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I. INTRODUCTION

- The themes of modelling and representation of linear deterministic and
stochastic systcms have dominated much of systems theory in the last thiny
years. In the critical period of this development attention was focussed on the
rcconciliation betwcen the input-output (cxternal) and state space (intcrnal)
points of vicw of systcms. A central result in this development is the statement
that a minimal (in the sensc of dimension) statc space rcalization of lincar finite-
dimensional system is unique (up to isomorphism) and corresponds to onc which
is both controllable and observable. In recent years Jan Willems has forcefully
argued that this input-output-state space view is narrow and inadequate to deal
with modcls of dynamical systems arising out of physics, econometrics as well as
stochastic processes (notably Markov processcs).  For onc thing, therc is no
natural identification of what is an input and what is an output in these systems.
For another, the need to fix the initial state as an cquilibrium state in
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conventional rcalization theory is unnatural and lcads to conceptual difficultics.
fFor a dctailed exposition of this work sce (23] .

The other important theme in systcms theory is onc of optimization and
approximation.  Models of systcms obtained from physical principles or data arc
often of high dimension. When these models are uscd for prediction and
fecdback control it is nccessary to obtain approximatc models of much lower
order so that the algorithms for prediction and/or control arc computationally
rractable.  There is an important question here as to what is the appropriate
representation on which the approximation (reduction) process should be carricd
out. Zames [24] has argued that this approximation should bc done on an input-
output basis and an internal reprcsentation of the approximate input-output map
could then be obtained for the purpose of prediction and control.  This argument
rests on the notion that two systems may be ncar cach other in an input-output
sensc (for cxample in L®-topology) and yct may drastically differ dimensionally
in their internal rcpresentations.  The two processes of approximation and
internal representation do not, in general, commule and working with the input-
output representation for the needs of approximation is a morc stable operation.

There is an apparcent contradiction here since we have just argued that the
input-output view so prevalent in the carly days of systems theory is not an
appropriate onc. Fortunatcly, Scattering Theory as devcloped by Adamjan and
Arov [1] and Lax and Phillips [15] and the thcory of Abstract Hankel Operators
comes to the rescue here. The work of Adamjan, Arov and Krein (for example,
{2]) and Ball and Hclton [6] provide a mathematical framework for dealing with
representation and approximation issues in a lHilbert space setting in a rigorous
manncr. In the systems theory context, Scattering Theory for Gaussian Processes
was investigated in the doctoral thesis of Y. Avnicl at M.LT. [cf. 5] and Scattering
Theory and Approximation of Lincar Systems has been investigated by Willems
himsclf in his own framework for dynamical Systems [22]. A stalc space vicw of
llankel approximation has been provided by Glover [13] in an important paper.

Intimatcly connccted with the thcory of Scattering is the theory of minimal
unitary dilations of contraction scmigroups contracting strongly to zero. Indeed,
the thecorem of Nagy asserts that every coatraction semigroup contracting
strongly to zcro has a (uniquc) minimal unitary dilation. This thcorem has a
physical intcrpretation of coupling a dissipative system to a hcat bath so that the
resulting composite system is conservative [cf. 17].  The dual of this question,
namcly, how certain observables of an infinitc-dimensional conservative system
can cxhibit dissipative bchavior has been investigated by Picci by using the
thcory of stochastic realization {cf. 20].

This scmi-cxpository paper consists of two parts. In the first part wc
describe in an essentially self-contained manner the Scattering Theory associated
with stationary Gaussian processes. This is done in discrete time to avoid certain
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technical difficultics. The new contribution in this part of this paper is the resulg
which states that for completely non-deterministic stationary Gaussian processeg
the spectral density can be recovered (up to unitary isomorphism) from the
Hankel operator induced by the scattering function associated with the process,
This result to some extent justifies using this Hankel operator for model reduction
in stochastic systcms. We then show the relationship of this scattering view o
the theory of Unitary Dilations and Markovian representations.  These latter idegs
arc all contained in the work of Lindquist and Picci [cf.18] and Foias and Frahzo
[10]. The exposition serves to show that if we restrict oursclves to a Qz-thcory
then representation  questions for  stochastic (and deterministic) systems are
nothing clse but a version of Scattering Theory a la Adamjan, Arov and Krein, It
is worth meationing that the Scattering Function plays an important role in the

parametrization of the wunit ball of the
corresponding cxtension problem for Hankel operators.

The sccond part of the paper is concerned with the theory of minimgl
unitary dilations of contraction scmi-groups, its relation to positive definite
functions on a group and the theory of open systems [8]. We also present a new
construction of a unitary dilation of contraction semi-groups which makes evident
the coupling to white noisc (heat bath) which is implicit in the construction of (he
dilation.

the quotient space L™/H® and

2.1 NOTATION

Z stands for the sct of integers, 8(n) for the indicator function of (0} ¢ Z C

the complex numbers, and for a € C, 3 denotes the complex conjugate of a. For a

matrix A = (i‘ij)£j=| we denote by A* the Termiiian conjugate of A : A = (bij)iltj=|

bij = + @j, and by A" its transposition.  For a family of subscts [Mj}j of Hilbert
space I, we dcnote by VMj the smallest closed lincar manifold (subspace) that
i

includes cach Mj, and by AMj the largest subspace contained in each of them
i

(their interscction). Tvi—j denotes the closure of Mj in H. For subspaces M, N, of H,

M © N dcenotes the orthogonal complement of N in M. For a countable family {M;j)
of mutually orthogonal subspaces: Mj L Mji# j, welet ¥ @ M; be their orthogonal
J

sum. Py stands for the orthogonal projection of H onto the subspace M. For a
bounded linear operator A : H,— H, of Hilbert space H, into H,, we denote by [A]
the matrix of A with respect to specified orthonormal bascs in Hy, H,.
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A* :Hy —» H, denotes the adjoint of A. AIM stands for the restriction of A to the
subspace M < H,. B(H,, H,) denotes the Banach spacc of all bounded linear
operators from H, into H, with B(H) = B(I,H).

By £2(-e,; N) wc denote the usual Ililbert space of scquences [hj}}:_” with

) 2 )
values in (the Hilbert space) N for which Z lThjlly < eo. 22(0,00; N), 22(-e0, -1; N) are
J

scen naturally as subspaces of L7(-ee,e0; N). Lz, L will denote respectively the

Lebesgue spaces on the circle T = {ef : L € [-, |} (with respect to the normalized

2r
Each function can be viewed as defined on [-wt, xt).

