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Weak Convergence of Markov Chain Sampling 
Methods and Annealing Algorithms to Diffusions t 
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Abstract. Simulated annealing algorithms have traditionally been 
developed and analyzed along two distinct lines: Metropolis-type 
Markov chain algorithms and Langevin.type Markov diffusion 
algorithms. Here, we analyze the dynamics of continuous state Markov 
chains which arise from a particular implementation of the Metropolis 
and heat-bath Markov chain sampling methods. It is shown that certain 
continuous-time interpolations of the Metropolis and heat-bath chains 
converge weakly to Langevin diffusions running at different time scales. 
This exposes a close and potentially useful relationship between the 
Markov chain and diffusion versions of simulated annealing. 
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I. Introduction 

Simulated annealing algorithms have classically been developed along 
two distinct lines, Initially, a simulated annealing algorithm for discrete 
(combinatorial) optimization was suggested in Ref. 1 and was based on 
simulating a Metropolis-type Markov chain. Later, a simulated annealing 
algorithm for continuous (multivariate) optimization was suggested in ReL 
2 and was based on simulating a Langevin-type Markov diffusion. The idea 
behind both of  these algorithms is to simulate an imaginary physical system 
at or near thermal equilibrium whose energy function is identified with the 

The research reported here has been supported by the Whirlpool Foundation, by the Air 
Force Office of Scientific Research under Contract 89-0276, and by the Army Research Office 
under Contract DAAL-03-86-K-0171 (Center for Intelligent Control Systems), 

2 Assistant Professor, School of Electrical Engineering, Purdue University, West Lafayette, 
Indiana. 

3 Professor, Department of Electrical Engineering and Computer Science and Laboratory for 
Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, 
Massachusetts. 

483 
0022-3239/91/0300~0483$06.50/0 ('~ 1991 Plenum Publishing Corporation 



484 JOTA: VOL. 68, NO. 3, MARCH 1991 

cost function to be minimized. The temperature of the system is slowly 
decreased to zero and the system is cooled or "annealed" into low energy 
states. 

Following Gidas (Ref. 3), we shall refer to the optimization algorithm 
based on simulating a Metropolis-type Markov chain as the annealing 
algorithm and to the optimization algorithm based on simulating a Langevin- 
type Markov diffusion as the Langevin algorithm. Both the annealing and 
Langevin algorithms have been applied to a variety of problems and have 
been the subject of a large amount of theoretical analysis, some of which 
have generated fundamentally new results about the asymptotic behavior 
of certain classes of nonstationary Markov chains and diffusions. See Ref. 
4 for a guide to the literature. Although the discrete-state annealing algorithm 
has been the focus of much of the literature, it has also been suggested that 
a continuous-state annealing algorithm might be effective for certain con- 
tinuous optimization problems, and some supporting numerical work has 
been done (Ref. 5). However, we are not aware of any theoretical analysis 
for such an algorithm, and the analysis of the continuous-state case does 
not follow from the discrete-state case in a straightforward way. 

In this paper, we analyze the dynamics of a class of continuous-state 
Markov chains which arise from a particular implementation of the 
Metropolis and the related heat-bath Markov chain sampling methods (Ref. 
6). We show that certain continuous-time interpolations of the Metropolis 
and heat-bath chains converge weakly (i.e., in distribution on path space) 
to Langevin diffusions. This gives a precise connection between what is 
often viewed as artificial stochastic dynamics and a more familiar stochastic 
dynamics for, say, a particle in a viscous fluid. We actually show that the 
interpolated Metropolis and heat-bath chains converge to the same Langevin 
diffusion running at different time scales. This establishes a connection 
between the two Markov chain sampling methods which is, in general, not 
well understood. Our results are valid for both fixed-temperature sampling 
methods and decreasing-temperature annealing algorithms. Hence, this 
work exposes a close relationship between the annealing and the Langevin 
algorithms, other than the fact that both are Markov processes which have 
a Gibbs invariant distribution for a fixed value of the temperature parameter. 
Such a relationship provides an important step toward the analysis of the 
continuous-state annealing algorithm. Indeed, a first step in the analysis of 
the asymptotic, large-time behavior of a large class of discrete-time recursive 
stochastic algorithms is to show weak convergence to a continuous-time 
limit (Refs. 7, 8). 

