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ABSTRACT 

This paper presents a general and complete duality theory for optimal control of systems 
governed by linear ordinary differential equations with a convex cost criterion. Existence 
theorems for optimal control problems are obtained using the duality theory and a direct 
relationship between duality and Pontryagin's Maximum Principle is exhibited. Finally, 
applications to decomposition of optimal control problems are presented. 

I. INTRODUCTION 

An important part  of  mathematical programming, from both the theor- 
etical and the computational points of  view, is duality theory. For  a class of  
variational problems, Friedrichs [1] outlined a duality theory utilizing the 
Legendre Transform. In recent years several papers have been written on a 
duality theory for optimal control problems [2-4]. However it is the authors '  
belief that no satisfactory and rigorous duality theory for optimal control 
problems is available, an exception being the very recent work of Van Slyke 
and Wets [5]. 

Fenchel [6, 7] initiated a duality theory for finite-dimensional mathematical  
programs using the important  idea of  conjugate convex functions. Over the 
past few years due to the work of Br0ndsted [8], Moreau [9, 10], and especially 
Rockafellar [ l l -15] ,  various aspects of  the theory of  convex functions and 
conjugate convex functions have reached a satisfying stage of completeness. 
Rockafellar [16] and Dieter [17] have also given a duality theory for infinite- 
dimensional convex programs. 

t This research was partially supported by NSF Grant GK-3714. 
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An important part of the theory of convex functions is a theory of dif- 
ferentiability for such functions. The notion of subdifferentiability was first 
introduced by Moreau [18] and later developed by Rockafellar and Br~Sndsted 
[19, 20]. The most recent contribution on the differentiability of convex 
functions is due to Asplund [21]. 

Recent work of Gamkrelidze [22, 23], Halkin [24, 25] and Neustadt [26-28] 
have shown that optimal control problems can be regarded as mathematical 
programs in infinite-dimensional spaces and very general necessary conditions 
of optimality for infinite-dimensional mathematical programs have been given. 
These conditions include all known first order necessary conditions of opti- 
mality for control problems and in particular the maximal principle. 

Motivated by computational consideration (in particular for state-con- 
strained problems), necessary conditions for optimality have been derived for 
convex programming problems by Pshenichnyi [29], Demyanov and Rubinov 
[30] and Kantorovich and colleagues [31]. An integral part of the work of 
Pshenichnyi and Demyanov has been a differentiability theory for convex 
functions. Work related to this had been done by Danskin earlier [32]. These 
workers were apparently unaware of the work of Moreau, Rockafellar, and 
others on subdifferentiability. 

Pontryagin's Maximal Principle may be thought of as a duality result for 
non-linear non-convex optimal control problems, For linear optimal control 
problems with a cost function being a linear form, this was demonstrated by 
Van Slyke and Wets [33]. This has also been done by Rockafellar for some 
special linear optimal control problems. However the explicit relationship 
between the Pontryagin Maximal Principle and a mathematical programming 
type of duality theory has not been shown for a general class of linear optimal 
control processes. 

The main objectives of this paper are: 

(i) To present a duality type theory for a general class of finite-dimensional 
linear optimal control problems with convex cost criteria and convex control 
and state variable constraints. 

(ii) To show the relationship of the duality theory to existence theorems 
of optimal control and to necessary and sufficient conditions of optimality. 

(iii) To show how certain decomposition results may be obtained using 
this theory. 

(iv) To show how the duality theory may be applied to certain control 
processes described by linear Functional Differential Equations and linear 
Partial Differential Equations. This will be done in Part II of the paper. 

The main tools in this development are the recent theory of convex func- 
tions and a duality theory of mathematical programming due to Rockafellar 
[16]. These tools can also be effectively used to widen the application of the 
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Carath6odory-Hamilton-Jacobi-Bellman theory for optimal control prob- 
lems. This will be done in Part I I I  of  the paper. 

2. CONVEX FUNCTIONS ON TOPOLOGICAL VECTOR SPACES 

In the sequel we shall use various properties and results related to convex 
functions. These are summarized in this section. A more complete treatment 
may be found in [8, I0, 16] and in the references cited in these papers. 

Let E and E* be real vector spaces in duality with respect to a certain 
real bilinear function ( . , . ) .  We shall assume that E and E* have been assigned 
locally convex Hausdorff  topologies compatible with this duality, so that 
elements of  each space can be identified with continuous linear functionals 
on the other. E and E* will then be referred to as topologically paired spaces. 

2.1. Properties of Convex Functions 

Definition 2.1. An infinite valued convex f u n c t i o n f o n  E is an everywhere 
defined function with range in [ -o%+~]  whose (upper) epigraph 

epi ( f )={(x , l~) lxeE,  i~eR, / *> f (x )}  

is a convex set in E @ R. 
I f  f does not assume both -oo and +oz as values this definition of a convex 

function is equivalent to 

f (Ax I + (1 - A)x=) ~< Af(xl) + (I -- A)f(xa), Vxt e E, Vx2 e E, 0 ~< a ~< 1. 

Definition 2.2. The set, 

dom ( f )  = {x e E I f (x )  < +m} 

is the effective domain of f .  
Note that dom ( f )  is the projection of  the epigraph e p i ( f )  o f f  on E. 

Definition 2.3. A convex function f on E is said to be proper if f (x) > - m  
for all x ~ E a n d f ( x )  < +m for at least one x e E. 