Lebesgue measure of squarc integrable, essentially boundcd complex valued

functions). Similarly for the

spaces Lz(C'S, LW(C'S of functions f taking valucs in (CB for which llt'(:t)llCp € Lp,

HE(E)N pe L. respectively. L (B(Cp)) is defined analogously for wcakly
C Ll oo

mcasurablc, B(C% valued functions £ for which css. sup (Il f(eir) Il B(C‘S A€

+ -
[-m,]) < eo}. HE arc the subspaces of Ly dcfined by

n .
H;: (fe Lzzi!; f feiM)e-indy  dr =0, n=-1,-2,..)

-7

n .
Hy=(fe LZ:E‘; [ feiM)esimd  d) =0,n=0,1,2,..},

-

2 + :
and we have the orthogonal decomposition Ly = Il+2 @ ”l - Each fe H, having a

Fouricr series

f(cit) ~ Z apcind
0

generates  the function

g(z) = Y, apz®
0



306

belonging to the Hardy class Hz of functions g(z) holomorphic in |1 z | < 1 and such

that

g = sup[ | g(reity’dn] 2
Hz 2x ’{ g(e ) ] <

Morcover, the (a.e. existing) radial limit g(ci*) of g(z) equals f(cir) a.c. and Il f Il

2
=ligh . i i i i
g . The function g(z) is sccn as the analytic extension of f e H'; to the unit

2

disc 1 z | i i i
¢ lz 1< 1 and is denoted by f(z). We identify ll; and Hy and denote them com-

monly by H,. Using the conjugation with respect to the unit circle (z — 'l-) by the
z

an analytic extension to 1z 1> 1 : f ( ; ) which we again denote by f . The space

Hp=fe L2:f e Hyis the space of functions f e L2 having an analytic cxtension to

the cxterior of the disc | z | < 1 and we have

l n
HeEnN = s i
sup [ 5

2 1/2
5 I fpeit)da] '/* .

-n

fe Hy are called conjugate analytic.

Anal
nalogously for the Banach spacc L” we have the subspaces Hm = l-l: (e &

of functi i alyti i
ons f e L” having an analytic extension f(z) to | z | < 1 with

e = sup L izl =1fll
L H

oo lzl<1 o0
Similarly, for the Hilbert
space Lz(C'B we have the subspaces H';(C% = IIz(Cp.
IL(CY with the orthogonal d iti = 5
L e ccomposition L2(CY = Hy(Ch @ HY(CY. In L_(B(Ch,

again Hw(B(CrS is dcfined as the subspace of functions in L (B(Cp) whose

ncgatively indcxed (matrix valued) Fouricr cocfficients vanish. For 8 € H (B(Cp)
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the function 8" dcfined by 0‘(c”~) = [(J(eil)]t is identificd with its analytic
i e
cxtension 9‘(;:') = [B(—i‘)] olzl>1.

A function f e H is called inner if | f(eir) | = 1 ae. . Similarly for 6 €

f e Hp is called outer if V (x™) = Hy where x

1 (B(CY if 8(eid) is unitary a.c. .
) n20

denotes the function on T defined by x(ci*) =¢i* . Forg e Lw(B(C% the Toeplitz
operator Tg : Hz(CIB—v Ilz(CFS whose matrix is block Toeplitz with respect to the

standard basis (cikrey, eikreg ..., eikrep), o o, (€1, €25y cp) being the standard

basis in Cp. is dcfined by Tef = n (¢f) where is the Ricsz projection of Lz(Cp)
onto Hz(C%. Hg will denote the Hankel operator [with block Hankel matrix with
respect to the standard bases in Hz(Cp), Hi(Cp)]. Hyp : Hz(CD) — Hé(C'B dcfincd by
Tof = n (¢f) , x_ being the Ricsz projection of Lz(C'} onto H;(Cp). The con-vention
we cmploy regarding a  lienkel opcrator — as acting from l&(C% into lli(C") is

not in accordance with thc one employed in systems theory, where  we  act on

Ilz'(C‘S into Hz(Cp) : Hof = m_(¢f). It, however, conforms to that employed by

Adamjan-Arov-Krein and cnables us to use their results without modification, as
well as to refer to them.

2.2 SCATTERING THEORY

Let H be a complex separable Hilbert space and let U be a unitary operator

on I. A subspacc D, is said to be outgoing for (U,H) if it satisfies

@21, (i) AU"D, =(0)
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i) Vu' b, =H

A subspace D for which

0 U‘D_ cD.

@2.1). (i) AU"D =(0)
iy Vu'p =n

is said to be incoming for (11,U).

2.2.1 DEFINITION. A quadruple (UH,D,D ) satisfying (2.2.1) is said to bc a

scattering system.

2.2.2 THEOREM (Translation Representation Theorem [19, Th. IL.1.1]). Let

(U.II,D+) be owtgoing.  Then there exists a Hilbert space Ny and a unitary map v i

of H onto  L9(-00,00;N +) such that

(i) (B )=020=N) ,
(2.2.2)
(i) U, =r, U

is the right shift opcrator on £7 (-eo,e0; N,). This representation is uniquc up to
automorphism of N_ .

Proof (Standard (cf. [I5, p. 77]). We give the proof to establish various quantitics

introduced later. By (2.2.1)y - (ii) thc opcrator UID_ is an isometry having no

unitary. By Wold's dccomposition thcorem [19, Th. L.1.1] we may write uniquely

oo

(223) D = ® U'N,

Since for any

n=0

m>0

- m
U-mD+ =U nl[D+ e UmD+) eu D+] =

m-1
vy e UNy e U™D,] =

(

we obtain by (2.2.1 - iii)4 that

k=0
-m

k=-1

! n
(2.2.4) H= Y ® U N,

It follows that for arbitrary h e II

Hence the

defined by

(2.2.5)

-00

= n -n
h=)@®U PN+U h,

-0o

e -n
i P, U h
Ll

map

Y e UkN,,)@ D,)

2
Il

ry tHo 22 (w00 N)

-n o0
f+h= {PN+U h]ll

=-00

2
hhil
H
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is  iso! i i - 5
metric. Since for (h"]-w €7 (woo,00; N,), h = 2 Un hp € H, the map r, is onto

~0o

and thus unitary. By (2.2.3) we obtain (i). From (2.2.5)

= (n-1) o
I'+Uh‘PN+ (u h) oo = U, (1),

and (ii) follows. By (2.2.4) U i i i
oZi s a bilateral shift of iplici i
il o wilaman Bl of multiplicity cqual to dim Ny

223 PEFINITION. The representation (Uy, 22 (0,00; Ny), 27 (-e0,00; Ny)) is called
outgoing transition representation. o ‘ "

For (U,H,D) incoming we similarly obtain

0
(226) D =YeU'N , N=DOUD

n=-oo

and

(2.2.7) H= 2@ Un N

-00

For the corresponding map r_ of H onto 22 (-02,00; N_) we define

(2.2.8) r h= (pN_ y-(+1) h}“

n=-co

Thus
(©) r_[D])=02(=,-I;N)

(“) U‘ =r Ur:l

:: the right slfift on 23 (-ee,00; N). The representation (U, 22 (-, -1; N)
2 (-e0,00; N_) is called an incoming translation representation. .
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2.2.4 DEFINITION ([1] , [15]). The operator

S =r 5 0g (eogm (CB) = 22 (oot (€)

is called the abstract scattering operator.

