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REACHABILITY OF PERTURBED SYSTEMS AND MIN SUP
PROBLEMS*

M. C. DELFOUR AN) S. K. MITTER"

1. Introduction. The problem of reachability for control processes, that is,
the problem of finding an admissible control which steers the system into some
target set is a preliminary one in the study of optimal control problems. For
linear control processes in both finite and infinite dimensions, reachability has
been discussed by several authors [1], [2], [3], [4], [5], [6], [7], [8]. The reachability
problem for nonlinear differential control processes has also recently been inves-
tigated [91.

Control problems in the presence of disturbances have usually been treated
as stochastic control problems. However, in many control problems statistics of
the disturbance are not available. For such problems a natural way to model the
disturbance is to assume that it belongs to some fixed bounded set in the space of
disturbances.

The objective of this paper is to study such control processes in the presence
ofadditive disturbances. We introduce the concept ofstrong reachability. A control
process is said to be strongly reachable if there exists an admissible control which
steers the system to the given target set in the presence of the worst disturbance.
We show that the problem of finding the best open loop control in the presence of
the worst disturbance is related to the concept of strong teachability. For the
problem studied in this paper, the operations of finding infimum and supremum
are not interchangeable and hence game-theoretical techniques used for example
in [10, [11, [12, [13 are not applicable. We present a geometrical necessary and
sufficient condition for strong reachability. For linear control processes with
closed, bounded, convex control constraint and disturbance sets and a closed,
convex target set, the geometrical condition can be translated into analytical form
by using separation and embedding theorems for convex sets. By specializing to
the case where the control constraint set, the disturbance set and the target set are
balls, we can obtain an analytical necessary and sufficient condition in explicit
form and also obtain expressions for the minimum norm control, maximum norm
disturbance and the minimum target set radius in terms of the control process
data. The final section considers applications to control processes described by
differential equations. For some work related to this paper see [143.

Notation. For a map f: X --, Y, if A c:_ X, U(A) {f(x)]x A}. {x} is the set
consisting of the single element x. For two sets A, B which are subsets of a Banach
Space X, A + B-- {a + blaeA, bB}.

Let X be a Banach space and let X* be its topological dual space. We define
the symbol (x, x*) by (x, x*) x*(x), where the right-hand side is the value of
the linear form x* at the point x. The map (x, x*) -, (X, x*) is a bilinear form on
X x X*. ,(X, Y) denotes the space of continuous linear maps from X into Y
For S e c-(X, Y), S* is the adjoint linear map and S* . ff’(Y*, X*).
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2. Basic definitions.

2.1. Mathematical definition of the system. Let X1, X2, be reflexive Banach
spaces and let X3 be a Banach space. X1 is to be thought of as the control space,
X2 the disturbance space and X3 the state space of a control system. Let U, W
and B be subsets of X1, X2 and X3 respectively. R denotes the real line.

Let S’X1 X3 (or u-- Su), and T’X2 X3 (or w Tw) be continuous
(not necessarily linear) maps and let s be a given element in X3. We shall be
concerned with the abstract control process, (C), defined by the equation,

(C) x= s + Su + Tw.

A control u U will be called an admissible control and a disturbance w W
will be called an allowable disturbance. The set B will be referred to as the target
set.

2.2. Definition of strong reachability and reachability. For the system (C),
(i) the target set B is said to be strongly reachable from s if there exists a
Usuchthats+S+ TwBforallwin W;

(ii) the target set B is said to be reachable from s if for any w in W, there exists
afiUsuchthats+Sa+ Tw B.

We shall refer to the system (C) as being strongly reachable (reachable) when
we mean B is strongly reachable (reachable) from s.

2.3. Definition of the min sup problem. For the function f:X3 R let
q’X X2 R be the mapping defined by (u, w)f(s + Su + Tw).

The min sup problem can now be formulated as follows’Given the functionf,
does there exist a U such that

sup {q(, w)’w W} inf{sup [q(u, w)’w W] "u U}.
3, Geometrical necessary and suttieient condition for strong reaehahility and

reaehability. To obtain a necessary and sufficient condition for strong reachability
we introduce two sets.