The paper is organized as follows. In Section 2, we describe various 
Markov chain sampling methods and annealing algorithms, and then state 
a theorem regarding the weak convergence of these processes and discuss 
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its implications. In Section 3, we prove the theorem using a result of Kushner 
(Ref. 9). 

2. Main Results and Discussion 

We first deal with the weak convergence of fixed-temperature Markov 
chain sampling methods to Langevin diffusions, and then indicate the 
extension to the weak convergence of decreasing-temperature annealing 
algorithms to the Langevin algorithm. 

We start by reviewing the discrete-state Metropolis and heat-bath 
Markov chain sampling methods (Ref. 6). Assume that the state space E is 
countable. Let U(.  ) be a real-valued function on Z, the energy function 
for the system under consideration. Also, let T be the strictly positive 
absolute temperature of the system, and let kB denote the Boltzmann 
constant. Let q~ be a stationary transition probability from i to j for i , j  ~ E. 
The transition probability from i to j for the Metropolis Markov chain is 
given by 

p~ = q~, if U(j)<-  U( i ) ,  (la) 

p~j = qo e x p [ - ( U ( j ) -  g ( i ) ) / k B T ] ,  if U ( j ) >  g ( i ) ,  (lb) 

for i , j  c Y with i # j .  The transition probability from i to j for the heat-bath 
Markov chain is given by 

e x p [ - ( U ( j )  - U ( i ) ) / k B r ]  
Po -- q~ 1 + e x p [ - ( U ( j )  - U ( i ) ) / k B T ] '  (2) 

for i, j e Z  with i # j .  In both methods, p, is chosen to give the proper 
normalization, i.e., 

p,--- 1 - ~ p~. 
j # i  

Let 

~-~ = ( l / Z )  exp( -  U ( i ) / k B T ) ,  i c Z, 

Z = ~ exp( -  U ( i ) / k B T ) ;  
i 

assume Z < oo. If  the stochastic matrix Q = [q~] is symmetric and irreducible, 
then the detailed balance equation 

~iPij = ~rjp~i, i, j ~ Z, 

is satisfied, and it follows easily that ~r~, i ~ Z, are the unique stationary 
probabilities for either the Metropolis or heat-bath Markov chains. If we 
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let {Xk} denote either of  these chains, and let X be a random variable with 
P { X  = i} = ~'i for i c E, then Xk --> X in distribution as k--> ~ ;  and, for any 
bounded Borel function f ( .  ) on E, 

k 
( 1 / k ) 2 f ( X , ) ~ E { f ( X ) } ,  w.p. 1, as k~oo ;  

1 

see Ref. 10. Hence, the Metropolis of  heat-bath chains may be used to 
sample from and to compute mean values of  functionals with respect to a 
Gibbs distribution. The Metropolis or heat-bath chains can be interpreted 
and simulated in the following manner. Write Pu = qi~su + 3'~8u where ~ij is 
the Kronecker-delta function. Given the current state Xk = i, generate a 
candidate state J~k = j  with probability qu. Set the next state Xk+l =j, if 
S o > Ok, where Ok is an independent random variable uniformly distributed 
on the interval [0, 1]; otherwise, set Xk+l = i. 