Clearly S is unitary. Denoting by V the right shift on le(-oo,ov;(Cp)) , we
rcadily obtain by the translation representation theorem

3 -1
(2.2.9) SV=rr, V=rUr =VS .

Let F i 29 (-oo,008 (C‘S) - Lz(Cp) be the Fouricr transform operator. The unitary

operator
-1 2 2

FsE ' Lch - Lch

thus commutes by (2.2.9) with Ly , the operator of multiplication by x. It follows

-1
[19] that FSF = is a Laurcnt operator Lg e L“(B(Cp)), such that

S(cit) a.c. is a unitary map on .

2.2.5 DEFINITION ({1], [15]). S is called the scattering matrix.

S is detcrmined

It is clear from the translation representation theorem that
&

to within right and left multiplication by unitary transformations on

The unitary maps F_= Fr_, F = Fr, arc called the incoming and outgoing

spectral rcprescntation. We have the following:
2 P,
a) F (D =H(C).
2 ~P.
(2.2.9) b) F/(D,)=SH £C7).-
c¢) F (Uh)=xFh,he H.

Morcover, the operator
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(2.2.10) P_P+: D+—» D is unitarily equivalent to the Hankel operator g

where Pt = PDt. and the operator

1 £ .
(2.2.11) PDP,: D - D_ is equivalent to the Toeplitz opcrator Ts.

2.3 COMPUTATION OF THE SCATTERING FUNCTION FOR REGULAR,
MAXIMAL RANK, STATIONARY GAUSSIAN SEQUENCES

Let (Q, A, P) be a fixed probability space and let
yi(n)
y2(n)
{!(n) ine Z}) ,yn) =
p(n)
be a centered stationary process with yiin) € L2(Q, A, P) j=1, .., p. Letf (A)=
oy Yy

2 4
(fk;(l))k_jﬂ' A€ [-m ] be its spectral density satisfying

1 =«
(2.3.1) P log det fyy(l.) dA > o
-n o

i.c., the process is regular and of maximal rank. Let

H = H! = nXZ [y,(n). Yy (1) ., Yp (n)) c L, (2,4,P)

bc hc Spﬂcc Spﬂﬂ d by o
lhc 0OCess I Y
L ne pl "'Id ct U bc lhc unitar shift OPC'Z"OI on ’l

Uyij(n) = yj(n+1) i= Lo, p, ne Z

We consider the past and future of (y(n))~ defined by
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D=1, ©= Vv (y1(k) oo yp(K))
+
D, = HZ ) = l‘\2/0 {y1(k) ,.ees yp(K)}

By (2.3.1) it follows [21, Th. IL6.1]

Au"D=(0= XU D,

We rcadily obtain that (U, H, D, D) is a scattering system.

Now let (U, H, B, D)) be the scattcring system associated with the regular

* *
maximal rank y process. The subspace N = DO U D_(N = DB UD_) is the
forward (backward) innovation subspace at n = 0. Since for a scattering system
(U,H, D+ D) we have
dim N = multiplicity U = dim N_ 4

2
wc can arrange the maps r, lo bc onto 0 (-o0,00; (Cp)).
Wec next compute the scattering matrix S for the y process. Let

(vl(O).....vp(O)) be an orthonormal basis for N_. Let vj(n) = Unv,‘(O) and dcfine

vi(n)
v(n) = X neZ.

Vp(")

By (2.2.4) the process {v(n)}:, is a (centered) whitc noise process with covariance
Ryy(n) = S(n)lcp constituting the forward innovation process for the y process. It

is dctermined up to a choice of basis in N. By (2.2.6) we may write
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P
A(k) = (ajjk)) . A) =0, k>0 .
ij=

1y (0) = X Ak)x(k)

(Wold's rcpresentation). It follows from (2.2.8)

P oo
232) oy = { X amkeDvm@},_

m=1

Identifying N_ with (Cp) we readily obtain the rcpresentation

aji(k+1) ) e

ryj0) =

ajp(k+1) ) k=-eo
Consider the function

Az) = Y A'(k)zk

Since

o 2
> i laij(k)i? < iny,-(om" ;
j=1

k=-eo iJ:]

A(z) is analytic in | z | > 1. For A(z) we have,

1
o A @A@) = f! Z(x)

By the incoming propertics

H(CY = V {cimhA(cia:ae (C)
n<0

i.c., A is coniugate outer (14, p. 121). Thus
(2.3.3)  (Fryi(0) ..., Fr_yp(0)) = XA

Since the translates (in Hy) of y,(O).....yp(O) and their lincar combinations arc

. Fr_is determined by the abovc expression.

Lct s|(0).....tp(0) be an
We similarly obtain !

dcnse in H
y

Wc now consider the outgoing representation.

orthonormal basis in N* .

i
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oo P
R Te . A = % 'S B 2 k s
Z(O) =Y B(k)g(k) Bk) = (ﬂ.,(k))i‘jﬂ. B(k) =10], k<

This rcpresentation  constitutes the representation  of  y(0) in terms of the
eq(n)

packward innovation proccss (g (n)} ., &) = . We dcfine
ep(n)

r@ = Y, B'(k)zk
0

which is analytic in | z | < L. Ina similar fashion  we obtain by dircct

computation

2'—7[ r‘@re = rzz(x) < 2 = ¢t

with T’ being outer.  Also

(2.3.4) (Fr,y, (O)... Fryyp(0) =T

Combining (2.3.3) with (2.3.4), we obtain

and  thus
S= yAr-1

Onc casily verifies that S(ci*) is unitary ae. X € (-n,x] . We thus obtain

2.3.1 THEOREM. For a regular maximal rank process [Z(n)) we have

S = gAT!

where Sis determined up to left and right multiplication by constant unitary

matrices.
For the casec p = 1 we have

2.3.2 COROLLARY. For a regular process (Z(n)}:"



w
[o2]

by 1 liw

and S is determined up to multiplication by a constant of unit modulus.