DEFINITION 3.1. For the control system (C), the unperturbed attainable set
is defined as the set

(3.) A {} + S(U)

and the modified target set is defined as the set

(3.2) M {xe Xal{x} + T(W)= B}.
Our first theorem identifies in geometrical form the necessary and sufficient

conditions for strong reachability.
THEOREM 3.2. The system (C) is strongly reachable if and only if A f) M is

not empty.

Proof. If (C) is strongly reachable, there exists an admissible control such
that

{s} + {S} + T(W) B

and hence s / S M. However, being admissible implies s / S A and hence
A f’l M 4= . Conversely A M implies that there exists an x e X3 such
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that x A and x M. Since x A, there exists a 0 admissible such that x s + SO.
Likewise x M implies {x} + T(W) B and hence s + SO + Tw B, for every
wW.

COROLt,AR 3.3. The system (C) is reachable if and only if for every w W
A (3 (B {Tw})#.

Remark. Theorem 3.2 does not make use of any topological properties and
hence is true for a control process defined on linear spaces.

4. The min sup problem. This section contains two theorems. The first
theorem exhibits the relationship between the problem of existence of a solution
to the rain sup problem with that of strong teachability with respect to an appro-
priately constructed target set. The second theorem shows that under certain
assumptions on the function f and the unperturbed attainable set A, the min sup
problem has a solution.

THEOREM 4.1. Let,

(4.1) e* inf {sup [f(s + Su + Tw)’w W] "u U}

andfor any R, define B(e) f- 1((_ oo, el). Then
(i) for every : R, the control process (C) is strongly reachable with respect

to the target B(e) if and only if * -.
(ii) There exists no R such that the control process (C) is strongly reachable

with respect to the target B(e) if and only if
(iii) If there exists an R, such that for any R, (C) is strongly reachable

for the target B(e) if and only if e > , then there exists a U such that

(4.2) sup [f(s + SO + Tw)’w W] e*

(iv) Conversely, if there exists a Ft U such that

sup [f(s + SFt + Tw)’we W] e*

and e*e R, then for any e e R, (C) is strongly reachable for the target
B(O if and only if e >=

Proof. (i) If e* -oe, then for every e e R, there exists a u e U such that
sup {f(s + Su + Tw)’we W} < e; that is, for every ee R, the control process (C)
is strongly reachable for the target B(e). Conversely, for an arbitrary e e R,
A f’l M(e)# implies the existence of a u e U such that {s} + {Su} + T(W)

B(e); that is sup {f(s + Su + Tw)" we W} <= e. Since e is arbitrary, take
e -n, where n is a positive integer. For each n, there exists a u, U such that
sup {f(s + Su, + Tw)’we W} <= -n and hence

e* __< lim {sup [f(s + Su, + Tw)’we W]} =< lim (-n)=

which implies that e*
(ii) The following chain of statements are equivalent to

for every u e U, sup{f(s + Su + Tw) w W} +
for every u e U, e R, {s} + {Su} + T(W) is not a subset of B(e),
for every e R, there exists no u e U such that {s} + {Su} + T(W) B(e,),
for every e e R, A f’l M(e) q5 and hence the desired conclusion.



524 M. C. DELFOUR AND S. K. MITTER

(iii) For e < i, there exists no u e U such that M(:) f) A - ; that is for every
u e U, sup {f(s + Su + Tw)’w W} >= , and then :* => i. However, M() fl A- guarantees the existence ofa u* e U such that sup {f(s + Su* + Tw)"w W}
N/o Hence for this particular u* e U, sup {f(s + Su* + Tw)’w W} *.

(iv) Since A f3 M(e*) - , for every e, => e*, B(e) B(e*) and M0;) M(c*)
and finally M(e,) (’1 A ..-z M(e*) A - ,@. So (C) is strongly reachable for e c*.
Now if e < z*, there exists no u e U such that sup {f(s + Su + Tw)’w W} _<-_ e"

that is {s} + {Su} + T(W)is not a subset of B(e) and M(:) f3 A for : < ;*.

