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Sensitivity reduction over a frequency band

YOSHITO OHTAt}, GILEAD TADMORt§ and SANJOY K. MITTERY

The problem of reducing the sensitivity of a possibly infinite-dimensional linear
single-input single-output system over a finite frequency interval by feedback is
considered. Specifically, the following are proven: (i) if one wants to bound the
overall sensitivity, the existence of a non-trivial inner part inhibits the reduction of
the sensitivity over the interval; (i) in a system that is continuous and has at most
countably many zeros on the imaginary axis, one can reduce the sensitivity over an
interval 1o be arbitrarily small. while the overall sensitivity is kept bounded if and only
ifthe system is outer and has no zeros on the interval. These extend resulis for rational
transfer functions,

1. Introduction

This paper considers the problem of reducing the sensitivity of a linear single-input
single-output system over a finite frequency interval by feedback,

The feedback system is described by the Figure. P is a given system and we assume
P e H*™ (i.e. stable) and C is a feedback. We say that the feedback stabilizes the system
if the transler functions from (v,, v;) to (&, u;) all belong to H®.

D NN e

C Va

Us +

The closed-loop sensitivity S is the transfer function from &, Lo u, and is given by
5(s) =[1 + P(s)C(s)] ! (L)

The problem of sensitivity reduction over a frequency band X is stated as [ollows.
Let y be the characteristic function ol a given bounded set X = (— 0, o0), on the

imaginary axis, ie.
) 1 flweX
)= {0 otherwise (12
For given £ > 0 and M > |, find a stabilizing leedback for which the sensitivity satisfies
xSl <& NISlo <M (1.3)

The main results lollow.
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Theorem |
Suppose P € H® has a non-trivial inner part and y is the characteristic function of
a subset of the imaginary axis that has positive Lebesgue measure. Then

inf %S>0
18l ea <M

where M > | and the infimum is taken over all stabilizing compensators.

Theorem 2

Suppose P ¢ H® is continuous on the imaginary axis and has at most countably
many zeros on the imaginary axis. Let ¥ be the characieristic function of a compact
sct X c{— 0, o0) on the imaginary axis, Then for any | > ¢> 0 and any M > 1 there
exist a stabilizing compensator such that

[%Slle <& US|, <M

if and only il P is outer and has no zeros on jX.

Previous discussions of this problem appear in Zames and Bensoussan (1983),
Bensoussan (1984), Francis and Zames (1984}, Pandolfi and Olbrot (1986) and
Francis {1987). Bensoussan {1984} showed that if the plant P is analytic, is bounded,
has no zero in Re s = 0, and satisfies an attenuation condition at s = co, then for any
£>0and M >'1, the problem has a solution, Especially the problem is solvable when
P is of minimum phase. Theorem 2 generalizes this result, and seems to illuminate
more on the structural aspects of the sensitivity reduction problem. In Francis and
Zames (1984), in the [ramework of rational plants, it was shown that if the plant P has
a right half-plane zero then there exists a positive number k such that

N2SH e = 1815

Hence given M > 1, there is £ > 0 such that the problem has no solution. Theorem 1 is
a natural extension of this statement. Pandolfi and Olbrot (1986) showed that if the
plant is analytic and has no zero in some region contdining Re s 2 0, and satisfies
some intricate condition near s=co0, then for any ¢>0 and M>2+L (L is
determined by the condition), the problem has a solution. However, the condition
seems rather difficult to check. The difficulty was demonstrated by the authors’ wrong
conclusion that for P(s) =exp (—s)/(s + 1) (which has a non-trivial inner part), and
some M > 2, the problem has a solution for any ¢ > 0.

2. Preliminaries and notations
2.1. Parametrization of stabilizing feedbacks

We parametrize feedbacks achieving stability. The parametrization was intro-
duced by Youla er al. (1976) and modified by Desoer er af. (1980). The following is a
corollary of Fagnani et al. (1987) for a stable system.