Proof. The outer function A satisfies | A [ =1 T 1 on T and thus A =vI ac. where ¥

is a constant of unit modulus.

2.3.3 REMARK. The scattering matrix S was defined by outcr and conjugate outer
factors of the density fyy. Sincc those arc determined up to left multiplication by

a constant unitary matrix, we may wish to make a canonical choice (which
amounts to choosing spccific orthonormal bases in Ny, N.) in the following fashion:
For I'(0) we consider its polar decomposition I'(0) = KP (K unitary, P > 0) and
define IM(2) = K 'I'(z). For 'y we have r0)>0. This 'y is unique.  Similarly for
A. In this way, the density fyy will have a unique S associated with it.  From the
vicwpoint of sccing S as the phasc function associated with fyy , this may be
appcaling.

2.4 COMPLETELY NON-DETERMINISTIC STATIONARY SEQUENCES, THEIR
SCATTERING FUNCTIONS, AND INDUCED HANKEL OPERATORS

The scattering  function of stationary scquences plays the role of the
llciscnberg S-matrix in quantum mechanics.  The physics of quantum systems is
believed to be contained in the S-matrix and this object can in principle be
determined cxperimentally. A natural question then is whether the scattering
function of stationary Gaussian sequences, which mecasurcs the intcraction
between the past and future of the process, determines the spectral density of
the process.  To answer this question we introduce the class of complctely non-

deterministic  processcs.

2.4.1 DEFINITION (7). The process y is said to bec completely non-dcterministic if
- +
(2.4.1) Ily(())n lly(l) = {0).

This condition statcs that no value in Il y(l) can be predicted without crror bascd

on the information ll;,(O). This condition is more restrictive than regularity (cf.
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BLOOMFIELD-JEWELL-HAYASIII, loc.cit., for an cxamplc of a regular process

which is completely non-deterministic).

2.4.2 THEOREM. The scattering matrix S determines the spectral density fyy up

* . . .o z
to the form K fyy K where Kis a constant p x p non-singular matrix iff y is

completely non-deterministic .

2.4.3 REMARK. For p=I, this rcsult was obtaincd by Levinson and McKean [16].

2.4.4 LEMMA. The scattering matrix S determines the density fyy(k) up to the

form
*
(2.4.2) K r!! A) K
where K is a constant pxp non-singular matrix, iff

(2.4.3) dim Ker Tg = p .

Proof. Tirst note that for any representation of S

with the columns of X in ”2(Cp) and those of %Y in lIi(CIS, the columns of X

belong to Ker Ts. Moreover (on T) L

Y'Y = (SX)"sX = XX
Assume (2.4.3) holds. It thus follows that
(2.4.4)  X(cM) = I'(ciMK

where K is a pxp full rank constant matrix. Thus,

1 * 1 * % * .
2_“‘)( (z) X(z) = ﬂ' KT ()Mz)K = K f!z MK z = cit
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proving the 'ift part. .
Now assume (2.4.3) not to hold, i.c., dim Ker Ts > p . Wec can thus find a pxp
matrix  X(ci*) of full rank a.e. A such that the columns of X belong to Ker Ts and

(2.4.4) does not hold. 1f we dceline
Y = 3SX

o ) B *
then the columns of XY are in I, (C‘S and S = FYX wilh Y*Y = X" X. The result

follows.
We next characterise condition (2.4.3) on a process level.
2.4.5 LEMMA. We have

* - +

I, [Ker Tg]= }&(O)AIIL(O)

*

*
Proof. Let 0 #fe Ker Ts . From the well-known identity ”s“s + 'l'S'l'S =1, it

follows that
*
l-lsllsf =i
IIIIS = .
* +
From (2.2.10) and (2.2.11) we obtain for § = F+fe lly(O)

np gl = NEN,
and £ e n; (0). Thus

F: [Ker TS] (s Ily; ©O)A ll; ) .
Now lct § e lg: ) A ll; (0). It follows from (2.2.10) and (2.2.11)
Hy(F &) = FE .

Let f=F&e Hy(Ch . We obtain

319
Illlsﬂl = lIF it = Mg = IIF+ EIl = lfH
and
.
llsllsf =£,

Thus [ e Ker Ts which implics

- +
B [I&(O)A Il! 0)] < KerTs.
By the unitarity of F

dim Ker Ts = dim 1{, (0) A n; o),

and since y is rcgular and of full rank we readily conclude

. = + =
dim W (OAH, © = p iff dim I O AH, (1) = 0.

Proof of Thecorem 2.4.2. Combinc Lemmas 2.4.4. and 2.4.5.

The conversc question, namely, when is a function S € L«(B(Cp) the

scattcring matrix of somc full rank, p-dimensional completcly non-deterministic
process is of interest.

We first obscrve that any S e Lm(B(C‘S) which is unitary valued a.c. on T is

the scattering matrix of the canonical scattering system [I]

U=Lz, H=12(C) , D, =SILC) . D =Hy(CH .

The above question amounts to characterizing all scattering systems (U, 11, D,,D)

for which there cxists a sct (gg, ..., €p) of lincarly independent vectors such that

il = span {(U"gj : j=1, ..., p, n=0, £ I, ...}
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n s
D, = span (U §;:j=I,...,p,n2 0)

D = span [Unﬁj cj=l, ..., p,n< 0)

and such that any other lincarity indcpendent set satisfying the above is of

&

v

cardinality p. The corresponding process will  be (é(n))‘_’o°° where &(0) =

&p
E(n) = s . and the spectral density is  obtained by

d(Ea&i &
fgﬁ )= (—_(_JT.—J—) ' {Ex 7A€ [-r, x]} being the resolution of the identity
- Lj=l...p

for U. The answer is given in the following.

2.4.6 TIICOREM. Let Se L“(B(C%) be such that

(i) S(ci*)is ae. Aa unitary map on (Cp)

’

(ii) dim Ker Tg = p

Then there cxists a p-dimensional full rank complctely non-deterministic process
y whosc scattcring matrix is S .