THEOREM 4.2. Let f: X3 R be lower semicontinuous and let the unperturbed
attainable set A be compact (in an appropriate topology of X3). Then there exists a

U such that

(4.3) sup[f(s+S + rw)’we W] =inf[sup{f(s+Su + rw)’we W}’u. U].

Proof.
inf {sup [f(s + Su + rw)’w W] "u e U} inf {sup [f(x + y)" y e T(W)] "x e A

Let q(x, y) f(x + y). Since f is lower semicontinuous, for fixed x the
function q(y) q(x, y) is lower semicontinuous. Since the upper envelope of a
family of lower semicontinuous functions is lower semicontinuous [15, p. 362,
Theorem 4] and A is compact, there exists an 2 e A such that

sup [q(2, y)’y e T(W)] inf {sup [q(x, y)’y e T(W)] "x e A}.

Hence fi’om the definition of A there exists a fie U such that (4.3) is true.
COROLLARY 4.3. Let f"X - R be continuous and let he sets A and T(W) be

compact (in an appropriate topology ofX). Then there exists a U and a W
such that

f(s + S + r)=- inf{sup [f(x + Su + rw)’we W]’u e U}.

Remark. Theorems 4.1 and 4.2 and Corollary 4.3 are true, for example in
linear topological spaces which are Hausdorff.

COROLLARY 4.4. Let f’X. R be convex and strongly lower semicontinuous
and A be weakly compact. Then Theorem 4.2 holds.

ProoJl The proof follows from the fact that a lower semicontinuous convex
function defined on a Banach space is weakly lower semicontinuous.

5. Strong reachability of linear control processes. In this section we investigate
strong reachability for linear control processes in a Banach space setting.

Let the assumptions of 2.1 on the control system (C) hold. Further, let U be
a closed, bounded convex subset of Xt, W a closed, bounded, convex subset of

X2 and/3 a closed, convex subset of X. The maps S and T defined in 2.1 arc
now assumed to belong to the spaces (Xt X3) and (X2, X) respectively.
The linear control system so obtained will now be referred to as (L).

We shall use the separation theorem and embedding theorem for convex sets
to translate Theorem 3.2 into analytical form. The following separation theorem
is an immediate consequence of the strong separation theorem for convex sets in
locally convex topological vector spaces [16, p. 1.19, Corollary 1.4.4 and p. 23,
Theorem 3.9 and p. 14].
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THEOREM 5.1. Let X be a Banach space, let A be a weakly compact, convex
subset ofX and let B be a closed, convex subset ofX. Then

AB#
if and only if

sup{inf[(x,x*)’xeB]- sup[{x,x*)’xeA]" x* x.= 1} N0.
We also quote the following embedding theorem due to H6rmander 17].
DEFINITION 5.2. Let X be a locally convex topological vector space and let

K be a nonempty, closed, convex subset of X. The support functional H(x*) of
K, x* X*, is defined by

H(x*) sup [(x, x*) :x K].
THEOREM 5.3. Let K and K2 be two closed convex sets, and let Hi(x*) and

H2(x*) be their corresponding support fimctionals. Then
(i) K1

_
K2 ([’and only if Hi(x*)

_
H2(x*), for every x* e X*

(ii) K1 K2 if and onl.v if Hi(x*) H2(x*), fi)r every x* e X*.

5.1. Analytical necessary and sufficient conditions. In order to invoke the
above theorems, it is necessary to establish some topological properties for the sets
A and M.

PROPOSITION 5.4. For the control system (L), the unperturbed attainable set A
and the set {x} + T(W) are convex and weakly compact.

Proof. The proof of this proposition is an immediate consequence of the
linearity and weak continuity of the maps S and T[18, p. 422, Theorem 15] and the
weak-compactness of the sets U and W [18, p. 425, Corollary 8].

PROPOSITION 5.5. The target set B and the modified target set M are weakly
closed and convex.