I f  f is a proper convex function, then d o m ( f )  is a non-empty convex set 
a n d f i s  finite there. On the other hand given a finite valued convex function 
f on a non-empty convex set C in E, we obtain a proper convex function f0 
with effective domain C by 

If(x), x~  C, 
f0 (x )  = t+~o ' x ¢ C. 

Definition 2.4. The indicator function ~c of a non-empty convex set C in 
E is defined as 

0, x E C, 
4'c(x)= +m, x ¢ C .  

Information Sciences 2 (1970), 211-243 
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Thus, the indicator function of a non-empty convex set is a proper convex 
function. 

Definition 2.5. A convex function f o n  E is lower semi-continuous (1.s.c.) 
if, for each/z ~ R, the convex level set 

{x e E i f ( x  ) <~ tz} 
is a closed set in E. 

Lower semi-continuity of  convex functions is a constructive property. 
Given any convex f u n c t i o n f o n  E, we may construct a 1.s.c. convex function 

f on E by taking 
f (x )  = lim inff (z) ,  Vx e E. 

:~-->x 

2.2. Conjugate Convex Functions 

Definition 2.6. L e t f b e  a proper convex function on E. Its conjugate func- 
tion f *  on E* (with respect to the giverr-bilinear function ( . , . ) )  is defined by 

f*(x*) = sup{(x ,x*)  - f ( x ) } ,  Vx* e E*. 
xEE 

The function f *  is a 1.s.c. convex function but not necessarily proper. How- 
ever, if f is a l.s.c, proper convex function, then f *  is also l.s.c, proper convex 
and 

( f* )*  = f  

Thus, a one-to-one correspondence between the l.s.c, proper convex functions 
on E and those on E* is defined by the formulas 

t f*(x*) = sup {(x, x*)  - f ( x ) } ,  

(2.1) [ f ( x ) =  s u p  {(x ,x*)  - f * ( x * ) } .  

F u n c t i o n s f a n d f *  satisfying (2. I) are said to be conjugate to each other. 

Definition 2.7. An element x * e  E* is said to be a subgradient of  the 
convex function f a t  the point.x if 

f ( y )  >>.f(x) + (y  - x, x*),  Vy s E. 

The set of  all subgradients at x, denoted by Of(x) is a weak* closed convex 
set in E* which might be empty. I f  Of(x) is non-empty, the convex function 
f i s  said to be subdifferentiable at x. I f f i s  differentiable in the sense of  Fr6chet, 
af(x) consists of  a single point, namely, the gradient Vf(x) of f a t  x. Further, 
if f (x) is finite the one-sided directional derivative 

f ' (x;  z) = lim f (x + ,~z) - f (x) 
a+o 
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exists, although it might be infinite and it is a positively homogeneous convex 
function of z. Then, 

x* ~ af(x) ¢:,f '(x; z) >~ (z, x*),  Vz ~ E, 

and such an x* exists if and only i f f ' ( x ; z )  is bounded below in z in some 
neighborhood of 0. A useful fact regarding 1.s.c. proper convex functions on 
a Banach space is the following. 

THEOREM 2.8. Let E be a Banach space and f a l.s.c, proper convex function 
on E with effective domain C. Assume C has ~on-empty relative interior ri(C). 
Then f is continuous on ri(C). II 

A function g on E is said to be concave if - g  is convex. The theory of  
concave functions therefore parallels that of convex functions with certain 
natural changes. In particular, 

g*(y*) = inf{(y,  y*)  - g(y)}, 
y6E 

g(y) = inf {<y,y*) - g*(y*)} 
~*EE* 

define a one-to-one correspondence between the upper semi-continuous (u.s.c.) 
proper concave functions on E and those on E*. 

The following property of conjugate functions which follows easily from 
the definitions will be frequently used and is stated as a theorem. 

THEOREM 2.9. I f  f is a l.s.c, proper convex function on E and g is an u.s.c. 
proper concave function on E then, 

x* ~ Of(x) ~ x e Of*(x*) "¢~ f ( x )  + f * ( x * )  = (x, x*)  

x* e Og(x) ~ x e Og*(x*) ¢. g(x) + g*(x*) = (x, x*). fl 

2.3. Integrals with Convex Integrands 

We give some results on integrals of convex functions of  the type 

f f ( t ,  x(t)) dt, f f*( t ,  x*(t)) dt 
T T 

where f ( t , x )  is a 1.s.c. proper convex function of x for each t and thus in 
general not continuous in x and f*( t , x*)  is the conjugate o f f ( t , x )  for each t. 
In particular we would like to know the relationship between these integrals 
(if defined in an appropriate manner) regarded as functionals on the spaces 
to which the curves x(t)  and x*(t) belong. The following facts were proved 
in [34] in c a s e f i s  defined on R ~+n but the results can be readily extended to 
separable Hilbert spaces as encountered in optimal control theory. In fact, 

Information Sciences 2 (1970), 211-243 
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the extension will follow if one formulates Lemmas 1 and 2 of  [34] for a 
separable Hilbert space and furthermore recalls that the results of  [9], used 
in [34], were proved for a Hilbert space rather than for R". 

The following two lemmas correspond to Lemmas 1 and 2 of  reference 
[34]. 

Definition 2.10. Let T be a measure space with or-finite measure dt and L 
be a real vector space of measurable functions u f rom T to a separable Hilbert 
space H and consider, 

ly(u) = ( f (t, u( t ) )  dt 
T 

where f is a function from T x H to [-oo,+oo]. Then f is called a normal 
convex integrand if it satisfies the conditions: 

(i) f ( t , x )  is a 1.s.c. proper  convex function on H for each fixed t. 
(ii) There is a countable collection q / o f  measurable functions u from T 

to H such that 

(a) for each u e ql, f ( t ,u( t ) )  is measurable in t, 
(b) for each t, qlt f3 dom( f ( t , x ) )  is dense in dom( f ( t , x ) ) ,  where 

q/t = (u(t)lu e ql}. 