Proof. LetI'y, Iy, ..., Ip span the kernel of Ts and define

C=[FIMl..1T,]. ‘
Lct g

A=ST.
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Since Aj= (STj) + my (STj) = m (ST, j=1,ees Py the columns of A = [Ajl A2l ... 1 Ap] arc
in 115(C) and by (i)

A @A@) =T (@) (2) z = ¢t .

if we dcfine I
= — ¥ (ciM) I(cir
f!z(l)—znl (c) T(e)

the theorem follows provided we show that I is outer and YA conjugatc outer. Let

U=Ly and dcfline :
- n P,
D= V (x"Ap o Ap) € IHACY , Dy= V(17T x STp) © SHHC).
sl n20
Let
A nAa n~n
(2.4.5) ll=(“¥ZU D_)V(n;/zU D).
It is casily verificd that (2.2.1)x - (i), (ii) holds for (U,Ds). In [1] Adamjan-Arov
show [I, Th. 2.5] that a quadruple (U,ll,D+.D_) satisfying (2.2.1)¢ - (i), (ii) and

(2.4.5) has a scattering matrix S which is unitary valued a.c. on T iff

n
NUp == N YD

and, morcover, from their gencralized functional model [1, Th. 2.1] we nced have

D, = Hy(CY, D, =S HxACH.

A straightforward computation gives

w>
I
192]

and the result follows.
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From the thcorem of Nehari [3],and its veetor generalization we know (hy,
for a bounded Hankel operator H with symbol ¢ e L..,' there cxists a function Pu e

L such that

IH gl = llg, ls.

The function L is called a minifunction for H(p. In general L is not unique. We

however  have

2.4.7 THEOREM. The Hankel operator Hs determines S uniquely. Indeed, S is its
unique minifunction.

*
Proof. Trom Lemma 2.4.4 we note that f e Ker Ts is an cigenvector of “s”s cor-

-1
responding to the cigenvalue llHsll = 1. Since S = XAT ~ cvery column of I' belongs

to this kerncl.  Thus, the projection of the above cigenspacec on the first

coordinate in Iy (O.oo;(C'S) spans I'(0). Now obscrve that for I'(0) wc have, becausc

of its outer properly in IIZ(B(CP)).

et T _ 1«
log ™ omyorz = 4x | log det fyy Q) di> o,
-

so that T'(0) is of full rank. We conclude that the aforcmentioned projection s
onto the firtst coordinate space. According 1o a result of Adamjan-Arov-Krein

12, Corollary 3.1] for Hankel opcrator - Hg to have a unique minifunction, it is
*
sufficicnt that the projection of the eigenspace of HO”O corresponding to llHgll on

the first coordinate space be onto. The result follows.

2.4.8>REMARK. It is of intcrest to observe that since for a complctcly non-

. . . - * . .
dcterministic process, the cigenvectors of Hs“S corresponding to the cigenvaluc

sl arc only the columns of T, the projection of this cigenspace on the first
coordinatc is not only onto, but also I-1. In [2, Scc. 2] it is shown that for any

[fankel opcrator H : llz(Cp) - Il;(C% satisfying this candition its unique

minifunction is of the form pS,p = M.

\8
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up to a constant multiple p > 0 all minifunctions of such Iankcl opcrators
Thus,

X inistic
in 1-1 corrcﬂpondcncc with rcgular, full rank, complclcly nondctcrminist
arc 1 - ~

processes.

The case of Rational Functions. Lcet (y(n)]_°° have rational density

_IP(z)2 ik
f!! )= Q) &8

P I i iVC'y rime.

where the Olylloluials yQ have no zcros iIn ||Z |I < ll a“d'(afc rclat p >
i i zeros inlz 1> L. Writc

3 f e L the pOlyllOl“lﬂ’ Q has its

Since yy b

P=PrP

k
) : . For Py(z) = T[I (z-oj) .,
where Py of degree k has its zeros on T and Py in 1z > 1. For Py(z) j=1 d

(ol T v b

Py(cit) : k
———— =ik 1)k ] & .
Pl(c!l) LELLACD. Jl;ll J
Thus
.k
R S N T
(2.4.6) S =X "; Ve = Yy = (-1 jgl i

i amjan- -Krcin show that (2.4.0) is
where | y I =1 and y, 1s outer. In (3] Adamjan-Arov-Krei

mini i at i is ci k+1 is the
the gencral form of unimodular minifunctions and that in this c:sc M
dimension of the cigenspace corresponding to the singular valug - S ’.lcwly
conclude that a regular process with rational spectral density is comj

nondeterministic iff it has no zeros on T .

2.5 MARKOV PROCESSES AND UNITARY DILATIONS

In this section we show how a Markov structurc is intrinsically assocu;l‘lcd

i i i hillips. 1c

with unitary dilations and the resulting Scattering theory of Lax md. P g e
results in this section arc duc to Lindquist and Picci [18] and Foias an {
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10]. i
! “]’\d ln. some sensc however the results of this scction are cssentially contained
in amjan-Arov [1].  This is demonstrated in this scction.

In a Hilbert space sctting, a centered stationary proccss [L(n)}m is said to
—o0

be Markov if for all n 2 s

P P h 24
Hys) | X(s) he Hz(n)

whe = i(s): j= i
‘c"crrcm)c(js)b s:mn _()-&J(s). J=l,.., m}. In our sctting, all stationary processcs will be
g y the shift U (on “Z) associated with the y process.  Thus, for a

stationary proccss (L(ll))_w (in Ilz) we will have x(n) = U";(O). It recadily follows

from above that once can define the noti
H H otion of a Markov subspace X © X i
X satisfics (scc [18]) y e “Z L

(25.1) Py o Ux=P _ U"x , nzsxeX

8<-ﬂ
c
>
(]
=

Thus X is a Markov subspace (for U) iff the process (U" X) has thc (weak) Markov

wopcerty. H I HIg N "
property. In what follows a Markov process (U X} will invariably arisc in this
fashion.

