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were formed, it would be lower triangular
because of the zeros on the diagonal of D.

Remark: For arbitrary (<n — 1) and
r(<n) (2) reduces to

&= Ar + Aax — k) + Bouw + Bru(t
—h) 4+ -+ Bt — vh) (3)
y = ¢z + du

where » = Il + 1 4+ r — n under the con-
vention that negative » is taken as zero.
Note that if I + 1 + r < n B is the
zero matrix eliminating delays in the
control.

It can be shown that for some cases it is
possible by a change in state variables to
eliminate delays in u (i.e., make B = 0).
The interesting fact is that the new state
variables are not related to the normal form
state variables by a nonsingular matrix of
time constants, as in the ordinary case,
but by a matrix composed of constants and
operators such as D The question of states
being isomorphic under certain types of
transformations then becomes quite in-

teresting. (Some investigation in this
area is currently in progress.)
Again, the important point of this

correspondence is to show that delays in
the conirol are inherent in many state
representations and should be considered
in stating meaningful control problems.

AnprEw F. BucraLo
Div. of Engrg.
Brown University
Providence, R. 1.
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Synthesis of Transfer Function
Matrices with Invariant Zeros

Abstract—A class of multi-input multi-
output systems is considered in which the
zeros of the transfer function matrix
remain invariant with respect to a form of
state variable feedback.
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Consider the linear control process

= = Aa() + Bu®) "

y({) = Hx(t)

where the state of the system z({) € X =
R?, and the output of the system y(t) &
Y = R?. The control functions ¢ — u({)
are assumed to be Lebesgue measurable
functions which are bounded in every
compact interval in R such that for each
Lu(t) S U = R™ Aisann X n, Bis an
n X m, and H is a p X n constant matrix.
For the system (1) the transfer function
T'(s) where s is a complex variable is given

by
T(s) =

Let T' = {v1... v} be an arbitrary set of
7 complex numbers with the proviso that
each v; € T which is complex occurs in
conjugate pairs. It is now well known [1],
[2] if (1) is completely controllable, the
pole locations of T'(s) may be moved to
those determined by T by the application
of affine state variable feedback, that is by
the application of a control law

u(t) = k + Kz(t) 3)

where k£ is a constant vector and K a
constant matrix.

It is also well known that if m = 1, the
zeros of the transfer function matrix remain
invariant with respect to affine state
variable feedback. For multi-input systems
this result is not true in general.

Assume that A4 has distinet eigenvalues.
In applications, the matrix H will usually
be fixed by the availability of transducers
to measure the state variables. More
freedom may be available in the selection
of the activating matrix B. Each column of
B may be considered as an activating vector
for a different component of econtrol.

Let b; denote the kth column of B. Let
{A®1 denote the set of eigenvalues of A
which may be influenced by bz The class of

HlsI — A]71B. (@)

multi-input systems considered in this
paper has the following properties:
m
u {)‘(k)} = {)‘1:>‘21 Sty )‘"} 4)
k=1

O} N o} =047 =k (3)
Condition (4) guarantees that the system is
completely controllable while condition (5)
indicates that each actuating vector in-
fluences a different set of eigenvalues. The
class of systems satisfying conditions (4)
and (5) will be referred to as systems with
disjoint control.

Since we are interested in the properties
of the transfer function matrix, we may
consider any convenient representation of
(1). In terms of the canonical form for
multi-input systems [1], [3], [4], the state
equation of (1) admits the representation!
of the following

A

d—f = A#) + Bu() (6)

iIn what follows we could also use the Jordan
canonical form representation for (1)

where
_‘:\1’"
Am—l
A=
R 4
T 107
0| P o o
i P
B =
01 P
i {0 io
of i
L1y : boa

Each Ayk = 1,2, ---,m) is a companion
matrix corresponding to the eigenvalues
influenced by bz. This class of systems has a
unique representation except for the orde -
ing of the ;. A typical submatrix Ay of 4
is given by

0 1 cee 0
0 0 e 0
A =
0 0 R |
—Qk,n,, —ak.nk—] —Qk.1
@

with the corresponding characteristic equa-
tion

8™k + al:,lsﬂl‘_l + b + Ak = 0. (8)

Since the system is completely control-
lable,

> e =mn

k=1

The characteristic equation of 4 is given by

m
det [s — .-11] = H det [s] — .'A‘ik] = 0.

k=1

Every eigenvalue of A may be altered by
changing the characteristic equation of the
companion matrix it is associated with.
For example, suppose that the eigenvalues
of A; are to be moved to new locations
determined by the characteristic equation

§"% 4 Gras™ Tl 4 o - Gy, = 0. (D



CORRESPONDENCE

Let the state vector be partitioned aec-
cording to the companion matrices Ay in
A and let the kth component of the eontrol
vector be

U(t) = [@rny, — Bhungy * 7 5 Tk

— k) T

(10)

If all the eigenvalues are chal}\ged in this
manner, the resulting system A is still of
the form (6), excepting that the last row of
each Ay is changed due to the shifting of the
eigenvalues.