We next generalize the discrete state Markov chains sampling methods 
described above to a continuous d-dimensional Euclidean state space. 
Henceforth,  we shall use boldface for vectors and matrices, and subscripts 
for their components,  e.g., xi will be the ith component  of a vector x ~ R d, 
and aq will be the ( i , j ) th  component  of  a matrix a~N d×e. Let U( . )  be a 
smooth real-valued function on R d (we shall make more precise assumptions 
on U( .  ) in the sequel). Let q(x, y) be a stationary transition density from 
x to y for x, y c •d. Let 

SM(X, y) = 1, if U(y)--< U(x),  (3a) 

SM(X, y) = exp[--(U(y)  - U(x))/kB T], if  U(y) > U(x), (3b) 

exp[ - (U(y)  - U(x))/kB T] (4) 
sH(x, y) - 1 + exp[ - (U(y)  - U(x))/kB T] '  

for all x, y E tt~ ~. Now, let {Xk} be an Ra-valued Markov chain with transition 
density from x to y given by 

p(x, y) = q(x, y)s(x, y) + 3 , (x)8(y-  x), (5) 

where 

y(x) : 1 - J q(x, y)s(x, y) dy 

and 6(.  ) is the Dirac-delta function. Here, s ( . , .  ) =  sM('," ) and s ( . , .  ) =  
sH( ", • ) for the generalized Metropolis and heat-bath chains, respectively. 
Note that, if q ( x , . )  has no impulse at x, then y(x) is the self-transition 
probability starting at state x. Also note that (5) reduces to (1), (2) when 
the state space is discrete. 
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The continuous-state Metropolis and heat-bath Markov chains can be 
interpreted and simulated analogously to the discrete-state versions. In 
particular, q(x,y,) is a conditional probability density for generating a 
candidate state Xk = y, given the current state Xk = x. For our analysis, we 
shall consider the case where only a single component of the current state 
is changed to generate the candidate state, and the component is selected 
at random with all components equally likely. Furthermore, we shall require 
that the candidate value of the selected component depends only on the 
current value of the selected component. Let r(x~, y~) be a transition density 
from x~ to Yi for x~, y~ ~ R. Then, we set 

where 

d 

p(x, y): (1/d) Z 
i = 1  

s(x, y)r(x,-, y~) 1~ 3(yj - x j ) +  y ( x ) 3 ( y - x )  
j ~ i  

d 

= ( l / d )  2 s(i,x,y~)r(x~,y~) t-I 6(Yj-Xi)+y(x)6(y-x),  
i = l  j ¢ i  

(6)  

s(i,x, yi)=S((X, , . . . ,Xd),(Xl , . . . ,Xi-I ,yi ,  xi+t,...,Xd)), (7) 

for all x , y ~ R d  and i=  t , . . . ,  d. Here, we have used the fact that s (x , . )  is 
bounded and continuous for each x. 

Suppose that we take 

r(xi, y~)=l(xi=~l)8(y~-l)+l(xi=l)8(y~+l),  xi, yi~N, 

where I(A) is the indicator of the expression A. In this case, if the ith 
coordinate of the current state Xk is selected at random to be changed in 
generating the candidate state J(k, then 3~k.~ is ±1 when Xk.i is Wl. If, in 
addition, 

u ( x )  : - E J, jx,x~, x ~ ~ ,  
j ¢ i  

then {X~} corresponds to a discrete-time kinetic Ising model with interaction 
energies J~ and no external field (Ref. 6). 

Suppose instead that we take 

r(x~, y~) = (1/2~/~5~ z) exp[ - (Yi- xi)2/2o'Z], xi, y~ ~ N. (8) 

In this case, if the ith coordinate of the current state Xk is selected at 
random to be changed in generating the candidate state J~k, then J~k,~ is 
conditionally Gaussian with mean Xk.i and variance o -2. In the sequel, we 
shall show that a family of interpolated Markov chains of this type converges 
weakly to a Langevin diffusion. 
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For each E> 0, let r , ( . , . )  denote the transition density in (8) with 
o .2 = E, and let p , ( . ,  • ) denote the corresponding transition density in (6). 
Let {X~,} denote the Markov chain with transition density p , ( . ,  • ) and initial 
condition X~=Xo. Interpolate {X~} into a continuous-time process 
{x'(t), t - 0 }  by setting 

x~(t)=X~,/,], t>-O, 
where [aJ is the largest integer less than or equal to a. Let Dd[0, co) denote 
the space of  ~a-valued functions on [0, co) which are right-continuous on 
[0, oo) and have left-hand limits on (0, co), with the Skorohod topology (see 
Ref. 11). Obviously, x~( • ) takes values in Da[O, co). To establish the weak 
convergence of x ' ( . )  as E o 0 ,  we will require the following condition on 
u(.): 

(A) U ( ' )  is continuously differentiable, and Ux(') is bounded and 
Lipschitz continuous. 