LEMMA 2.11. Suppose f ( t , x ) = F ( x )  for all t, where F is a Ls.c. proper 
convex function on 1-I. Then F is a normal convex integrand. 

Proof. By the separability of  H, there exists a countable dense subset D 
of the non-empty convex effective domain of F. 

Let q /consis t  of  the constant functions on T with values in D. Then q/ 
satisfies conditions (a), (b) in Definition 2.10 and since F is l.s.c, and proper, 
F i s  a normal integrand. I[ 

LEMMA 2.12. Let the function f (t,x) on T x H have values in [-oo,+oo] such 
that f ( t , x )  is measurable in t for eaeh fixed x and for each t, f ( t , x )  is a l.s.c. 
proper convex function in x with interior points in its effective domain. Then 
f is a normal convex integrand. 

Proof. Let D be a countable dense subset of  H and let q / b e  the set of  
constant functions on T with values in D. 

Then q/satisfies condition (a) of  Definition 2.10. Further D has a dense 
intersection with the interior of  dora ( f ( t , x ) )  and therefore with d o m f ( t , x )  
because dom ( f( t;  x)) as a convex set with non-empty interior has no isolated 
points. II 

Definition 2.13. Let T be a measure space with a or-finite measure dt, H 
be a separable Hilbert space, and*o9 ° a real vector space of measurable functions 
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from T to H. Then, Aa is said to be decomposable if it satisfies the following 
conditions: 

(i) ~ contains every bounded measurable function from T to H which 
vanishes outside a set of finite measure. 

(ii) I f  u e A a and C is a set of finite measure in T, then A a contains XcU 
where Xc is the characteristic function of C. 

In other words, if A a is decomposable one can alter functions in A z' 
arbitrarily in a bounded fashion on every set of finite measure. Namely, 
subtract XcU from u and add any bounded measurable function vanishing 
outside C. If  .o9 °* is topologically paired to .L~' with respect to ( . , . )  such that 
(u(t),u*(t))n is summable in t for every u e A t', u* ~ A a*, then condition (i) 
of Definition 2.13 also implies that the functions in 5e* are summable on sets 
of  finite measure. An important class of function spaces which are decom- 
posable in this sense are the LP(0, T; R ' )  spaces. 

Finally we give the following theorem which relates the integrals of 
conjugate normal convex integrands as conjugate functionals. 

THEOREM 2.14. Let A z' and .~* be topologically paired by means of the 
summable inner product on H, that is 

(u, u*) = f (u(t), u*(t))n dt Vu e ~ ,  Vu* ~ ~,a, 
T 

and suppose .~P, .oq ~* are decomposable. Let f be a normal convex integrand such 
that f ( t, u( t ) ) is summab le in t for at least one u ~ ~ and f *( t, u*( t ) ) is summable 
in t for at least one u* ~ .~*. Then the functionals ly on ~ and Iy, on ~ *  where 

= f f ( t ,  u(t)) dt Is.(u* ) = f f * ( t ,  u*(t))dt Is(u) 
T T 

are proper convex functions conjugate to each other. 

Proof. See [34]. I[ 

3. DUALITY THEORY FOR ABSTRACT LINEAR OPTIMAL PROCESSES (ROCKAFELLAR) 

Let E and F be Banach spaces and let u w-> Au mapping E to F be a con- 
tinuous linear transformation. E is to be thought of as the control space and 
F the response space of an abstract control process. Let C _ E and D _ F be 
convex sets. C will be referred to as the control restraint set and D the response 
restraint set. A control u e C for which the corresponding response Au e D 
is termed an admissible controller. 

Information Sciences 2 (1970), 211-243 
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(3.1) Let H(u) = f ( u )  - g ( A u )  be a function with values in [-o%+00] and 
consider the primalproblem 

/minimize H(u) = f ( u )  - g(Au) 
(P) [subject to u • C and Au • D. 

A controller r7 is a solution to (P) if and only if t~ • C, Aft E D and the 
infimum of H(u) is finite and attained at ~7. Such a ~7 is called an optimal control. 
For  the problem (P) we make the assumption t h a t f i s  a l.s.c, proper convex 
function with effective domain C and g is an u.s.c, proper concave function 
with effective domain D. Then the minimand in (P) is a proper convex function 
or identically +oo. 

Remark. I f f  is a finite convex function which does not already have C 
for its effective domain, we may define the new function f0 such that 

fo(u) = If(u) ,  u E C, 
t+o~, u ¢ C, 

and if necessary lower the values off0 on the boundary of C so that it becomes 
l.s.c. Similarly a finite concave function g can be constructively modified to 
obtain an u.s.c, proper concave function with D as its effective domain. II 

To define the dual problem (P*) of  (P) let E* be a real Banach space, 
topologically paired with E with respect to a bilinear real valued function 
( . , . )  on E x E*. That  is, the elements of  each space can be identified with 
continuous linear functionals on the other by means of ( . , . ) .  Further let F*  
be a real Banach space topologically paired to Fwi th  respect to ( . , . ) .  In most  
of  the cases E*, F* are the dual spaces of  E, F but there are interesting 
exceptions. 