Markov subspaccs i ]

. p X c ll! which arc representations  for the process y,ic.,
for which )

(5, ©) vy, @) € X,
atisly

nd arc sai 2 i i i

r c said to be of full range. There is a dircct relationship between Markov
?lccsbcs of full range and unitary dilations (scc also [10]). Rccall [19] that a
nitar i i 5 i i we
: .y operator U on a Ililbert space I is said to be the minimal unitary (power)
ilation of a contraction A on X < Il if l

n n oo
A" =PxU IX nz0and Il = v U" X (mintmality).s
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2.5.1 PROPOSITION. X < lly is a Markov subspace of full range iff U (on lly) is

(he minimal unitary (power) dilation of the statc opcrator

A=PxUX:X-X
Proof. Trom (2.5.1) we obtain for x,x' € X and m,n 20
W™ U"x) = U™k PU" x).
Denoting A(n) = l’XU" X, we obtain

(x,/\(mﬂl)x') (X,U"an') _ (U-mX.Ur;(') = (U-I“X,PXU“ x")

x P U™ PxU"X) = (GAMA@X) -

We infer that A(m+n) = A(m)A(n) and

A = A"(1) = A"
Since X is of full range, we conclude that U in My is the minimal unitary dilation

of A (in X). This proves the ‘only il part.  The if’ part follows by reversing the

argument.
. ; n
llaving madc the conncction between a Markov process (U K} and the

dilation property characterizing it, the work of Adamjan-Arov [1] on the duality
between dilation theory and the scattering operator model is dircctly applicd.

% n s . i
First, note that the process (U X) is regular, ic., satisfics

k k
A V UX=(0)= AV UX
n20 k<n ) n20 k2n

iff
n *n

A0 AT-o0 (o).
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Sccond, those Markov processes which in addition to being regular represent ¥

(and arc thus of full range) correspond to scattering systems according to a result
of Adamjan-Arov (1, Th. 3.4] :

2.5.2 THEOREM. Let X Hy be a regular Markov subspace of full range.  They
Hy decomposes and, morcover, uniquely into the orthogonal sum

lly =Dexen,

where (U, 11y DD ) is a scattering system.
2.5.3 DEFINITION. A scattering system (U,ll,D+.D_ )x for which

D c D

is called a Lax-Phillips (L-P) scattering system.

Let (Un X} be an arbitrary regular  Markov process  of full range, and (U,

“Z D D)x its associated LR scatiering system.  Let ©x(c*) be the corresponding

scattering matrix.  For the induced incoming spectral representation FX we obtain

Fx D1 =15 1 R D] = eyHACh |

Since D 1D
Oxe Il _( Yy .

To cach regular full range Markov  cess there is thus associated an inner

function Gx, which is the scaltering matt < of the corresponding L-P system (U,

lly DD )y . From [1, Th. 3.3] it follows that the scattering matrices © associated

‘
with regular full range Markov processes  are preciscly the inner functions © e

IINB(C%) which arc purcly contractive [19, p. 188], i.c.; for which

2.6
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e < 1

' CLLING
FACTORIZATION OF THE SCATTERING MATRIX AND MODEL

The 1-1 correspondence
X e U Hy, D, D)y

H an late the 1 all a‘lo" '7‘0[)18"1 0 Pl 7N
inding a“ 'Cg“lal ” ”ko”an
f f
I)‘()b us to tr S (4 4
cna

spectral
a covering problem in Lz(C) via the outgoing S|

representaions for y to

Let X € Hy be a regular Markov subspace
representation for (U, Hy ,b,.D ). L y

'lll cntn y U ll l) ) , S L-l SC.’lllulng byblc"l, ()X its SC.luC“"g matrix,
repes 8 v ( y 4 X

-+ . . . . ( )
K I lh(: C()ll(:bl)o“ n ]) + . l( )r"-v P

“‘d by d E U(g I 8 spect dl CP csentation {y Yy ' '
d . 0 oimn T T rcs Slll()c 0 )

< X it follows

oty ~+ i1 = FL D e X = 15 .
2.6.1)  F Ol e Fy [k\s/“u XY wilin;

ift i i S H(CH . Let V be the
wid by (1IC(0)] is a full range left shift invariant subspace of 12( FS

sp -L‘X theorcm, L.C.,
corres Olldl“g nncr function obhllncd froﬂ\ ‘hc chllllg 1 heoret
0

F 5 0 =V ll_(C ) .
Bc th u“ililry Of Fx

S—
l";(y(O)) = IV A

Thus

(¥,(0) 1 ¥,(0) € X
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translatc under F:( to the cquivalent condition
(262)  IVAeIC) o o nych .

Converscly, if ©, V arc inner functions for which (2.6.2) holds, the mapping
y(0) = xV*A

induces in a natural fashion a spectral representation IZ)V for which
X =5 u5c’) e e’y
CAY '2 2

is a Markovian representation for y, and its corrcsponding L-P scattering system

has its scattering matrix By coinciding with ©. Wec have therefore proved the

following

2.6.1 THEOREM.  Finding all models (realizations) of yis cquivalent to finding all
inner functions O, such that

- * -
e e ouych
for some inner function V. Each model co responds to a pair (©1,V).

2.6.2 COROLLARY. All regular Markovi. 1 representations of y are paramterized
by precisely those inner functions © for vhich

*
(2.6.3) Vs = 0,6, e, 1_(B(Ch)

Jor some inner function V.

Proof. (2.6.2) holds iff © XA € Ha(CY) iff ©;V*SI e Hy(Ch. Since I is outer the
1

latter holds iff OV*S e ll“(B(Cp)). i.c., iff (6.3) holds.
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2.6.3 COROLLARY. All regular Markov subspaces X < H)-,(()) representing 'y are

[,aramclrizcd by those and only those inner functions ©) for which

*

(2.64) S =60, 0, nm(B(c")).

n = g .
; implics = th (6.1) we
proof. X € lly(O) implics D, & X = n\S'OU X c Ily(()) combining with (6.1)
conclude that 'V is a constant unitary matrix.
The possibility of writing the scattering matrix X in the form (2.6.4) has an

jntcrpretation on a process fevel. By the Beurling-Lax theorem, (2.0.4) holds iff
(the invariant subspace for the left shift):

Hé(CIB ©  (range Hg) is of full range (for %)

which is cquivalent to
(2.6.5) Il)-,(O) e I;l-(mll;(O) is of full runge (for U).
y

A"L (B(C';) function satisfying (2.6.4) is called (9] strictly non-cyclic , and the

corresponding process - having a strictly non-cyclic scattering matrix - is called
strictly monocyclic. We thus obtain [I8, Lemma 7.3 and Th. 7.0]:

2.6.4 COROLLARY. Let
* *
$=Q,Q = hP

be respectively the left, right coprime factorization of S. Then all minimal
regular Markov subspaces representing  yare parametrized by those and only
those inncr functions Ol such that

* *
(2.6.6.) VS = 9,0,

where 9. 8, are left coprime and V is an arbitrary left divisor of L. Morcover

we  have
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det ©) = dat Qq .
Proof. Combine Corollary (2.6.2) with (14, Lemma I1I. 5-8].