Proposition |
Assume P is stable (P e H™). Then a feedback C stabilizes the system if and only if
there exists he H®, Ph # 1 such that

h

C=1"PFn

(2.1)
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Substituting {2.1) into (1.1}, we have

S=1—Ph (2.2)
Therefore our problem is reduced to that of finding h € H* satisfying
lx(1 = Ph)||o <&, It —Phll, <M (2.3)

for given e >0, M > 1.

2.2, H? functions

H? and H* are the Hardy spaces of analytic functions on the right hall-plane with
L? and L™ boundary values, respectively. Hoffman (1962) and Douglas (1972) are
good sources on H? spaces, inner—outer factorizations, etc. The following is from
Douglas (1972) and is worthy of note,

Proposition 2 (Douglas 1972)
Assume P € H® and let K = H*© PH? (or K =(PH?*)'). Then K = {0} ifand only
if P is outer.

2.3. a-Inner product and o-norm
The Laplace transformation L defines an isometric isomorphism from L?[0, o) to
H?. We shall use both the time domain and the frequency domain in our analysis.
We denote the usual inner product and norm of H? (respectively, L2[0, c0)) by
{+,+>and | - |. For future use, we introduce also a whole family ol additional inner
products and norms as follows. Given g > 0, and f, g € H?, define the a-inner product
and the s-norm by

(fg)e=Qm)~! J_ S(a + jw)glo + jw) dw (2.4)
Iflla=<LS>8"7 (2.5)
Since L is an isometry, there hold
{f8d.= .|.m L™ NOL™ (@) (1) exp (—2at) dt {2.6)
0

o 1/2

"f"a:(’[- ILTHN(D1 exp (= 201) df) (2.7}
0

If L= f) and L™%(g) are supported within the compact interval [0, T], given
some T >0, then

exp(—aDSN< Sl < 1S (2.8)

and

[Kf 8> —{figdol (1 —exp(=2aDN(I S + gl (29)

For x € L2[0, o), define x; € L2[0, o) to be the truncation of x at time 7, T> 0, i.e.

( x(t) t£T 210
x¢(l) = 1
) 0 otherwise ( )
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For f = L{x), we denote f; = L{xy). Notice that x;—x and fr— fas T— o, in the
usual topology of L2[0, w) and H2.

3. Proofs of theorems 1 and 2
In proving Theorem 1 we use the lollowing observations.

Lemma |

Let {g,} = H™ be a sequence such that |g, . < M. Let ¥ be the characteristic
function of a set X <[ — 0, e2] of positive measure on the imaginary axis. Suppose
X8l =0 as m—oo. Then for any compact set Y in the open right haif-plane,
lg.{s} =0, uniformly lor se Y.

Proof
It seems convenient (o establish the lemma in the disc. For g e H®, define

I+:
gn(2) =g(l—i;) (3.1)

Then g, € H*(D} and |Igll» = (|85 | w» Where D is the unit disc on the complex plane.
Let Yy={z|[(1+2)/(1 —z)e ¥}, and X, ={z|(1 +2)/{(1 —z) €jX} be the inverse
image of ¥ and X by the Mobius transformation, respectively, and y, be the
characteristic function of X . Since ¥ is a compact set in the open right half-plane,
Yp = B(0, r) { = the closed disc of radius r) for some 0 < r < 1, By Jensen’s inequality.
we have

1 [ , exp(ji)+z
1 £ — b 0 _— 32
og lgp(2)l ZRJ‘ﬂIoglgo(ﬂp(J })IRepr(ja)_z do (3.2)
Note that for ze ¥, and 0 e[ ~n, n]
[+r;1+|z[;.Rc cxp(j-OJ+z ;l—fz[;l—r (3.3)
l—r " 11—z exp{j0) —z 1+]z) 7 1+r