The dual (P*) o f ( P )  is defined as 

/maximize H*(x*) = g*(x*) - f * (A*  x*) 
(P*) [subject to x* • D*, A ' x *  • C*, 

where f *  is the conjugate of  f with effective domain C*, g* is the conjugate 
of  g with effective D*, and A* is the adjoint t ransformation of  A. Of  course, 
f * ,  g*, A* are defined with respect to ( . , . ) .  Thus the maximand in (P*) is 
a proper concave function or identically -~o. Note that H *  is not the con- 
jugate function of  H. 

2" is a solution to (P*) if and only if 2" • D*, A*:~* • C* and the supre- 
mum of H*(x*) is attained at ~*, in which case the supremum is finite. 

We note that the minimization in (P) can be carried out over all of  E 
(unconstrained problem) because of  the fact that C and D are the effective 
domains o f f  and g, respectively. For  the same reason the maximization in 
(P*) can be taken over all o f F * .  II 
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The following results in this section are all due to Rockafellar [16]. We 
state the theorems that we use in later sections. 

LEMMA 3.1. infH(u) >~ supH*(x*).  II 

In duality theory the concept of  stability is very important,  where a stably 
set process (P) is defined as follows. 

Consider the perturbed primal problem (P(z)) for some z ~ F where 

•minimize H(u, z) = f ( u )  - g(Au - z) 
(e(z)) [u G C, Au G D. 

Definition 3.2. I f  infH(u,0)  = infH(u) is finite then the process (P) is said 
to be stably set if, in some neighborhood N of the origin in F, 

lim infH(u,  Ez) - infH(u)  - - > 0 %  V z e N .  
~0 E 

We shall adopt  the convention that in case infH(u) is -oo(+oD) we say that 
(P) is stably set (unstably set). 

It can be proved that the function p defined as 

p(z) = infH(u,  z) 
I t  

is a convex function on F, so that its one-sided directional derivative at 0, 

p'(0; z) = lira infH(u,  Ez) - infH(u)  
E~O E 

exists for all z although it may be infinite. Therefore the limit in the definition 
above is well defined for every z. 

A sufficient condition for the stability of  problem (P) in control-theoretic 
terms may be given. For  this purpose we introduce 

Definition 3.3. The linear system defined by the equation x = Au is said 
to be reachable to the response restraint set D if there exists a u E C such 
that Au ~ D where C is the control restraint set. 

THEOREM 3.4. I f  the linear system x = Au  is reachable to int(D) (the interior 
of  D) that is there exists a u at which f is finite and Au is in int(D) then (P) 
is stably set and inf, H(u,z)  is a continuous function in some neighborhood of  
the origin. LI 

There are problems of interest in control theory which satisfy this sufficient 
condition and hence are automatically stable set. 

Example 1. For  the problem (P) if 0 e C and 0 e int(D) then P is stably 
set. 

Information Sciences 2 (1970), 211-243 
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Example 2. Minimizef(z0 - g(Au) 
subject to u ~ C. 

Here g is finite everywhere in F (no constraints on the response). If  C is 
non-empty then this problem is stably set. II 

The following theorems give the relationship between (P) and its dual 
(P*). By minH(u) (resp. maxH*(x*))  we mean that the infimum of  H(u) 
(resp. supremum of H*(x*)) are attained at some u (resp. x*). 

THEOREM 3.5. The process (P) is stably set i f  and only i f  

infH(u)  = max H*(x*). 

Dually (P*) is stably set i f  and only i f  

rain H(u) = sup H*(x*). II 

THEOREM 3.6. (P) is stably set and has a solution i f  and only i f (P*)  is stably 
set and has a solution. II 

Optimal controllers, that is solutions to (P), can be characterized by 
certain subdifferentiability conditions on f and g in analogy with the case in 
ordinary calculus w h e n f a n d  g are differentiable. To get a better insight into 
the nature of the next theorem note that the convex function f -  g o A attains 
a finite minimum in precisely those points ~ where 0 is a subgradient. Thus 
optimal controllers I/satisfy 

0 ~ O ( f -  g o A) (~) 

We will prove in a moment that 

(3.2) 0 e Of(u) - A*(Og(Au)) ~ Au e Og*(x*), A* x* e Of(u) 

for some x* ff F*. 
Provided 

(3.3) 0 e O(f - g o A)  (u) ~ 0 e Of(u) - A*(Og(Au)) 

holds, the right-hand side of  (3.2) constitutes a convenient form for charac- 
terizing optimal controllers. Indeed, (3.3) is true under the stability condition; 
see the next theorem. 

To verify (3.2) assume that 0 e Of(u) - A*(Og(Au)) for some u ~ E. Then 
there exists a u ' e  Of(u) and x* e Og(Au) such that u * = A * x * ,  and 
x* e Og(Au) ~ Au e Og*(x*). On the other hand if u, x* satisfy the right-hand 
side of  (3.2) then x* e Og(Au) ~ A ' x *  e A*(Og(Au)) so that 0 ~ Of(u) - 
A*(Og(Au)). This proves (3.2). fl 

THEOREM 3.7. The process (P) and its dual (P*) are stably set, with solutions 
a, ~*, respectively, i f  and only i f  a, ~* satisfy Aa e Og*(~*) and A* Y~ * ~ Of (~). II 
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4. OPTIMAL CONTROL FOR FINITE-DIMENSIONAL LINEAR PROCESSES WITH CONVEX 
COST CRITERIA 

The duality theory developed in the previous section will now be applied 
to a class of  finite-dimensional linear differential processes with convex cost 
criteria. In Section 4.1 the data and hypotheses of the problem are given and 
the functions f ,  g, f * ,  g*, A, A* are explicitly determined. An existence and 
uniqueness theorem which makes use of  the duality theory is presented. The 
hypotheses on the existence theorem appear to be weaker than those appear- 
ing in the literature. Introducing the adjoint differential equation we arrive 
at Pontryagin's  Maximal Principle in generalized form and in so doing reveal 
the existence of  a close relationship between duality and the maximal principle. 