Here is our main result. 

Theorem 2.1. Assume (A). Then, there is a standard d-dimensional 
Wiener process w(.) and a process x( . ) ,  nonanticipative with respect to 
w(- ), such that x ' (  • ) ~ x(- ) weakly in Dd[0, CO) as e -> 0 and the following 
results hold: 

(a) for the Metropolis method, 

dx(t)=-[Ux(x(t))/2k~T] dt+dw(t), t>_O, (9) 

with x(0)= Xo in distribution; 
(b) for the heat-bath method, 

dx(t)  = - [Ux(x ( t ) ) / 4kaT]  dt+(1/x/2) dw(t), t - 0 ,  (10) 

with x(0)= Xo in distribution. 

The proof of Theorem 2.1 is carried out in Section 3. 
Note that Theorem 2.1 justifies our claim that the interpolated 

Metropolis and heat-bath chains converge to Langevin diffusions running 
at different time scales. Indeed, suppose that y( . )  is a solution of the 
Langevin equation 

dy(t)  = - Uy(y(t)) dt+v~-kBTdw(t), t>-O, 
with y(0) = Xo in distribution. Then, for r( t )  = t/2kBT, y(~'(. )) has the same 
multivariate distributions as x( . )  satisfying (9), while for ~'(t)= t/4ksT, 
y(~-(-)) has the same multivariate distributions as x(-) satisfying (10). 
Observe that the limit diffusion for the Metropolis chain runs at twice the 
rate of the limit diffusion for the heat-bath chain, independent of the 
temperature. 
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To obtain discrete-state annealing algorithms, we simply replace the 
fixed temperature T in the discrete-state Markov chain sampling methods 
by a temperature schedule {Tk}, where typically Tk~O as k~eo. The 
resulting Markov chains are nonstationary with one-step transition prob- 
abilities po(k) given by the r.h.s, of (1) and (2) with T replaced by Tk. 
Under suitable condition on {Tk}, U(.), and {q~}, it can be shown that 
Xk -+ S in probability as k ~ co, where S is the set of global minima of U(. ) 
(Ref. 12). 

To obtain continuous-state annealing algorithms we similarly replace 
the fixed temperature T in the continuous-state Markov chain sampling 
methods by a temperature schedule { Tk}. We are not aware of any analysis 
concerning annealing algorithms of this type. Suppose that T(. ) is a positive 
continuous function on [0, co), where typically T(t) ~ 0 as t-~ ~.  For e > 0, 
let 

T~= T(ke), k=O, 1, . . . ,  

and let {X~} now denote the continuous-state annealing chain with tem- 
perature schedule { T~}. By a slightly modified argument (see the proof in 
Section 3), it can be shown that Theorem 2.1 is valid with T replaced by 
T(t) in (9) and (10). Hence, these annealing algorithms converge weakly 
to a time-scaled version of the Langevin algorithm 

dy(t) = -  Uy(y(t) d t + ~ s T ( t  ) dw(t). 

Under suitable conditions on T(. ) and U(. ), it can be shown that y(t)-+ S 
in probability as t ~ oo, where S is the set of global minima of U(- ) (Ref. 
13). 

