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A note on essential spectra and norms 
of mixed Hankel-Toeplitz operators 
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Abstract: In this brief, Hankel-Toeplitz operators which occur in feedback theory, e.g., in the minimization of mixed H ~° sensitivity 
and complementary sensitivity, will be considered. A method of computing their spectra, eigenvectors, and norms will be presented 
for infinite-dimensional systems subject to continuous weightings. 
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1. Inm~lucfion 

Mi~ed sensitivity optimization was considered! by Kwakernaak [9]. Francis et al. [5,4,6] gave various 
characterizations of the problem, e.g., in terms of the distance from [0 w] to [vM]H °°, where W, M, V, are in 
H = and M is inner. Jonckheere and Verma [7,12] described the problem in terms of the norm of the 
Hankel-Toeplitz operator displayed in (1) (below). Implicit methods of minimization, e.g. the e-iteration 
[6], were introduced by these authors. Apart from the highly implicit nature of the minimization, the 
theory remains incomplete for irrational plants, for which a method of determining essential spectra has 
yet to be provided. 

Here an explicit formula for the essential spectra of such operators will be derived, as well as a method 
of computing discrete eigenvalues in which the only implicit step involves the evaluation of the zeros of a 
'characteristic determinant' function of the real variable h, which is analytic in ?~. The results extend those 
of Foias et al. [13,2,3] and Flamm [1] for (unmixed) sensitivity minimization. In particular, essential 
spectra are computed by viewing the operators in question as compact perturbations of multiplication 

operators, as in [13]. 
Recently, some results related to the present paper were obtained independently by Juang and 

Jonckheere [8] but are limited to rational plants. 

2. Essential spectnnn 

Let H+ and H_  denote projections from L 2 (half-plane) to H 2 and H 2 "= L 2 0  H 2 respectively. For 
any W e  H ~, W denotes the multiplication operator in L 2, W(x)= Wx. For any symbol W e  L °°, the 
Hankel operator Fw" H 2 --~ H2  is the operator 

F w . = I I _  W [ H  2 

where  [H 2 denotes restriction to H 2, and the Toeplitz operator Ow is the operator 

Ow:-- FI+ W I H 2. 
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We wish to compute the norm of the operator G : H 2 -* H 2, 

G "= F~M,FwM. + O~,Ov (1) 

where W ~ H ~° and V ~ H ~ are continuous, and M ~ H = is a (possibly discontinous) inner function in 
H ~. The suI.,erscript * denotes the adjoint of an operator or, when applied to a function y ~ L 2, denotes 
tiJe involution y * ( s ) - . P ( - g ) .  Expression (1) can be stated in the form 

G=(I I+MW*FI_WM* + FI+ V*V)  I H2. (2) 

Decompose H 2, H 2 = K ~ MH:, and let Fig, Flu be the projection operators from L 2 to K and MH z 
respectively. Let o(X), oe(X) denote the spectrum and essential spectrum of any operator X. For any 
inner function M ~ H ~, oe(M) is the set of imaginary points which are essential singularities of M. 

Theorem 1. Essential spectrum of G. 

o=(G) = { I W(jto)12 + I V(jto)12: ju  ~ oe(M)} tJ [inf I V(j,o)12 
t 

, sups, I V( j¢ ) I z ] .  

m ! i 

Proof. Let Z ~  H °° be the outer function satisfying W(.jto)W(jto)+ V(jto)V(jto)-Z(j)Z(jto). We will 
establish the following three identities: 

oe (G)=oe[Hr (W*W+ V*V) IK] Uoe[V*V], (2a) 

Oe[FIK(W*W+ V * V ) [ K ]  = { [ W(jto)W(j~0)+ V(jto)V(jto) [ :jto ~ oe(M)} 

= oo(r M.r M. I t ) ,  (2b) 

oe(V*V) = [inf I V(j,o)[ 2 , ,+ sup [ V(j,o) [ 2]. ~ (2c) 

Theorem 1 follows from (2a, b, c). 
If X, Y are any pair of operators in a Hilbert space, then X--  Y means that X -  Y is compact. The 

symbol-- denotes equivalence modulo the compact operators (i.e., in a Calkin Algebra). It follows from 
the definition of essential spectrum that if X-- Y, then X and Y have identical essential spectra. 