Using the inequalities (3.3), for z € ¥, we can find a uniform upper bound for the
right-hand side of (3.2).

log lgn(2)l

l—r |- _

1 [1+r(" , [—r (" e
S—|— log" Igp (exp (jO))| d0 — —— log™ lgn (exp (jO))I ‘dﬂ}
2n N T+r |_,

11+ " 1—r -
< — ’ [ lgo (exp (0N d0 — —— | log*lgp (exp (j6))|™' d6
2n n T+r Jx,

l_r n
< gl = 5 o log* 580 13 (X o) (34
I—r 2nl+r
where
log* x=log {max(1,x)} >0 (3.5)

and g is the Lebesgue measure on the unit circle.
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Let {g.p} be the sequence in H(D) obtained [rom {g,} by the transformation
(3.1). Note that

gl <M and  |zpguplln—0, asn—o0 (3.6)

Applying (3.4) to the sequence {g,p,}, we see that the right-hand side of (3.4) tends to
— oo uniformly [or z € ¥,. Hence |g,(s)] — 0 vniflormly lor se Y. O

Corgliary |
Let {g,} be as in Lemma 1, fe H? and ¢ > 0. Then ||g,f[l,— 0 as n— co.

Proof
Fix £> 0. Since fe HZ?, there exists > 0 such that
£
(2m)~! J. |f(g +jw)|? dw < — (3.7
lol >0 2Mm?
This implies that
(2r) 7" J |guf (o +jw)|? do < % (3.8)
|wl>£

for all n, since ||g, ]|, <M.
Applying Lemma 1 to the sequence {g,} c H® and Y= {s{s=0 + jo, |0| < Q},
and Lebesgue’s dominant convergence theorem, we see that

(2n) ! J. lg.f(o+jw)|* dbw—0 asn—ow (3.9)
lwl£Q

Thus, for n large enough

[+0]

lgasf Nl ={2m) " J lg.f (0 + jo)* <& (3.10)

- @

This implics that ||g,f[l,—0 as n— 0. H]

Claim 1

Let {g,} = H™, ||g. ||, < M and fe H% Then [or each A > 0, there exist some T > 0
and o >0 such that |[</, g./> = {1 8. D < 4 for all n.

Proof

KS 8> — {1 8af AN =S = f1: 80/
<SS =Sl lga SN
gl 1S =S 1SN
SMIS=f0IA0 (3.11)
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Utilizing {2.9), we also have
I<Sr 8af > = S 8uf Dal = 1K S (@01 > — s (€S} Dol
< (1 —exp (=26 )L f7ll + (g, )+ 11
<(1—exp (=20 THEIS N + fe.f11]?
< (1 + M)*(1 —exp (=20 T))| fII2 (3.12)
Recall that f— fas T— oo. Choose T sufficiently large so that ||/ — fr | <Af2M| f]|.

Then choosc o sufficiently small so that (1 ~exp(—2aT)) < /2(1+4 M)?|| S
Combining (3.11) and (3.12), we have the desired inequality. O

For case of relerence, we repeat our results,

Theorem 3
Suppose P € H® has a non-trivial inner part and y is the characteristic function of
a subset of the imaginary axis that has positive Lebesgue measure. Then

inl %S, >0 (3.13)

ISl < M

where M > | and the infimum is taken over all stabilizing compensators.

Proof

On the contrary, assume that there exists a sequence {5,} of sensitivity functions,
S,=1—Ph,, h,e H* with |5, ]l <M, |75, — 0 as n— o0,

Sct K =H*©PH?, The subspacc K is non-trivial (K # {0}), by Proposition 2,
since P has a non-trivial inner part, For any fe K and any g € H?, we have

LS80 =L{fi(i = Ph)gy={fg)—<f. Phgd =</ & (3.14)
in particular, for fe K, f#0

LSIy=1117>0 (3.15)
Hence, in view of Claim 1, there exist T> 0, ¢ >0 and § > 0 such that
<fT! Snf>o>6 {316)
for all a,
On the other hand, by Corollary |
[ S Suf Dal € 1 fr o IS, f 1, =0 a5 n> 0 (3.17)
which is a contradiction. O