The weak convergence of a suitably scaled annealing algorithm to the 
Langevin algorithm potentially provides a great deal of information about 
the behavior of the annealing algorithm in terms of the corresponding 
behavior of the Langevin algorithm, which is much easier to analyze. 
However, this weak convergence and the convergence of the Langevin 
algorithm in probability to the globally minimum energy states does not 
directly imply the convergence of the annealing algorithm to the globally 
minimum energy states; further conditions are required. See Ref. 8 for a 
discussion of these issues. However, establishing the weak convergence is 
an important first step in this regard. A standard method for establishing 
the asymptotic, large-time behavior of a large class of discrete-time recursive 
stochastic algorithms involves first proving weak convergence to an ODE 
limit. The standard method does not quite apply here, because we have a 
discrete-time algorithm (the annealing algorithm) weakly converging to a 
nonstationary SDE limit (the Langevin algorithm). More work needs to be 
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done on this point. Some related work on the convergence of  discrete-time 
recursive stochastic gradient algorithms can be found in Ref. 14. 

3. Proof  of  Theorem 2.1 

In this section, we prove Theorem 2.1. We shall make use of  the 
following result of  Kushner (Ref. 9) on the weak convergence of interpolated 
Markov chains to diffusions. Let b(- ) and b~(. ), e > 0, be Re-valued Borel 
functions on ~d; and let t r ( . )  and t r , ( . ) ,  E>0 ,  be R a×d matrix-valued 
Borel functions on R a, For each E > 0, let {XT,} be an ~d-valued Markov 
chain with initial condition X~ = X0 such that 

b.(x) = (1 /e)E{X~+,  - X~IX~ = x}, 

a, (x) = tr,  (x)cr',(x) = ( l / e )  Cov{X~+, - X~[X'k = x}. 

Interpolate {X~} into a continuous-time process {x'( t) ,  t>_O} be setting 
x ' ( t )  = X~t/.j, t >- O. Consider the following conditions: 

(K1) b( . ) ,  o ' ( . )  are bounded and continuous; 
(K2) b , ( . ) ,  o ' , ( .  ) are uniformly bounded for small E > 0; 
(K3) E{~'s01 [lb,(X~)-b(XDi2+I~r,(X'D-er(XDt2] "~}~0, as E~ 

O, for all t > O; 
t~ ,s 2 + o ~  .._) E tS  "L'/'j Ixk+,--Xk--b~(Xk)~t } O, as E~O, for all t>O,  (K4) t~k=o 

for some a > 0; 
(K5) Let xi(" ), i = 1, 2, be ~d-valued processes, nonanticipative with 

respect to standard d-dimensional Wiener processes w~(. ), i = 1, 2, respec- 
tively. If  (x i ( . ) ,  wg(-)), i = 1, 2, satisfy 

dx( t )  = b(x(t))  dt+~r(x(t)) dw(t), t>-0, (11) 

with x(0) = Xo in distribution, then the multivariate distributions of x~(. ) 
are the same as those of  x2( ') .  In other words, (11) has a weakly unique 
solution; see Ref. 15. 

Theorem 3.1. See Ref. 9. Assume (K1)-(K5).  Then, x ' ( . ) ~ x ( . )  
weakly in De[0,  0o) as e ~ 0 ,  where x(.  ) satisfies (11). 

Now, consider the Metropolis and heat-bath Markov chains with d- 
dimensional Euclidean state space described in Section 2, and consider the 
notation introduced therein. To apply Theorem 3.1 to the proof  of Theorem 
2.1 will require several lemmas. 



JOTA: VOL. 68, NO. 3, MARCH 1991 491 

Let 

~M(x, y) = 1, 

£M(X, y) = exp[-(Ux(x) ,  y - x ) / k R T ] ,  

gH(X, y) = 1/2 + (1/4)[1 -- exp[(Ux(x), y -  x)/kB T]]~ 

gH(x, y) = [1/2 + (1/4)[1 - exp[-(Ux(x) ,  y -  x)/kB T]]] 

x exp[-(U~(x) ,  y - x ) / k B r ] ,  

if (U,,(x), y - x) -< O, 

if (U~(x), y -  x) > O, 

if (U,,(x), y -  x) -<-- O, 

if (Ux(x), y - x) > 0, 

for all x, y~  Nd Recall how we defined s(i, x, Yi) in terms of  s(x, y); see Eq. 
(7). Define sM(i, x, yi), SM(i, X, yi), sH(i, X, y~), and ~H(i, x, y~) analogously 
in terms of  SM(X,y), ~M(X, y), SH(X, y), and gH(x, y), respectively. In the 
sequel, cl, c2 , . . ,  will refer to constants whose value may change from proof  
to proof. 