Proof. Since B is convex and closed, it is weakly closed. The convexity of M
is obvious. We shall show M is a strongly closed subset of X3. Consider a strong
Cauchy sequence {x,} in M. Since M c X, x, x, where x X. For any w , W,
the translated sequence {x, + Tw} is Cauchy and x,, + Tw --, x + Tw. However,
as points of M the x,’s are such that x, + Tw B, for every w W. But since B
is strongly closed, x + Tw B, for every w e W, and x + T(W) c B which implies
x e M. Hence M is strongly closed and being convex is thus weakly closed.

PROPOSITION 5.6. Given the system (L), the set M is given by

M {x e x h(x)<= 0},
where

h(x) sup [(x, x ) + sup ((w, T’x)" w e W)

sup ((y, x*)’y

Further, M is nonetnpty !land only if
inf [h(x) x X3 O.

Proof. From Theorem 5.3, {x} + T(W) B if and only if Hxl+’rw)(X*)
<= H(x*), for every x* e X. That is,

sup [(x x*) + H.rw)(X*)- H(x*)" Ix* 1] < 0x
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and hence from the definition of Hrw)(X*) and HB(X*) we obtain (5.1) and the
definition of the elements of M.

If M is nonempty, (5.2) clearly holds. To prove the proposition in the other
direction we use the fact that h(x)satisfies [h(x2) h(x1) IIx2 XlllX for every
xl, x2 X3 and hence h(x) is continuous.

There are two cases to consider. If inf[h(x):x X33 < 0, then clearly there
exists x X3 such that x + T(W) B, and M is not empty. Ifinf [h(x):x X33 0,
then there exists a sequence {x,} such that h(x,) 0; since h is continuous on X3,
there exists an x X3 such that x, ---, x and h(x) 0. So again M is nonempty.

THEOREM 5.7. The system (L) is strongly reachable if and only if

inf {sup [(x, x*) + sup ((w, T’x*) :w W)
(5.4)

sup((y,x*)’yeB)" Ix* xl 1]’xeX} < 0

and

where

sup ((s, x*) + inf((u, S’x* 5 "u U)

sup((y,x*5"yM)" x*llx 1)__<0,

(5.6)
M {x X3 "sup [(x, x*) + sup ((w, T’x*)"w W)

sup((y,x*)’yeB)" x*llx;= 1]__<0}.

Proof From Theorem 3.2, (L) is strongly reachable if and only if A f"l M - .Using Propositions 5.4 and 5.5 the proof now follows directly from Theorem 5.1
and Proposition 5.6.

COROLLARY 5.8. The system (L) is reachable if and only if

(5.7)
sup {(s, x*) + inf((u,S*x*)’u U) + sup ((w, T*x*)’w W)

sup((y, x*)’ye B)’llx*llx; 1} =< 0.

6. Specialization of the results of 5. The results of the previous section will
now be specialized to the case where

(6.1)

U {u
W {w
B {x X3 :llx XdllX < ,, Xd X3 given},

6.1. Strong reachability and reachability.
THEOREM 6.1. The system (L) with U, W and B as defined in (6.1) is strongly

reachable if and only

(6.2)

(6.3) sup {(s Xd, X*) PIIS*x*IIx sup [(x, x*) :x e Mx] llx*llx; <_ O,

where Mx M {xa} and

(6.4) M,

0_<p<,

0_</< ,
0<e<.



REACHABILITY OF PERTURBED SYSTEMS 527

Proof. The proof follows from Theorem 5.7 by performing the necessary
computations. In particular (5.4) becomes (6.2) as shown below. Equation (5.4)
reduces to

inf {sup [(x, x*) + fl T’x* x- x* x 1] "x E X3} =< 0.

Butk(x)= sup [(x, x*) + fl T’x* x3" x* 1] is an even function of x Thusx.

k(x) > sup [flllT*x*llx’llx*lx. 1] flllT*ll --/31TI.

Hence flll TII .
Theorem 6.1 can be sharpened somewhat in the sense that in calculating

sup [(x,x*):x Mxd] we may restrict ourselves to x’s which belong to the
boundary of M,d. Moreover we can find an analytical expression for the boundary
of Mx. This is done in the following two propositions.