4.1. Formulation o f  the Problem 

Consider the linear control process 

( ~ )  dx/dt  = A ( t ) x ( t )  + B( t )u ( t ) ,  

where Vt  e [0,T], x ( t ) ~  R ~, u ( t )~  R m and A(t) ,  B( t )  are n × n and n × m 
matrices which are continuous for Vt ~ [0, T]. 

Let LP[0, T; R"] denote the space (equivalence classes) of  Lebesgue measur- 
able functions v(t) with values in R" such that 

Ilvllp = IIv(t)ll~dt < ~ ,  I < p  < c~ 

and 

Ilvllp = ess. sup. [liv(t)[IR,[t e [0, T]] < ~o, p = co 

where llv(t)lIR, is an appropriate norm on R n. 
Whenever there is no possibility of  confusion, we shall drop the subscripts 

on the various norms. 

The data of  the problem are as follows: Let ~(u) denote the solution of 
(A a) on [0, T] corresponding to some control function u. 

(i) ~(u)(0) = x ~ Go, where Go is a convex subset o f R  ". 
(ii) The solution ~(u) of  (Ae) is in LP[0, T; R"], 1 ~< p < ~ and are required 

to lie in the convex subset of  LP[O,T;R"], where 

(4.1) X =  
{~ ~ LP[O,T; R"]Ic~(O) e Go, ~(t)  E G, ~_ R" a.e. on ]0,T], G, is convex}, 

Information Sciences 2 (1970), 211-243 
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(iii) The controllers u are in Zr[O,Z, Rm], 1-<< r < 0% and the class of  
admissible controllers q / i s  a convex subset ofL ' [0 ,  T;Rm], where 

(4.2) q / =  {u ~ L'[O,T;R"]Iu(t) ~ g2 ~_R m a.e. on [0,T], g2 is convex, and the 
response ~(u) ~ X}. 

It is required to choose a controller fi ~ q /such  that 

T 

(4.3) H{(u, x)} = lo(x) + l~(~(u) (T)) + f [h(t, u(t)) + k(t, ~(u) (t))] dt 
o 

is minimized. 

The hypotheses are: 

(i) 1o and 11 are l.s.c, proper convex functions on R n with effective domain 
Go and Gr, respectively. 

(ii) h(t,z) is measurable in t for each fixed z e R m and for each t, h(t,z) 
is a l.s.c, convex function in z with effective domain £2. 

(iii) h(t,u(t)) is summable in t for all u ~ ~ and h*(t,u*(t)) is summable 
in t for at least one 

1 t 
u *  ~ L S [ 0 ,  T ; ( R m ) * ] , t  - + - = 1. 

f S 

(iv) Assumptions analogous to (ii) and (iii) hold for the function k(t, ~(t)) 
and its conjugate 

1 1 
k*(t,~*(t)), ~LP[O,T;Rn], ~*~Lq[O,T;(Rn)*], - + - = 1 .  

P q 
(v) £2 has a non-empty interior and G, has a non-empty interior Vt E ]0, T]. 

The problem which we have defined will be referred to as (0(2). 
The problem defined above may be reformulated to correspond to problem 

(P) of  Section 3 by considering a linear transformation A on L'[0, T; R m] • R n 
rather than on L'[0, T; Rm]. For  this purpose define the functions 

(4.4) f:  L'[O,T;R'] O) R'-+ R 
T 

(u, X) ~-~ lo(x) + f h(t, u(t)) dt, 
0 

(4.5) g: LP[O,T;R n] O R"---~ R 

T 

(¢,y) ~ -l~(y) - f k(t,¢(t))dt, 
0 

t Superscript * denotes the dual space. 
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and the linear, bounded transformation 

(4.6) A: Lr[O,T;R "] O R"--+ LP[O,T;R "] OR"  

: (u, x) ~ (¢(u), ¢(u) (T)), where ¢(u) is defined by 

(4.7) ¢(u) (t) = ~(t, 0) x + ~(t, 0) J ~b-~(~-, 0) B(~') u(~') de, t e [0, T], 
0 

and qb satisfies the matrix equation 

(4.8) dqb/dt = A(t) ~(t, 0); ~(0, 0) = I. 

Assuming that q / i s  non-empty, then in view of hypotheses (ii), (v), and 
(iii), Lemma 2.12, and Theorem 2.14, it follows that h is a normal convex 
integrand and f is a proper convex function with effective domain Yl Q Go. 
F u r t h e r m o r e f a n d f *  are conjugate convex functions, where 

T 

lo*(X*) + f h*(t, u*(t)) dr, (4.9) f*((u*, X~')) 

0 

V(u*, x*) ~ Lifo, 7"; (Rm) *] ® (Rn) *. 

The function f *  is proper by hypothesis (iii) and it is automatically 1.s.c. 
as the conjugate of the proper convex function f ,  which in turn implies that 
f is also 1.s.c.. f *  has a non-empty effective domain in L~[0, T; (R')*] • (Rn) * 
which we shall denote by q/* Q Go*. 