Lemma 3.1. Assume (A). 

]sM(i, x, Yi) - ~M(i, X, Yi)] <-- Klxi--yi[ 2, 

[SH(/, X, Yi ) -  SH( ¢ X, Yi)[ <-- K[xi -y;[ 2, 

for all x ~  a, Y i ~  and i =  1 , . . . ,  d. 

Then, there exists a constant K such that 

(12) 

(13) 

Proof. To simplify notation, replace U ( . ) / k B T  by U(-) .  
We prove (12) as follows. Let 

f ( x , y )  = U ( y ) -  U ( x ) - ( U x ( x ) ,  y - x ) ,  × , y c ~  d. 

By the mean-value theorem and assumption (A), 

If(x,y)l<--clly-x] 2, x , y ~  d. 

By considering the four cases corresponding to the possible signs of U(y) - 
U(x) and ( U x ( x ) , y - x ) ,  it can be shown that 

]SM(X, y) -- ~M(X, Y)t -< 1 -- exp[ - I f ( x ,  y)]] 

-< If(x, Y)l -< c,[y--x] 2, (14) 

for all x, y~ ~d, and (12) follows immediately. 
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We prove (13) as follows. Using the fact that 

(1 + of )  -1  = 1/2-{- (1/4)(1 -- a )  + 0( (1  -- a)2), 

and assumption (A), we get 

1 
s . (x ,  y) - 

1 + exp[ U(y) - U(x)] 

where 

exp[ U(x) - U(y)] 
- ~(x, y )+  O ( [ y -  x[2), 

- 1 + exp[ U(x) - U(y)] 

§(x, y) = 1/2 + (1/4)[ 1 - exp[ U(y) - U(x)]],  

~7(x, y) = [1/2 + (1/4)[1 - exp[ U(x) - U(y)]]] 

x exp[ U(x) - U(y)], 

Since sH( ' ,  ") and ~( . , .  ) are bounded, it follows that 

[s~(x,y)-~(x,y)[<--c2[y-xt 2 , x, y c R  a. 

Similarly to the proof  of  (14), we can show that 

[~(x,  y) - ~H(x, Y)[ -< c3[y- xf, 

Combining these estimates gives 

]s.(x, y) - ~H(X, y)[--< c4[y --X] 2, 

and (13) follows immediately. 

x, y c  •d. 

x,  y c Sa,  

[] 

as a ~ l ,  

as y->x, 

if U(y)-< U(x),  

if U ( y ) >  U(x). 

The following two lemmas give the crucial estimates of b~(. ) and {rE ("). 
We shall denote by N(m,  a)( . )  the scalar normal measure with mean m 
and variance a. We shall frequently use the trivial estimate 

fi l l  n d N ( 0 ,  ~ ) ( ~ )  = O(E'/2) ,  as e->0. 

Lemma 3.2. Assume (A). Then, the following results hold: 

(a) for the Metropolis method, 

b~(x)=-[Ux(x) /2kBT]+O(e ' /2 ) ,  as e~O;  
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(b) for the heat-bath method 

b , ( x )  = - [  Ux(X)/4kBT] + O(E~/2), as e ~ O. 

In both cases, the convergence is uniform for all x~ ~d. 