PROPOSITION 6.2. IfM =/: !:23, its boundary OM (in the norm topology) is defined
by

(6.5) c3M {x X3 "sup [(x x,, x*) + [3 T’x* x* x* x 13

Proof. Consider the function

f" X3 + R’x sup {(x Xd, X*) + fl T’x* xl llx* Ilx; }.
From Theorem 5.3,

(6.6) M {x S3 "f(x) <=
(a) Let Xo M such that f(xo) e and assume Xo is an interior point of M.

Then there exists an open ball B(xo; 6) with center at Xo and radius di such
B(xo;8) M. However, sup{f(x):xB(xo;6)} >= e + 6 which shows that for
some x B(xo;6), f(x) > e which contradicts (6.6).

(b) Now let Xo c3M and assume f(xo) < e. Let 6 (e )/2 and con-
sider the open ball B(xo; 6). For every y

f(Y) <= + Ily- xollx3 +

which contradicts that Xo e cM.
PROPOSITION 6.3. Let Md . Then

sup {(x, x*) :x M,d} sup {(x, x*) :x 8Mx}.
Proof. By Theorem 5.6, for any x eM

sup {(x,x*) + flllT*x*llx:llx*llx 1} =< .
Let x Mx, and assume x - 0 (otherwise Mx 8Mxd {0}). Consider the real
valued function f on [0, co), defined by

f(c) sup {c(x, x*) + fill Z*x*llx:llx*llx; 1}
it is monotone increasing, convex and continuous on [0, co). Moreover f(1) =< e
and for Co (e +/311Tll / 1)/llxllx, f(co) > . Hence there exists a unique ? in
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[1, oe) such that f(?) .. By Proposition 6.2, ?x c3Mxd. We then have for any x
in Mxd

I(x, x*SI <= I(x, x*51,

sup {l(x, x*>l’x eMma <= sup {](x,
The theorem now follows from the linearity of the thnctional (x, x*) and from
the hct that M is symmetrical about 0 in X3.

COROLLA 6.4. If X3 is a reflexive Banach space, Theorem 6.1 holds with

M in (6.3) replaced by the set of extreme points ofMx.
Proof. The proof follows from the Krein-Millman theorem [16, p. 131,

Theorem 15.1] and from a proposition in Bourbaki [19, p. 106, Proposition 1].
Remark. It might be useful to find a representation for the extreme points of

6.2. The characterization problem. If the system (L) is strongly reachable,
then it is useful to characterize the minimum values of p and e and the maximum
value of for which the system remains strongly reachable. This is done in the
following theorems.

THEOREM 6.5 (minimum norm control). For given fl and assume that
(L) is strongly reachable jbr some , 0 < . Then there exists a minimum

bound p* for which (L) is strongly reachable. Moreover p* is given by

(6.7) (i) p* 0, f g(0) 0,

(ii) p* is the unique solution in [0, fi] of the equation g(p)= 0 if g(0)> 0,
where

g(p) sup {(s x,, x*) plls*x*l x sup [(x, x*)’x e M,3" x* Ix; }.

Proof. Consider the function

x
-sup [(x, x*)"x e M.]

and the function

g.+ {0} .p sup {y(p,x*). x*l x; }.

We show that g is a monotonically decreasing, continuous convex function of p.
For P2 P O, f(P2, x*) f(Pl, x*), for every x* e X and hence g(p2) g(p)
showing that g is monotonically decreasing. For P2

f(2p + (1 2)p2, x*)= 2f(p, x*) + (1 2)f(p2, x*) for every x*e X],

which implies that g is convex.
Finally for P2 P 0,

Ig(p)- g(p)l g(p)- g(p:) sup [(p

Ip2 pl. Is l.