In a similar manner it may be shown that g is an u.s.c, proper concave 
function with effective domain X Q Gr with an u.s.c, proper conjugate func- 
tion g*, where 

T 

(4.10) g*((¢*,y*)) = - l i * ( - y * )  - f k*(t,-¢*(t))dt, 
0 

v(¢*,y*) ~ Lifo, T; (Rg*] ® (R")*. 

The non-empty effective domain of g* in L~[O,T;(R~) *] Q (R')* will be 
denoted by X* (~ Gr*. 

With the definitions of f ,  g, and A as in (4.4), (4.5), and (4.6) the optimal 
control problem defined in this section may be reformulated as: 

(P) minimize H((u, x)) =f( (u ,  x)) - g(A(u, x)) 
subject to 

(u, x) E ~' Q Go and A(u, x) E X 0 Gr. 

The dual problem (P*) is accordingly given by, 

(P*) maximize H*((¢*,y*)) = g*((¢*,y*)) -f*(A*(¢*,y*)) 
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(4.11) 

where 

subject to 
(¢*,y*) ~ X* Q Gr* and A*(¢*,y*) ~ ¢//* O Go*. 

A straightforward computation shows 

A* : Lq[0, T; (R~) *] @ (R") * ~ LS[0, T; (Rm) *] @ (R~) * : 
(¢*,y*) ~ (u*, x*), 

If ] u*(t) = B*(t)  crP*(T, t) ¢*(~') dT+ ~*(T, t )y* , 

(4.12) 
T 

x* = f ~*(t ,O)~*(t)dt  + ~*(T,0)y*, 
0 

in which B*, ~* are the transposed matrices of B and ~,  respectively. Thus 
the Rockafellar Duality Theory of Section 3 is applicable to this problem with 
obvious identifications. This theory is now used to obtain existence results 
for optimal control and the maximal principle. II 

4.2. Existence Theorem for Optimal Control 

THEOREM 4. I. Given the optimal control problem (OC), assume in addition: 

(i) $'2 is bounded and Go is compact, 
(ii) for each t ~ [0, T], 

h(t,z) >~ c(t), Vz e R m, 

where c(t) is summable on [0, T], 
(iii) the set q[ is non-empty. 

Then there exists a pair (if, 2) E ql 0 Go such that 

min [H(u, x)lu ~ ql, x ~ Go] = H((fi, 2)). 

Moreover, i f  f and lo are strictly convex on their effective domains, then (~, 2) 
is a unique optimal pair. 

Proof  For arbitrary (u*,y*) E LS[0, T; (Rm) *] O (Rn) * from (4.9) 
T 

lo*(y*) + f h*(t, u*(t))dt f*((u*,y*))  
0 

= sup [(y ,y*)  - lo(y)]Y ~ R ~] 

T 

+ f sup [(z, u*(t)) - h(t, z)lz e R m] dt 
0 
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f*((u*, y*)) = sup [<y,y*) -/o(Y)l Y e Go] 
T 

j- sup [(z, u*(t)) - h(t, z)lz e + ~] dt 
o 

T T 

< m + M -[ Ilu*(t)l[ dt - f c(t)  dt, 
o o 

where m and M are finite constants < +oo. 
Therefore the effective domain of f *  is all of L~[O,T;R m] Q R n. The 

function g* defined by (4.10) is proper and hence there exists a (~*,p*) at 
which g* is finite and A*(~*,2*) is evidently in the interior of dom(f*) .  From 
the dual version of Theorem 3.4 it follows that (P*) is stably set. 

From Theorem 3.5 it follows that there exists a pair 

(a,2) e Lr[O,T;R "] @ R" 

such that infH(u, x) is attained at (if, 2). It remains to show that (fi, 2) e q / G  Go. 
X @ Gr is reachable by hypothesis, which implies that there is an ad- 

missible controller u e o//and an x e Go with corresponding response ¢(u) such 
that 

(u, x) e dom ( f )  
and 

A(u, x) = (¢(u), ¢(u) (T)) ~ X @ Gr = dom (g). 

Thus for this controller u and initial state x,f((u,x)) -g(A(u,x))  is finite and 
therefore 

(4.13) minH(u,x) < +oo. 
(u, x) 

Furthermore 

H*((~*, 2*)) = g*((~*, 2*)) - f*(A*(~*,  2*)) 

is finite so that 

(4.14) 

(4.15) 

and hence 

sup H*((¢*,y*)) > - ~ .  

From Lemma (3.1), (4.13), and (4.14) it follows that 

+oo > minH((u,x)) > sup H*((f*,y*)) > - m  
(u, x) (~b*, r * )  

min H((u, x)) = H((~, 2)) 
(u, x) 

is finite and thus necessarily (t7,2) ~ q / @  Go. The uniqueness of (t7,2) when 
10 and h are strictly convex follows easily from a contradiction argument. I[ 
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COROLLARY 4.2. Consider the optimal control problem (OC) with no con- 
straints on the responses, that is, X 0 GT = LP[O,T;R "] Q R n. Assume in addi- 
dition that conditions (i) and (ii) of Theorem 4.1 are satisfied. Then there exists 
a pair (~,2) ~ ~[ • Go such that min[H((u,x))lu ~ q/ ,x ~ Go] = H((ff,2)). 
Moreover, i f  f and 1o are strictly convex on their effective domains, then (9, 2) 
is a unique optimal pair. 