The general Fuhrmann dcgree theory for strictly non-cyclic functions [12,

Ch. iii.5] now ariscs naturally - S playing a central role. All regular Markovian
subspaces X C HX representing  y arc  paramctrized by an  inner  function

@1 H_(B(C")) will be of degree

d(®) = det ©) ,

an inner function in H |, and
oo

d(Q1) divides d(©1).

Thus, the degree of the minimal subspace is the lowest, in the scnsc that d(Q) is
the wcakest among the degrees of all other regular Markovian subspaces
representing y.  Applying [12,Th. II. 14.11) we infer that two minimal regular
Markov subspaces rcpresenting y are quasi-similar.

2.6.5 CORO'LLARY. .Fora p =1 dimensional process 'y the minimal Markovian
representation of 'y is parametrized by the inner function q, for which

s =14,4,

is a coprime factorization.

ITI.  UNITARY DILATIONS OF IRREVERSIBLE EVOLUTIONS

In the previous scction we have shown how we can associatc a Markov
semigroup with a Gaussian process via the associated Scattering System. In this
scction, we consider the dual view of associating a Unitary Dilation with a Markov
scmigroup.

The cvolution of a Hamiltonian (conscrvative) systecm is reversible while
the cvolution of rcal physical system is not. The real system rcturns to a state of
thermal equilibrium at a temperature determined by its surroundings.
the physical interpretation of the Poincaré Rccurrence Theorem.  We may arguc
that the construction of a unitary dilation of a Markov scmigroup is the abstract
interpretation of coupling a physical system of a finitc number of degrees of
frccdom to a hcat bath thereby producing a Hamiltonian system of infinitc

This is
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number of dcgrees of freedom. The idcas of this section are due to Ford, Kac,
Mazur [11], Lewis and Thomas {17], Evans and Lewis (9] and the first author.

We undertake the development of this scction in continuous time since this
is its natural sctting.

3.1 NOTATION AND PRELIMINARIES

Let H  be a scparable Hilbert space with scalar product,

<-,->y and norm Il - llij.  When there is no confusion thc subscript H will be
dropped. R dcnotes the sct of rcal numbers |, Rt the non-ncgative real numbers
and R~ the nonpositive rcal numbers. For I < R, an interval, Lz(l) dcnotes the

spacc of Borcl mcasurable squarc-integrable complex-valued functions and
Lz(l;ll) the spacc of Borel-mecasurable H-valued squarc intcgrable functions.

W L.2(R;H) denotes the Sobolev space of H-valued functions and WUL.2(LH) the
Sobolev space obtained by restriction of WILZ(R;H). Let (Tl)le R+ dcnotc a onc-

paramctcr, strongly continuous, contractive semigroup on H, with Tp = I, and let -
A be the infinitesimal generator of (T\) . p+ - We know T: = c'A is a contractive

scmi-group iff, V x € D(-A), 3 x* e H with Ix*ll =1, (x*,x) = lIxil and Re <x”, Ax> 2 0.
.A scmigroup of contractions (Tl)(eR+ is said to contract strongly to zcro if

V he I, we have lim IT¢hil = 0.
[ oo

3.2 MINIMAL UNITARY DILATION OF A CONTRACTIVE SEMIGROUP

3.2.1 DEFINITION. Given a contractive semi-group (T(), g+ on H, we say that a
strongly continuous onc-parameicer group (U')leR on 3 is a unitary dilation of (Ty,

1) if there cxists an isometry i: H — 30 such that the following diagram commutcs:

Ui

H——H

H———>H
Tt

The unitary dilation is said to bc minimal if
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3= u [Uil) I te R} . |

3.2.2 THEOREM [LAX-PHILLIPS]. Let (T, H) be a strongly continuous, contractive,
semigroup contracting strongly to  zero. Then there exists a unitary dilation
(Uy, 30). The dilation (Uy, ) has the canonical representation with 31 = LZ(R; N), N
a Hilbert space and (Ut € R) being the unitary group of right translations on
LXR; N):

(3.2.1) (Uth(s) = f(s-t).

Proof. Since (T‘)te R+ is a contraction,

(3.2.2) Q) <Ah, h>+<h, Ah>20V he D(A).

Let No = Ker[Q(h)] and let P be the canonical projection of D(A) onto the quotient
space D(A)/Ng. On D(A)/Ng there cxists a scalar product < -, - >A such that

(3:2.3) <Ph, Pk>p =<Ah k> +<k Ah> ,V hk e D(A).

Let N denote the Hilbert .spacc complction of D(A)/Ng with respect to the norm
induced by (3.2.3). Therefore

0
(3.2.4) jin-shuf\ds = IhliZ - IThiI2, ¥ he D(A) 120.
-t

If we let t — e, since T, contracts strongly to zcro, there exists an isometric
cmbedding i: H — Lz(l{; N), such that on D(A),

(ih)(s) = PT¢h,V s <0.
Regarding LZ(R™; N) as a subspacc of L2(R; N), we have for ¥V he D(A) and t 20

. PTigh s < L
Uins =1 o0 T,

= (iTh)(s) + m(s)

where n(s) € LER*Y: N) < i(IT)L. Hence, ¥V t<0
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Ty = i*Uli, and thercfore Ug is a unitary dilation of T on 3 = LZ(R; N).

The unitary dilation we have constructed is in fact minimal. This is donc by
constructing a lincar stochastic differcntial cquation involving an operator-valued
Brownian motion. We [irst introduce positive definite kernels and consider their
dccomposition.

3.2.3 DEFINITION. A map K: R x R — B(H) is said to bc a kernel. The sct of all

such maps is denoted by K(R; I1). A kerncl K is said to bc positive definite if
V hy, ..., hy in H and xj, ..., xp in R,

n
(3.2.5) E < K(xj, xj)hj, hj > 2 0.
ij=1

3.2.4 DEFINITION. Let K e K(R; ). Let Il' be a Hilbert space and let Vi R —
B(I;H') be such that K(x,y) = V(x)*V(y). Then V is said to be a Kolmogoroff
decomposition of K. This dccomposition is minimal if II' = U{V(x)hlx e R, he H].
Onc can prove that cvery positive definitc kernel has a minimal Kolmogoroff
decomposition.  This is donc with the aid of the reproducing kernel Hilbert space
associated with K.