Since S is linear and continuous IS[ < . This shows that g is a continuous
function of p.
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Since (L) is strongly reachable for => 0, we have g() =< 0. There are two cases
to consider:

(a) g(0) __< 0. Then the minimum bound p* 0.
(b) g(0) > 0. Then by virtue of the properties of the function g(p), p* is given

by the unique solution in [0, fi] of g(p) O.
THEOREM 6.6 (maximum norm disturbance). Given the bounds e and p, assume

that (L) (T 0) is strongly reachablefor O. Then there exists a maximum bound
[3* such that (L) is strongly reachable if and only if fl <= fl*. Moreover defining

fl= liT
(i) fl* fl, iff(fl) <= 0

(ii) fi* fi, !f f(fl) > 0, where is the unique solution of f(fl) 0 in [0, fi).
f(fl) is defined by

f(fi) sup {(s xa x*) p IS*x*llx,, sup [(x, x*)"x Mx,()]" lx* 1}
Proof. A necessary condition for strong reachability of (L) is M which

implies fl ft. We shall show that f is monotonically increasing, convex and
continuous on [0, fl). Hence there are two cases"

(i) f() 0. In that case (L) is strongly reachable and fl* .
(ii) f(fl) > 0. Since f(0) 0 by hypothesis and f() > 0, if we prove the

asserted properties of the function f(fl), f(fl) has a unique solution
on [0, fi)and fl* ft.

Nowif0 2 fl f12 2 fi, flllT fl211TI ,whichimpliesM(fl) M(fl2)and
using Theorem 5.3, f(fl) f(fi2) which shows that f is monotonically increasing.

Since 2M(fl) + (1 2)M(f12) c M(2fl + (1 )f12), for every 2 e [0, 1], it
follows from Theorem 5.3 that

f(2fl, + (1 2)fl2) =< 2f(fl,) + (1 2)f(f12) for every 2 [0, 1],
which shows that f is convex on [0, fl].

The convexity of f implies continuity on (0, fl). Continuity at 0 + can be
demonstrated in a manner analogous to Theorem 6.5.

THEOREM 6.7 (minimum miss distance). Given the bounds p and fl there exists a

minimum bound e* such that (L) is strongly reachable if and only if e >= e*. Moreover
defining g fl]] T]

(i) e* g if f() <= 0,
(ii) e*= , /ff()> 0, where is the unique solution off(e)= 0 in (,

f(e) is defined by

f(e) sup {(s xn,x*) p[ S’x*[ x sup [(x,x*) "x 6 Mxd(e)]" [x*llx; 1}.

Proof. We first show that for some e,, >= 0, the system (L) is strongly reachable.
Let e and e, be defined as

sup {(s- x,,x*) pllS*x*llx," [x*l[x 1},

I1 + .
Clearly B([[)= {x S3" [IX[Ix3 =< I1} Mx() and for any x* X’, such

that IIx*l 1,

Il sup {(x,x*).x B(]I)} sup {(x, x*)x Mxd(e)}
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which implies that (L) is strongly reachable for e e since f(e,) =< 0. In a manner
analogous to the previous two theorems, it may be shown that f is monotonically
decreasing, convex on (g., o) and continuous on (4, e.]. A necessary cbndition for
strong reachability of (L) is M : 3 which implies e __> 4. There are two cases to
consider"

(i) f(i) __< 0. In that case (L) is strongly reachable and hence e* 4.
(ii) f(g.) > 0. Since f() _<_ 0 and f(g.) > 0, in view of the properties of f,

f(e.) 0 has a unique solution on (4, and * .
Remark. Theorems 6.5, 6.6 and 6.7 have obvious corollaries when strong

reachability is replaced by reachability.

7. Applications to control processes described by differential equations. We
shall illustrate the theory presented in the previous section by considering its
application to control processes described by differential equations.

7.1. Existence theorem for min sup problem. We consider an existence
theorem for a min sup problem analogous to the existence theorem for optimal
control problems.

Consider the perturbed control process in R"

(7.1) dx(t)dt A(t)x(t) + f(t, hi(t)) @ g(t w(t)) [0 /71]

where A(t) is a n n measurable and bounded matrix on [0, tl], f is in C in
R + and g is in C in R + ’, (n, m and p are integers >= 1). Furthermore,

(i) The initial state Xo at time 0 is given.
(ii) The admissible controllers consist of all Lebesgue measurable func-

tions t--, u(t) on the compact interval [0, t] such that u(t) U, (almost
everywhere on [0, tl]), where U is a compact set in R".