Proof. Condition (iii) of Theorem 4.1 is automatically satisfied. II 

Remark. It is clear that this theorem includes other existence theorems for 
linear optimal control problems with convex cost criteria which require ~Q to 
be compact [37, Theorem 12, page 232]. Moreover, the case in which f2 is 
not bounded but closed and convex could be handled by putting hypotheses 
on the functions h which makes the effective domain of f *  all of 
LS[0, T; (R")*] (~ (R")*. It 

4.3. Duality Theory and Pontryagin' s Maximal Principle 

We would now like to demonstrate the relationship between the duality 
theory and Pontryagin's Maximal Principle for the class of problems con- 
sidered in this section. For a somewhat different approach to this, see also 
Rockafellar [15]. Our development is done under weaker differentiability 
assumptions than that reported in the literature [37, Theorem 14, page 235]. 
These differentiability requirements have also been relaxed in recent work of  
Neustadt [28]. We now make the assumption that the functions 10, /1, and 
k are subdifferentiable in x. We note that this is a weak assumption since 1o, 
Ii, and k being convex functions on R" are subdifferentiable throughout the 
relative interior of their effective domains [1 I, page 137, Theorem 13.6]. 

THEOREM 4.3 (Integral Maximal Principle). For the optimal control process 
(OC) assume that there exists a controller u ~ ql and an x ~ Go with correspond- 
ing response q~(u), ~(u)(0)= x, such that (~(u),~(u)(T)) lies in the interior of  
X Q Gr. Then a pair (gt, 2) is optimal with respect to the set of admissible 
controllers Y/and the set of  allowable initial states Go if  and only i f  there exists 
a 

.9* ~ (R")*, 4S* E L'~[O, T; (R")*] 
such that 

(4.16) 

(4.17) 

(4.18) 

l,(y) >~ ll(~b(ff)(T)) + (y  - •(ff) (T), -)7*}, Vy ~ R", 

T T T 

f k(t,~(t))dt>~ f k(t ,~(a)(t))dt  + f [(q~(t)-q~(fO(t),-~*(t))ldt , 
0 0 0 

V~b ~ LP[O, T; R"], 

lo(y) >1 10(2) + (y  - 2, 2"),  Vy E R", 
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and 
T T T 

(4.19) f h(t,u(t))dt>~ f h(t,~(t))dt + f [(u(t)-~(t),~*(t))]dt, 
0 0 0 

Vu e L'[O, T; Rm], 
where A*(:*,fi*) = (~*, 2*) according to (4.11), (4.12). 

Proof. Necessity. By hypothesis, there exists a u ~ ~ and x E Go with 
response ~b(u), where (~(u),~(u)(T)) ~ i n t ( X +  GT). It follows from Theorem 
3.4 that problem (P) corresponding to (OC) is stably set. 

Assume (/~,2) is a solution to (P). Hence from Theorem 3.6 (P*) is stably 
set and has a solution (4~*,39"). Moreover (~,2) and (:*,3~*) satisfy 

(4.20) A((a,2)) E Og*((4;*,.~*)), A*((~*,)~*)) e Of((a,2)). 
From Theorem 3.7, 

A(~i, 2) = (~b(~), ~(~) (T)) (see 4.6, 4.7) e 0g*((~*,)~*)), 

which implies 
(~*, fi*) e Og((¢((O, ¢(a) (T))). 

Hence, by Theorem 2.9, 

g((q~, y)) ~< g((¢(ti), ¢(~i) (T))) + ((¢, y) - (•(ti), q~(ti) (T)), (~*,)~*)) 
o r  

(4.21) 

(4.22) 

and 

(4.23) 

T T 

--ll(y ) -- f k(t, e~(t)) dt <~ -I,(~(~)(T)) - f k(t, ~(~)(t)) dt 
0 0 

T 

+ f [(~(t) -- ~b(~) (t), ~*(t))] dt 
0 

+ <y - ~(a) ( r ) ,  y*>, 

V(~b,y) e L'[0, T; R"] @ R". 
Since ~ is independent of y, it follows that 

ll(y ) >~/,(~(~)(T)) + (y  -- ~(fi) (T), -y*) ,  Vy e R" 

T T 

f k(t, ~(t)) dt >~ f k(t, ~((~) (t)) dt 
0 0 

T 

+ f [(~b(t) -- ~b(/~)(t),-9~*(t))] dt, 
0 

V~ e LP[0, T; R~]. 
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Further, 
A*(~*, 9*) = (•*, .2") (see 4.11, 4.12) e af((t7, .~)) 

holds if and only if 

T T 

f h(t, u(t)) dt >1 lo(.r:) + f h(t, a(t)) dt lo(Y) + 
0 0 

T 

+ f [(u(t) -- a(t), fi*(t))] dt 
0 

+ (y  - ~?, .~*), V(u, y) e Lr[0, T; R"] • R". 

Since y is independent of u, it follows that 

(4.24) lo(y) >~ lo(Y:) + (y  - .~, .~*), 

and 

Vy e R" 

T T T 

_ ( h(t, u(t)) dt >1 f h(t, ~(t)) d t +  _ f [~u( t )  - ~ ( t ) ,  f f * ( t ) ) ]  dt, (4.25) 
0 0 0 

Vu E L'[0, T; R'] 
This proves the necessity part. 

Su~qciency. The sufficiency part follows at once from Theorem 3.7. 1[ 

Remark. In optimal control problem (OC) the set of admissible controllers 
and state constraint set are given locally (pointwise in time) by (4.2) and (4.1), 
respectively. Theorem 4.3 is true even if the constraints were specified in a 
global manner, that is, as convex sets in Lr[O,T;R "] and LP[O,T;R"]. For  
admissible controllers and state constraints given by (4.2) and (4.1), we can 
pass to a local form of the maximal principle. This is done in the subsequent 
theorem. 