To prove (2a), observe that 

II+MW*FI_ WM*FI+-  H x W * M I I _ M * W H K  as K_L ker(H_ WM*H+ ) 

= H r W * W H  r - FIKW*MH + W M * H  r 

- H x W * W H x .  (3) 

The last equivalence is true because 

HKW*MH + WM*Fl r - H K W * M ( H  + W H _ ) M * H  r - IIKW*MF~v.M*FI r 

which is compact because it contains the factor I F~v,, which is compact as W is continuous. Next 

1-I+ V*  Vl-I+ = FIKV* VFl  K -[- FlM V*  V H  M + FlKV* V ~  M + FlMV* VI--IK 

" 1~xV*Vff~I¢ ' ~'~MV + F iJM (4) 
because 

TIM v* VH x = M( II+M* V* VMH_ )M* I-1+ = MF(*v.v).M* H+ (5) 

which is compact since l'<v,v), is. Similarily the adjoint of (5), IIKV* Vl lu ,  is compact. From (2), (3), (4), 

c -  v*v)n + n v*vn ] in == G,. (6) 

I "The adjoint  X *  : H 2 _ ~ H 2 o f  any  opera tor  X:  H 2 ~ H2__ satisfies ( y ,  Xx)n2= ( X ' y ,  x)H2. In  par t icular ,  F~v. = H+ WH_. 
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Clearly the subspaces K and H20 M H  2 reduce G1, and %(G) is therefore the union of the essential 
spectra of the operators H x ( W * W +  V* V) IK and HMV*VIMH 2. It remains only to show that 

oe( nMV* V [ MI-I 2) = o~( V* V ). (7) 

Recall that any selfadjoint operator X, h ~ lie(X) iff there is a normalized ([[xA[ = 1) sequence, x~ ~ 0 
weakly, ( X -  h)x~ ~ 0 strongly. Therefore h ~ %(HMV*VIMH" ) iff there is a normalized sequence 
Mx i ~ MH 2, Mx~ .-.* 0 weakly and 

11M v *  VMxi - ~Mxi "* 0 (8) 

strongly. Now (8) is equivalent to 

V* VMx~ - ~Mx~ ~ 0 (9) 

strongly, because the difference 

V*V11M-- HMV*V11M = 11_ V 'V11 M + 11xV*VHM (10) 

is compact by (5) and the compactness of I v .  vHM, and therefore Mx, ~ 0 weakly and is bounded implies 
that V* VMx~ --, HM V* VMx~ strongly. Finally, the weak (strong) convergence to 0 of x~ is equivalent to 
the weak (strong) convergence to 0 of Mx~, so (9) is equivalent to V* Vx~- ~,x~ ~ 0 strongly, x~ ~ 0 
weakly, I[x~[I = 1, which means that h ~ o~(V* V). This proves (2a). 

To prove (2b), observe that 

I l x ( W * W +  V ' V ) I K = ( 1 1 x Z * M I I _ M * Z +  11xZ*M11+M*Z) I K -  I'Z*M*I"zM* IK 

because 

11KZ *M11+M*Z I K= 11xZ *MFz**M* I K (11) 

and Fz. is compact so (11) is compact. 
We now employ the essential spectral mapping theorem for continuous functions of the shift, see [10, p. 

125]: If F is any continuous complex-valued function on ( - o o ,  oo), then Oe(11xFIK)= F(oe(M)). By 
letting F = WW-t VV we obtain the first identity of (2b); the proof of the second identitiy is similar to 
that of (3), but with Z replacing W, 

oe(Fz*M.FzM. I K)  - { I Z(i,~)12 :j~0 ~ oe(M) }. 