Proof. To simplify notation replace U(.)/kBT by U(-). 
The proof of part (a) is as follows. Consider the Metropolis Markov 

chain. Using Lemma 3.1, we have 

b,,,(x) = (l/e) f (y;-x,)p,(x, y) d r 

- - ( l /e )  ( y i - x J  SM(k,x, yk)r,(xk,yk) I7I 6(yi--X,) 
=1 l ~ k  

W(x)6(y - x ) )  dy + 

= ( l /e)  j (Yi--X,)SM(i, X, y,) dN(x~, e)(y,) 

= ( l /e)  f (y , -  X~)~M(i, x, yg) aN(x,, e)(y:) 

+ (I /c)  f (Yi--Xi)[SM(i, X, Yi)- gM(i, X, Yi)] dN(x,, e)(yi) 
3 

----(l/E) f 
= (1/e 1/2) 

+ (1/e l/z) 

+ O(el/2), as E~0, 

uniformly for x c Nd Obviously, 

b~a(x) = - Ux,(x)/2 + O(e~/2), 

(y , -x , )~( i ,  x, y,) aN(x,, ~)(y~) + O(E ~/~) 

f,G(x~y,~ ° dN(O, 1)(y~) Yi 

f Yi exp[-L~,(x)y~e '/2] dN(O, 1)(yi) 
Uxi ( x)yi > 0 

(15) 

as E-~0, (16) 

uniformly on {x: U~,(x) = 0}. Assume that U~,(x) > 0. Then, completing the 
square in the second integral in (15) and also using the fact that Ux,(x) is 
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bounded gives 

b,,i(x) = (1 /e  1/2) fy,--<0 y~ aN(0,  1)(yi) 

+(1/el /2)  f Yi exp[U~(x)e/2] dN(-Ux,(x)e ~/2, 1)(y,)+O(e 1/2) 
ay i>0 

=-(1/El/Z) Iy y, dN(O, 1)(y,)+(1/e l/2) fy yidN(O, 1)(yi) 
i <-O ~> Ux~(x)e  ~/~ 

- Ux,(x)N(O, 1){yi :Yi > Uxi(x)E'/2} + O(e 1/2) 

= - ( 1 / e  1/2) I °('~/~) y , ( 1 / 2 ~ )  exp(-y~/2)  dy~ 

ux,(x)(x/2_ f o - (1/2v/2-~) exp(-y~/2)  dy,] + O(e 1/2) 

=-U,,,(x)/2+O(el/2), as e--> 0, 

uniformly on {x: U~(x) > 0}, and similarly on {x: U~,(x) < 0}, and hence by 
(16) for all xE R e. Hence, 

b,(x) = - U~(x)/2+ O(el/z), as e--> 0, 

uniformly for x e R a, as required. 
The proof of part (b) involves somewhat more details than part (a), 

but the method is similar [use (13) instead of (12)]. [] 

Lemma 3.3. Assume (A). Then, the following results hold: 

(a) for the Metropolis method, 

or,(x) = I+  O(el/2), as e --> 0; 

(b) for the heat-bath method, 

o-~(x) = ( 1 / , ~ ) I +  O(e~/2), as e--> 0. 

In both cases, the convergence is uniform for all x ~ I~ d. 

Proof, To simplify notation, replace U(.)/kBT by U(-) .  
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The proof of part (a) is as follows. Consider the Metropolis Markov 
chain. Using Lemma 3.2(a) and Lemma 3.1, we have 

aE, ij(x) = ( l /e )  f (Y i -x i -  bE,,(x) e)(y~ -xj  - b~j(x)e)p~(x, y) dy 

= (1/E) I (y' - xi)(y~ ~ xj)p~ (x, y) d y -  b~,i(x)b~j(x)e 

= ( l / e )  (yi-xi)(yj-xj) sM(k,x, yk)r~(xk, yk) I-[ ~(yl--Xl) 
=1 l¢k 

y~(x)g(y-x))  dy+ O(e) + 
F 

= ( I /e)  f (Yi-xi)2sM( i, x, y,) dN(x~, E)(y~)" go + O(e) 