Theorem 4

Suppose P e H® is continuous on the imaginary axis and has at most countably
many zeros on the imaginary axis. Let y be the characterization function of a compact
set jX. X =(— o0, @) on the imaginary axis, Then for any | >¢>0 and any M > |
there cxists a stabilizing compensator such that

%S <& WSile <M {(3.18)

if and only if P is outer and has no zeros on jX.
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Proof

Necessity. If Pis not outer, then the conclusion follows lrom Theorem 1. Let P have
a zero on X. Suppose then that there exists i€ H® such that

la(l — P, <&, |1 —Phll, <M (3.19)
Fix 8 > 0. As P is continuous on the imaginary axis
ulX n{o||Pliw)| <8kl Z'}1> 0

that is

HEX n {wl | PCjo)h( jw)] < 611> 0
where u is the Lebesgue measure on the imagmary axis. Since § was arbitrary
lx(1 —Ph)i|, =1, a contradiction.

Sufficiency. The proof is by construction of #e€ H® such that
l(1 = Ph)llo <& Il —Phll, <M (3.20)

for given 0<e< 1, M> 1.
Let

U ={ulu= o or P(ju) =0} (3.21)

From the assumption, U is at most countable and UnX =, Let U={u,, n=
1,2,...} be an enumeration ol U,

Define r,, by
als—ju)
a(s —ju,) + 1 H 70
roals) = (3.22)

a (]f:n*lj
U, =0
s+a

where a > 0 is a parameter to be fixed later, and the branch of the 27" *Vth complex
root is decided in such a way that the positive real line is mapped into itsell.
Equation (3.22) defines an analytic function on the open right hall-plane, since the
Tunction a(s — ju,)/[als — ju,) + 1] {or a/(s + a)} maps the open right hall-plane into
itsell. Furthermore, the lollowing properties of r,, are easily proved: (i) r,.€ H®,
170l = 1; (1) r, 4 1s Outer; (i} r, . is continuous on the imaginary axis including oo;
(iv) roglju) =00 (v) Nz(t —ryadllo—0 as a— oo (note that XU = @), and
(vi) larg ro () € 727®* 3 for any s € {Res = 0} U {e0}.
Given &> 0 (from (3.20)), we choose n > 0 such that |log z{ <n, z € C, implies

lz—1|<e (3.23)

For each n, we choose the parameter a, according to the property (v}, in such a way
that

n
"Z log Fna "m < i; (324)
is satisfied. For brevity we denote r, instead of r, ,, henceforth.

The properties (ii1) and (iv) imply that there exisis a neighbourhood W, of u, in the
one point compactification of R such that W,nX = & and |r,{jw)| <M — L, w e W,.
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(Note that a neighbourhood of oo is {w||w| > &} for some £ > 0.) U is compact since
it is a closed subset ol a compact set, and hence the cover U < UZ., W, has a finite
subcover, say U= W= U, yW,, where N is a finite index set.

Since P and r, are outer

P(s) = 1 exp [%J: log[P(jw)lzs_:;_'; 1 i“;z] (3.25)
and
o =rmerp| & [ loglruy it e | (326)
for 2, 4, € C, Al = |4,] = 1.
Given d > 0, let
D, = {w||P(jw)| < &} (3.27)
and, define hy(s) by
i) =T [] Znexp [% J _mm [—Cyw)] Ztrjﬂs’ : _‘1“;2] (3.28)
where
Colw) = {0 “ebs (3.29)
Clw) wé¢D,
Clw) = log |P( jw)| — "EZN log [r,(jew)| (3.30)

The proof will be completed il we show that b, ¢ H™ and that lor sufficiently small
4 > 0, this lunction satisfies (3.19).