(2c) is a standard result for multiplication operators in L 2 which are real valued on the imaginary axis 
[11, p. 551. [] 

3. Eigenvectors and nora of G 

The essential spectral radius of any operator X is 0e(X) "= sup I Oe(X) l" By Theorem 1, 

Oe(G) = max[ II V[l~, sup{(IW(jo~)I z+  IV(j~°) 12)" ~°~°e(M)}]"  

Since G is a self-adjoint bounded operator, it follows from the definition of essential spectrum [10, pp. 
304, 313] that II G II >-0e(G), and the inequality is strict iff G has an eigenvalue h2, h2 > Oe(G), in which 
case IIGII = max( ~2> pe(G): Gx-~?x,  x ~  H2}. We seek a test for such eigenvalues, which are neces- 
sarily of finite muliplicity and isolated in o(G) (or they would belong to oe(G)). 

he is an eigenvalee of G if the equation 

(F~VM.FWM. + 11+V*V)x=XZx, x~ .H  2 (12) 

has a solution for x. 
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Henceforth svppose that W and V are rational though the inner function M may be irrational and that 
> IIV lifo. Denote the order of any rational F by NF, and let N "-  Nw + Nv. Let Bn be the Blaschke 

product whose zeros are those zeros of ~2 _ V * (s) V(s) lying in Re(s) > 0. 

Lemma 1. I f  ~2 is an eigenvalue of G, then the associated eigenvector lies in H 2 O BnMH 2 =" Kn. 

Proof. If h E is an eigenvalue, then (12) gives 

FWM,I'wM,X H_ V * V x = ( A .  2 -  V * V ) x .  

Als }, > II V II ~o, this is equivalent to 

* * o • B f f M * x = ( X  2 V * V ) - I B ~ ( M  r # , , . r ~ , . x  M * H _ V * V x )  (13) 

* I I _ V  Vx) and(~, 2 V*V)-1B~ on the right-hand side of Note that the factors (M*FwM.FwM.x  - M *  * 
(13) are in H2_. Therefore, x ~ B~MH 2_ N H 2 = H 2 ~ B~MH 2. [] 

Lemma 2. G I Kn is a finite-rank perturbation of the multiplication operator ( W  * W + V* V) ] Kn. Indeed, 

Gr/  = ( w . w +  r'* v ) n , , -  a,, 04) 

where rank(A n ) -< 2 N, 

= . . v  + ( w *  - )MF?v, BtB~M* ]/-/~, 

and H n denotes the projection operator form L 2 to K~. 

(15) 

Proof. We have 

GFI n = H+ W * M H _ M *  W H  n + H+ V* VI I  n 

- H + ( W * W +  V * V ) I I n -  II+ W * M H + M * W H  n 

f f i (W*W+ V * V ) H n - I I _ ( W * W +  V * V ) H n - I I + W * M I I + M * W H n .  

Hence (14) is true with An given by 

An= H , _ ( W * W +  V * V ) l l  n + ( W ' M -  H _ W * M ) H + W B n l I _ B ~ M * I I  n (16) 

which coincides with (15), and where we have used the identity B~M*I-I  n = I I _ B ~ M * H n .  The rank 
bound follows from the bounds rank( Fw. w_ v,  v ) <_ Nw + Nv, rank( Fw. B~ ) <- Nw + NBA, NBA <- Nv ap- 
plied to the expression (15) for A n. [] 

For simplicity, we will asume the genetic case in which the poles and zeros of W, W*,  V, V*, and M 
are simple, distinct from each other, and the (possibly multiple) zeros of ( W * W  + V ' V - ~ 2 ) ( s ) ,  
0 < A < o0, are isolated from the poles of M. The more general case can be treated as in [13]. 

Lemma 3. The range A n admits ~z basis of functions ~: ~ L °°, i = 1, . . .  ,2N, which are explicitly given in the 
Appendix, and which are analytic at all complex points at which W, W*,  V*, B n, and M are nonsingular. 