With the notation of Thecorem 3.2.2, lct us introduce an operator-valucd
Brownian motion as follows:

Let W: R — B(N; H) be the map given by

%o, t20
(3.2.6) (Wn)(s) =
“X[L,0)(s)n, t <0,

where 1 e N and x(.) is the characteristic function.
Consider the positive-definite kernel:

(s,0) = (s A DIy , where | denotes the identity operator.  Then
*
(sAbIN =W W

In the scquel we denote by (D(A), LI) the Hilbert space D(A), with the graph norm.
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3.2.5 THEOREM. Let (Uy, H) be the dilation of (Ty, H) given in Theorem 3.2.2.
Then there exists a bounded linear operator B: (D(A), I.h) = N and an opcrator-
valued Brownian motion Wy: R — B(N; M), where

M = u(Wsnlse R,ne N} and W satisfies (3.2.6) such that

1
(Uii - Ugh = - [ UgiAhdr + (W - Wo)Bh, ¥ e D(A).

S

(3.2.7)

S . 2
Proof. The proof is constructed by verifying cquation (3.2.7) for h € D(A®) and
then by deasity for h e D(A). For h e D(/\z) onc can show that a solution is given

by

|
Uyih = c-AG9Uih + [ W(dr)Be-AG-Dh
5

where the last term is a Wicner integral, which can be defined by an integration
by parts formula.  The fact that Ug is a minimal unitary dilation follows from the

fuct that wy is a minimal Kolmogoroff dccomposition.

3.2.6 REMARK. The stationary solution of the cquation is given by
1

Uidh = | W(ds)Be-AW-Sh,

We may verify that this U defines a regular stationary Gaussian process and
there is a Lax-Phillips structure associated with it.  We may also obtain an
ordinary stochastic differential cquation for the Markov semigroup attached to
this Lax-Phillips systcm.

3.2.7 ANEW REPRESENTATION OF THE DILATION.

Let us assume that the scmigroup (T p+ ©On H is self-adjoint with

gencrator -A. Then A is a positive sclf-adjoint operator which we assume 10 be
injective. In this case. onc can show that there cxists a minimal unitary dilation
(U, 3), where 30 = H @ LA(R; H).

Let us write a vector @ € 1,2(R; H) as ¢ = @* + ¢ with ot & LZR™; 1) and ¢ €

¢ . . P, 4+ .
L2(R"; H). Then onc can writc the unitary dilation for te R™ as

( T, A ]
U= , where

(3.2.8) B, 544G,
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L R
Ai LAR; DAV) 5 11 ¢ > (2A)2 [ Ty so(s)ds
0

B D(AYV2) - LZ(R; H): h — (Bh)(s) = x10.4)(s)(-2A) V2T _sh
Ce: LAR; D(A)) = LA(R; H): @ = (Cio)s) = x0.)(s)(-2A) 2 A 50
Sz L2(R; 1) = LYR; H): ¢ = (S9)(s) = ¢(s-1)

Ay, By, Cp are denscly defined contractions.

Morcover writing Uy = ¢i'X, on physical grounds the Hamiltonian
written  as

(3.2.9) X =KD K DKR

K R the Hamiltonian of the reservoir is the generator of the shift of
motion. X, the Hamiltonian of the system is zcro. X , the Hamilto
coupling is of the form

( 0 -ic*]
(3.2.10) W 1
ic 0

where C: D(A1/2) - L%(R; I): h = 8§ ® (2A)1/2h, §j being the Dirac m
formal and nceds to be justificd) and

C*: L2(R; 1) - D(AM2): g -5 (2A)2¢(0)

(this is also formal).

We now give some indications on how the ncw construction is arr
Since (Ty)e R4+ is contractive, the quadratic form F(x,x) = (Ax,x) 4

HxlZ-ITex?

Iciix())—c——ﬁ 0 for x e D(A). We claim that there exists an operator
= Uy where Hy is a Ililbert space equal to CD(A) ™ , such that NICxIf?
xe D(A). In a similar manner there exists a pair (C', Hy) for te R, such
(/\*x,x) + (x,A*x) V xe D(A*). The operators C and C' are o be the
coupling opcrators. In the self-adjoint case C = (2A)12,

The idea is to construct the dilation on the space 3 = Lz(R_;Hl) @ H

I12). Now since (Ty, H) is a Markov semigroup, we must have (Us o Pé o |
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0
orthogonal to i(H) where i : IT — 3 is the injection § — [é] Pg:H — Il is the
0

orthogonal projection and Pt is the orthogonal projection on the orthogonal

complement of I
This suggests picturing the unitary dilation as follows:

G
S;CLZ(R_; H) ———— LYR; Hz)OST
Ay B,
I H
Ty

* s
The opcerators Al and By “couple” (T, H) to (Sl ; Lz(R_; [y)) and

(Sl+ ,l,z(l(+; H3)) where S‘_ and S‘: arc right shifts. For cxample B is given by

-C+TsE  if se [04]
(BiE)(s) = & e D(A)
0 ifs¢ (0.4)

It can be shown that B is a contraction. In the sclf-adjoint case there is a
simplification and it is cnough to couple H to LZ(R; H) and we try to give an
intuitive justification of (3.2.8).

In a physical sctting the shifts will correspond to the random behaviour of
the heat bath and will be the flow of Brownian motion. We cxpeet the coupling
between the system and the hcat bath to be instantancous and this coupling will

take place via the coupling opcrator (2/\}/2. For t > 0, we therefore expect that

X D(A) ) -Axdt o
a vector (O)e (LZ(R+;II)) to be transformed into [dbl ® (-(2A)1/2x )) in time dt,
where by denotes standard Brownian motion and db ® (-(2A)1/2x) is an clement
of l.z(R+;ll) = L2 (R*)® H (tensor product). The sccond componcnt db; ®
(-(2A)1/2x) in integrated form is csseatially By in (3.2.8).
Finally, we can cxplain the form of of Ks, Kr and K¢ on physical grounds.
Since the time cvolution on H is sclf-adjoint, it docs not contain a unitary part and
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we expect Hg to be zero. The fact that K¢ should be of the form (3.2.10) follows
from the same argument given above.
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Abstract A review of some of the reirol
theory is presented. A central theme ) of
state feedback and its use for alterif a
system. The vrelations between variolled
invariance and a general decomposition p

1. Introduction

One of the most important new developmen the
last decade has been, without any doubt and
controlled invariant distributions, ial)
geometric approach, as it is often calleant
and effective approach for solving vchis
regard, we mention the Disturbance Decoput
Decoupling Problem. Moreover, this apand
sophisticated theoretical picture fosrol
systems, and therefore is valuable in thitem
theoretic concepts like observability, and
invertibility.

Invariant and controlled invariant distpory

play the same role as - and in fact gdled



