattice). It is then natural to ask for the con- 
nection between standard regularization principles and the 
MRF approach. It turns out that an MAP estimate leads 
to the minimization of a functional Up-in general not 
quadratic-that reduces to a quadratic functional, of the 
standard regularization type, when the MRF is continuous- 
valued, the noise is additive and Gaussian [the term 
X .Di(f, gi) will be quadratic], and first-order differences 
of the field are zero-mean, independent, Gaussian random 
variables [thus the a priori probability distribution is a 
Gibbs distribution with quadratic potentials, so the term 
Uo(f) is quadratic]. 

8.2 The Fusion Problem 

This approach also permits, in principle, the incorpo- 
ration of more than one modality of observations into a 
single estimation process, as well as the simultaneous es- 
timation of several related functions from the same data 
set. This makes one hope that this framework could be 
useful in the solution of difficult problems that require 
such an integrated approach. 

For instance, the stereo-matching problem in real sit- 
uations has not been solved yet in a completely satisfactory 
way. The same can be said of other related perceptual 
problems, such as edge detection, image segmentation, 
the recovery of the shape of an object from a single two- 
dimensional image (the "shape from shading" problem), 
and the segmentation of a scene into distinct objects, as 
well as the recovery of their three-dimensional structure 
from the analysis of images formed at successive instants 
of time (the "structure from motion" problem). All of 
these problems are obviously related, and it is intuitively 
clear that the individual solutions that can be obtained 
should improve if the mutual constraints that the solution 
of each individual problem imposes on the others are taken 
into account. Thus the presence of a brightness edge should 
increase the likelihood of a depth edge and vice versa, the 
depth estimated from stereo should be compatible with 
the shape derived from shading, points belonging to the 
same region in an image should move together, and so on. 
We believe that these constraints can be incorporated in 
the potential functions of the corresponding MRF models, 
so the combined optimal estimation process represents, in 
fact, an integrated cooperative solution to these problems, 
with, it is hoped, a significantly improved performance. 

[Received October 1985.] 
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