(iii) The admissible disturbances f# consist of all Lebesgue measurable
functions t--- w(t) on the compact interval [0, a] such that w(t) W,
almost everywhere on [0, l], where W is a compact set in Rp.

(iv) The cost function for each admissible u and wis given by C(u, w) g(x(tl)),
where g is a continuous function in R".

THEOREM 7.1. For the above ,system, there exists a t , and a (Y such that

C(O, #) inf[sup {C(u, w)’wfg}’u ].

Proof. Since the differential equation (7.1) is linear in x, there exists an
absolutely continuous function t x(t) defined on [0, t] which satisfies (7.1)
almost everywhere. Moreover by using the variation of parameters formula, the
solution x of (7.1)at time t may be written as,

(7.2)
X(tl) qb(tl)X0 + ((tl) alp-(s)f(s, u(s)) ds

+ 4,(t) 4’- (s)g(s, w(s))ds,

where 95 is the usual transition matrix associated with (7.1).
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Let s R" be defined by, s b(tl)xO, and define the continuous nonlinear
operators

S’L,(Rm; O, t,) - R"’u b(tl) - ’(s)f(s, u(s)) ds,

T’L(R;O,t) R"’w-c/)(t) d-(s)g(s, w(s))ds,

where LI(X; 0, tl) is the space of all integrable functions t-- x(t) with values in
X. Equation (7.2)may then be written as:

(7.3) x(tl) s + Su + Tw.

It follows from a result of Neustadt [20] that for the system (7.3) the unper-
turbed attainable set {s} + S(U) and the set T(W) are compact and hence the
theorem follows from Corollary 4.3.

7.2. Strong functional reachability. Consider the linear differential control
process

(7.4)
dx(t)

A(t)x(t) + B(t)u(t) + C(t)w(t),
dt

where x(t) R’, u(t) R", w(t) Rk (n, m, k are integers __> 1) and A(t), B(t), C(t)
are matrices of appropriate order which are measurable and bounded on the
given compact interval [0, t].

Let < p < and let LP(Rm; O, t) be the reflexive Banach space of R’-
valued measurable functions such that

The Banach space LP(Rrn; 0, tl) is normed by

u u(t) i,. dt

In a similar manner define Lq(Rk; O, t), < q < , as the reflexive Banach
space of all R-valued measurable functions with norm

fll
1/q

w = Ilw(t)lkdt

and Lr(R"; 0, 1), __< r =< , as the Banach space of all R"-valued measurable
functions with norm

x I1 x(t) R. dt

Let the control restraint set f,, the disturbance set fw and the target set B
be defined by

(7.5) fiw {w. wll, },
B {x’llx x I e, x given element in U(R"; 0, t)}.
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Since the differential equation is linear for given x(O)eR", uLP(Rm;O, tx)and
w Lq(Rk; O, 1), there exists an absolutely continuous function t--, x(t) defined
on the compact interval [0, 1] which satisfies (7.4) almost everywhere. Since
t--, x(t) is absolutely continuous, x Lr(R"; O, tl). The solution of (7.4) is given by

(7.6)

x(t) (t)x(0)+ b(t) qS-(s)B(s)u(s)as

AI- )(t) D- l(s)C(s)w(S) ds, te [0, t].

Let S’LV(R O, tl) U(R" O, tl) be the linear bounded transformation
defined by

(Su)(t) qb(t) - l(s)B(s)u(s) ds, O<t<=tl,

and let T’Lq(Rk;O, tl)- U(R";O, tl) be the linear bounded transformation
defined by

yw)(t) ok(t) 4)-(s)c(s)w(s)as, O=<t=<tl,

and let s U(R"; O, tl) be defined by s(t) ck(t)x(O), 0 <= <= t.
Then (7.6) may be written as the operator equation

(7.7) x s + Su + Tw.

DEFINITION 7.2. The control process (7.7) is strongly functionally reachable
with respect to (s, f,, fw, B, tl) if there exists a fie f, such that x(. fi, w) e B,
for every w ,.

Necessary and sufficient conditions for strong functional reachability can
now be obtained using the theory developed in previous sections.
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