As is known (Hoffman 1962, p. 53}, the right-hand side of (3.28) defines an H™
function if and only if exp(—C;)eL* and C; is integrable with respect to
dwf{1 +w?). A sufficient condition holds in particular i C; is bounded.
C, is bounded because |P| and |r,| are bounded and bounded away from zero off D,.

In verifying (3.19), we use the lollowing equalities.

1 [= . L ws+j dw I ws+j dw

_ ! X L c

i = [ awewp| 3 | 5 toentionsd 204 2| a2 e
1 ws+j dw
= - i
,,I;L n(s) exp |:n JD C(w)w+js 1+ w2:| (33D
and
[]Irjo)l w¢ D,

|Phy{ jw)l =< nen (3.32)

| P( jew)| we D

Indeed, it is also known (Hofiman 1962, p. 53) that the boundary value of hy(s) as
5s—jw satisfies |hy( jw)i =exp [—Cy(w)], almost everywhere, and rom this (3.32)
lollows.
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Note now that if we W then |r,(jw) <M —1 for some index ne N, and
|ra{ jow)| < 1, for all ne N. Thus, for § < M — | there holds

Pro=d e 333
wl = .
i <1 wéW {
Consequently, for we W
It — Phy(jo)l <1 +M—1=M (3.34)
For handling w in the complement of W, we first observe that
arg [1 r(jo)| < ¥ largr,(jull < Y n270* D=2 (3.35)
neN neN n=1]
from property (vi) of r,. Thus, from Claim 2 below, for sufficiently smail 8
larg Ph,( jo)| <§ (3.36)

Hence (from (3.33), (3.36)) for w € ‘W
[l — Phy(jw)| €t <M (3.37)

Equations (3.34) and (3.37) imply {|1 — Ph,||, < M
Finally we consider w e X; then

log [] r.{jw)| <

neN

Z llog r,(je)| < Z Z 21— (3.38)

by (3.24). From Claim 2 below it follows that for sufficiently small §, we have

llog Phy( jw)| <n (3.39)
for we X. Thus, (3.23) and (3.39) imply | x(1 — Ph,)| ., < &, as required. O
Claim 2
Phy— [ r. asd—0in L=('W)
nelN
Proof

Notice that the continuity of P implies D;n*W = @§ for small 4. Given that § is
indeed small, we have {from (3.32))

|Phy(ja)l = [] Ira(jw)| for weW {3.40)
nelN
Hence, it remains to check that
arg Phy(jw) > arg [| r,(jw) as -0 (3.41)
nenN
in L(°W).
From (3.30), it suffices to show that
wl+ 1 do
L‘ C(w) 5 1+ -0 as6-0 (3.42)

uniformly for 8 in W,



19: 27 10 Novenber 2010

[ Massachusetts Institute of Technology, MT Libraries] At:

Downl oaded By:

2138 Sensitivity reduction over a frequency band

Since D, lies strictly within the interior of W, the kernel (wf + 1)/(w —6) is
uniformly bounded over the domain @ € D, and 0 € ‘W, Setting du(w) = dw/(w?+ 1),
we know that log |P( + }| and C( - ) belong to L'{dy). By the first fact, it is necessary
that @(D;) -0 as 6—0. Consequently, the second implies {3.42). This proves the
claim. - 4

Remark | ‘ RS

Notice that we did not require continuity of P(jw) at w= too. In fact,.the
assumptions on the continuity of P(jw) and the compactness of the subset X can be
relaxed in various ways without requiring considerable changes in the analysis, The.,
current setup was chosen for simplicity.

Remark 2

A major part of the proof of Theorem 2 is dedicated to the construction of the *roll-
off’ functions r,, that are needed when 22 M > 1. For M > 2, the assumptions can be
further relaxed, e.g. if P(jw) is continuous, to the requirement that P be outer and
have no zeros in X.
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