= ( l /e )  f (y~ --Xi)2~M(i' X, y,) dN(x,, e)(y~), go 

+ ( l /e)  I (y' -xi)a[sr~(i' x, y,) -~M(i, X, y,)] dN(xi, e)(y,)" gO 

+ O(e) 

f 2A . = ( l / e )  (y~-xi) SM(l,x,y~) dg(xi, e)(y~)" a~j+O(E) 

= f y~ aN(O, 1)(y~) " g~ 
0 U~(×)y~-<O 

+ ( y~ exp[-  Ux,(x)y~ ~/2] dN(O, 1)(y~) • go 
d U~(x)y~>O 

+ O(e), as e~0 ,  (17) 

uniformly for x e R d. Obviously, 

a,,~.~(x)=l+O(e), as e-~0, (18) 

uniformly on {x: Ux,(X) = 0}. Assume that U~,(x) > 0. Then, completing the 
square in the second integral in (17) and also using the fact that U~,(x) is 
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bounded gives 

= fy,<-o y~ dN(O, a~.id(x) t)(yi) 

+ f y~exp[U~,(x)e/2] dN(-Ux,(x)~ u2, 1)(yi) + O(e)  
Jr i>0 

=Iyi~oY~dN(O, 1)(yi) + f ,zy21dN(O, 1)(yi)+O(" 1/2) 
dyl> U~i(x)~ / 

f O(el/2) 
= 1 - y~(1/2x/2~) exp(-y/2/2) dyi+ O(e ~/2) 

d0 

= 1 + O(EU2), as e ~ 0 ,  

uniformly on {x: Ux,(x) > 0}, and similarly on {x: U~,(x) < 0}, and hence by 
(18) for all x c R  a. Hence, 

a ,(x)  = I +  O(~/2) ,  as E~0 ,  (19) 

uniformly for all x ~ R d. 
Now, let A,,i(x), i = 1 , . . . ,  d, be the eigenvalues of  a,(x).  From (19), 

we have 

and so 

de t ( ,~ l -  a , (x))  = (h - 1) d + ( h  - 1)d-lO(eU2)+ " " " + o(ea/2) ,  

[A, , , (x)  - II d = O(max{lA,,i(x) - lla-le '/2, Ea/a)), 

and so 

x , , , ( x )  = 1 + 0 ( ~ ' / ~ ) ,  

and consequently 

hl,~i2(x)=l'l-o(~l/2), as E "~ O, 

uniformly for x c Ra. It follows from this that we can choose 

o-~(x) = I +  O(e'/2),  as E~0 ,  

uniformly for all x ~ R d, as required. 
The proof  of  part (b) involves somewhat more details than part (a), 

but the method is similar [use (13) instead of  (12)]. [] 

Proof of Theorem 2.1. To prove part (a), we apply Theorem 3.1 with 

b(. )=-U,,( .  )/2kBT and o - ( . ) = I .  
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In view of  assumption (A) and Lemmas 3.2 and 3.3, conditions (K1) and 
(K2) are satisfied; furthermore, for every t > 0, 

E Z [Ib,(X~)-b(X;)12+le%(X,~)-tr(X~)12] ~ 
k=O 

ltl~j 
= E O ( e : ) = O ( ~ ) ,  as E--,0, 

k=0 

and so (K3) is satisfied. Now, for n >-0, we have 

E{Ix;+I-x'WIxZ =x} 

= f ly-xl"p,(x,y)dy= ,=1 ~ f ]y'-x'l"sM(i'x'y') dN(x,, e)(y,) 

-< d I ]y'[" aN(0,  e)(y,) = O(e"/2), as E * 0, 

uniformly for x ~  a. Hence, using the uniform boundedness of  b , ( .  ), for 
every t > 0, 

E IXk+l--Xk 14 
k k=0 

L~/~] 
= Z O( e2)= O(E), as e->0, 

k=0 

and so (K4) is satisfied. Finally, it is well known that (K5) is satisfied under 
assumption (A); see Ref. 15. Part (a) [and similarly part (b)] now follows 
from Theorem 3.1. [~ 
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