Proof. It is shown in the Appendix that the range of A n is spanned by functions ~i(s)  which are finite 
forms in W(s), M(s), and (s + ~li) - l ,  i = 1 , . . . , 2N,  where ~i are singularities of W, W*, V*, Bn or M(s). 
Each ~i(s) is therefore meromorphic in Re(s )4 :0  and analytic except at these singularities. The set 
{ ~i(s)} is independent in L ~° and therefore forms a basis, as each ~ has a pole not present in the others 
under the genericity assumption. [] 
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By Lemmas 1-3, if )~2 is an eigenvalue of G with eigenvector x, then the equation Gx--~2x is 
equivalent to 

2N 

[ ( W ' W +  V * V - X 2 ) x ] ( s ) = ( A x x ) ( s )  = E ~p~(s) .  (17) 
i=1 

Let sp, i = 1 , . . . ,2N,  denote the 2N zeros of ( W ' W +  V ' V -  A2)(s). If A2 is discrete, then these zeros are 
isolated from o,(M), because/k 2 ¢ a , (W*W + V*V]Kx), by Theorem 1. Therefore each sp is a point of 
analyticity of M(s) and, under the genefieity assumption, a point of analyticity of each q~(s) and hence of 
(17). If sp lies in the half-plane Re(s/~) >_ 0, where x ~ H 2 is bounded, s~ must be a zero of (17). A similar 
conclusion is reached for the other half-plane by multiplying (17) by ( M * B ~' )(s ), noting that M * B ~' x ~ H 2 
for x ~ Kx, and that sp is disjoint from the singularities of (M*B~')(s). Hence we get 2N equations in as 
m~ny coefficients ~'p, 

2/7 

E ~')¢~ 1 . . . .  ,2N. (18) 
j = l  

Introduce the 2N x 2N matrix ~I(~) x x ,= : - [ ~ ( s ~  )] and the 2N × 1 matrix ~'~ [~'~] to get the matrix 

equation 

A ( ~ ) ~  = 0. 0 9 ) 

The zeros s~ lie on the root-locus of ( W ' W +  V ' V -  ~k2)(s), and are distinct except at a finite number of 
values of ~2. At any ~2 at which sf" is a zero of multiplicity r, ( r -  1) derivatives of (18) must vanish at sf. 
Write the resulting matrix equation as 

(20) 

It follows that if ;k 2 is a discrete eigenvalue then det A ( X ) - 0  and, if any root sf of ( W ' W +  V * V -  
k2)(s) ffi 0 is multiple, then det A'(?Q-O. Conve.sely, if these determinants are null then there exists [.x 
satisfying (18), (19). In that case the roots s~ are zeros of both sides of (17), and the ratio 

*V-  2)-1 x : =  l,s, ) ( w ' w +  v 

defines a function x ¢ H 2 which satisfies Gx ffi ?~2x. Therefore we get the followhag result. 

Theorem 2. The discrete eigenvalues of G are the values of ~2 in the complement of oe(G) at which 
det A(?Q = 0, and atwhich det A'(~)---0 whenever s~ is a multiple zero of W*(s)W(s)  + V*(s )V(s ) -  ~2. 
Moreover, 

IIGll- max(pc(G), ?~2m~) 

where ~2ma x is the largest eigenvalue. 

Note that oe(G) is determined by Theorem 1. The characteristic determinant is analytic in ~ except 
where s~ is a multiple zero. (Alternatively, the function l - I~ , j ( s~ - s~ )  -1 det A(~,) is analytic in ), for all 
)~ ~ oe(G), and the zeros of this function are the discrete eigenvalues of G.) 

Appendix. Evaluation of the basis ~/~(s) 

For any rational F ~  L °°, the notation ~ ,  i = 1 , . . . ,  NF, will denote an ordered enumeration of the 
poles of F, and RF(~i) the residue of F at the pole ~i. For any x ~ K~, we evaluate the components of A~x 
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