Due to the block diagonal structure of (6)

{sT — At

where a typical block [s] — A\k] —1is of the
form

. 1 .
TR S PR
[sl — A4l det[sI —41|. . |

l.: . .s.”k‘l_:'
(12)
The matrix (12) is not completely described
since only the last column proves to be of

importance. The transfer function matrix
corresponding to the representation (6) is

T(s) = AlsI — 4]7'B

S
0 Poo : s
E g E s;‘"‘—l
T A
Pl E |
s E
I DR R
a» -;”z_l i é :
JES St E——
1 E i !
s i ! :
DU A T R
B L
Lg™ L i i J
(13)
Let the ith row of H be given as
Y= (R s Bt b Ry 0
Rlomgtt Rige et A ] (14)

where the partitions are introduced to
correspond to the horizontal partition of

[s] — ;1] -13. Then a typical element of the

transfer funetion matrix relating the kth

input to the 7th output is

yi(s) _

uk(s)

ﬁik,o + Sil:{k,l R o i ?Lik,nk—l_
det[sI] — A

(15)

The zeros of this typical element of the

transfer function matrix depend only on "
which is fixed by the system. Det [s] —

fi\k] is only a funetion of the last row of

[s] — A,-1]?
(1)

[sI — A;]

elements of 4z Hence feedback of the type
described in (10) may be used to create
arbitrary pole locations of the transfer
function matrix while leaving the zeros
invariant.
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Identification of Process
Delay Time

Abstract—A method of identification of a
process delay time is suggested in condi-
tions when the delay is varying slowly and
cannot be estimated by direct measure,
and in which also the process input is not
available for measurement. A cross correla-
tion function is suggested as a means of
evaluating the process delay time so that
the system can be adapted to the new
conditions necessary for acceptable per-
formance.
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The type of system to be considered is
that generally represented in Fig. 1. Such a
system can be controlled by a classical
three-term controller but not in an optimum
manner, although the results may be
reasonably satisfactory.

In the literature on the control of delay
time processes it has often been assumed
that the function G(p) is of the form 1/
(1 + +p). Reference [6] discusses the
simplest condition when v = 0, [7] that of
v/T1 < 1 and [8] that of v/T1 > 1. The
system shown in Fig. 1 is that proposed by
Smith [1], [2]; this system enables the out-
put integral error to be minimized with-
out any cost being allocated to the manip-
ulated variable M (p). For stability reasons
it is necessary in this system to maintain
Ts = T.. This note is concerned with a
possible method whereby T, the delay
time of the simulator, can be matched to
T,, the actual process delay time that may
be varying. F(p) represents the function of
the process output measurement trans-
ducer.

The output-disturbance transfer function
for the system in Fig. 1 is

Cp _ G(p) e T )
D(p) 1~ F(pe~T®/(1 — F(p)e~ 1)

If F(p) = 1, or if F(p) contains a time
constant that is very small compared with
T, the necessary and sufficient condition
for stability is that 7, = T, [3]-[5]. I
@(p) = 1/(1 + vp) and F(p) = 1, then the
output/disturbance transfer function can
be expressed in the form

e P(1 — ¢~ aP)
(1 + ap)(1 — e P 4 ¢77)

in whichae = /T and « = T,/T: and T
is considered as one unit of time. Then by
consideration of the characteristic equation
it can be shown that, if ¢ > 0, for stability
a = 1. If G(p)~! were replaced, more
realistically, by a function (1 + ap)/
(1 + bp) in which @ > b, then the same
condition for stability holds as it does if the
element G(p)~!is not present in the control
system.

A possible means of obtaining an indirect
estimate of T is by use of a cross-correla~
tion function ®:.(r) between 2(¢) and e(t),
the output of the simulator and the actuat-
ing signal of the system, so that

1 T
cI"ze(T) = E, f Z(t)e(t + 'r) di.
0

The evaluation of this function over a
range of r provides an oscillating profile
with clearly defined maxima and minima
directly indicating values of T: and T»
and also the difference 77 — T3 = £ The
presence of noise in the system should
ensure the existence of these peaks even if
the command #(¢) remains constant.

For the class of system in which F(p) = 1
and G(p) = 1/(1 + aT1p), results for values
ofa = 0.15and a = 0.3, R(p) = 0, and a
unit step or sine input (period 127%)
applied at ¢ = 0 as a disturbance enable
certain conelusions to be clearly drawn:

the first noticeable minimum of ®.(7)
oceurs for v = £