For  the proof of the subsequent theorem we need the concept o fa  Lebesgue 
point. 

Let g: [0,T] ~ R" be such that g eL1[O,T;R"]. Let t e [0,T] be fixed and 
let 0j be a neighborhood of t. Let 10j] denote the measure of 0j. Then all 
points t e [0, T] for which 

I 
( g ( a ) d a - + g ( t )  as 10jl "---~ 0 

10jI i l l  

0j 

are termed the Lebesgue points of the function g. It is known that the 
complement of the set of Lebesgue points o f g  has measure zero. I] 
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THEOREM 4.4 (Maximal Principle). Consider the control process (OC) and 
assume that the hypothesis of  Theorem 4.3 hold. Then a pair (ft,Yc) is optimal 
with respect to the set of  admissible controllers ql and the set of  admissible 
initial states Go if  and only if there exists an ~q(t) ~ (R")* satisfying 

(4.26) d~/dt = -A*( t )  ~7(t) + x*(t, dp(a) (t)), 

(4.27) --7/(T) E al~(~(~)(T)), 

(4.28) -7/(0) e 010(~?), 

where A*(t) is the transposed matrix of  A(t), x*(t,c~(a)(t))~ Ok(t,¢(~)(t)) 
almost everywhere in [0, T] and such that the maximal principle 

(4.29) (B(t)  fi(t), r/(t)} - h(t, ~(t)) = max [(B(t) z, ~(t)} - h(t, z)lz ~ f2] 

holds almost everywhere in [0, T]. 

Proof. We shall prove that the necessary and sufficient conditions (4.16)- 
(4.19) are equivalent to the conditions (4.26)-(4.29). 

Let s E ]0,T[ which will be chosen appropriately later, and let 0~ be a 
neighborhood of s. Define 

(4.30) ~j(t) = / ~b(t) if t ~ 0j, ¢ arbitrary in LP[0, T; R"], 
~b(fi) (t) if t e ]0, T [ ~ 0 j .  

Hence ~j ~ LP[O, T; R"]. Since (4.17) is true for all ~ ~ LP[0, T; R"], we have 
in particular 

T 

(4.31) f [k(t, ~)3(t)) - k(t, ~(ti) (t)) + ( ~ ( t )  - ~(~) (t), q~*(t))] dt >~ O, 
0 

and using (4.30), (4.31)'reduces to 

,f (4.32) ~ [k(t, ~(t)) - k(t, d~(fi)(t)) + (~(t) - d~(~)(t), ~*(t))] dt >>. O. 

Oj 

Now choose s to be a Lebesgue point of 

k(t, ~( t ) )  - ~(t, ~b(a) (t)) + @ ( t )  - ~ a )  (t), ~*( t ) } .  

Then passing to the limit and utilizing the property of Lebesgue points, we 
conclude from (4.32) 

(4.33) k(s, dp(s)) - k(s, ~(~) (s)) + (~(s) - ~(fi)(s), q~*(s)) >1 O, 

and this is true for all Lebesgue points s. 
Now ~ e LP[O,T;R "] was arbitrary. Hence (4.33) may be written as 

k(t, y) >~ k(t, c~(fi) (t)) + (y  - ~(ft) ( t ) , -~*(t)}  

almost everywhere on [0, T], for each y E R ". 
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Hence 

(4.34) - ~ * ( t )  ~ Ok(t, ~(fi) (t)) almost everywhere on [0, T]. 

A similar argument proves 

(4.35) h(t ,z)  >~ h(t, a(t)) + ( z  - ~(t) f~*(t)) almost everywhere on [0,T] for 
each z e R m. 

That is, 

(4.36) 

Let 

f4*(t) e ah(t, ft(t)) almost everywhere on [0, T]. 

T 

(4.37) ~(t) = f O*0", t ) ~ * O ) d z  + O*(T, t)~*, 
! 

where O* is the transposed matrix of O. 
Therefore 

(4.38) ~(T)  ---- 37", 

and from (4.12) 
[4(0) = ~*, 

(4.39) (~7*(t) = B*( t )  ~(t). 

It is easy to see that ~/(t) satisfies 

(4.40) dT?/dt = - A * ( t )  ~7(t) + x*(t, q~(ft) (t)), -~I(T) e Ol,(q~(a)(T)), 
4(0) ~ a/o(~), 

where x*(t, ¢(•)(t)) = ~*(t)  ~ Ok(t, ¢(•)(t)) almost everywhere in [0, T]. From 
(4.36), with a*(t) = B*(t)~)(t),  we obtain 

( B ( t )  a(t), el(t)) - h(t, ~7(t)) = max [(B(t) z, ~(t ))  - h(t, z) lz  ~ £2], 

which holds almost everywhere in [0, T]. 
This proves the necessity part of the theorem. 

Sufficiency. Suppose there is a vector "~(t) satisfying 

d~7/dt = -A*( t )~) ( t )  + ~*(t), --~7(T) ~ al , (¢(a)(T)) ,  
~(0) ~ aZo(~), 

and 
~*(t)  ~ ak(t, ¢(~) (t)) 

almost everywhere. 
In the above ff (a) is the response with ~02)(0)= if, of the controller fi 

determined by the maximal principle 

(4.41) ( B ( t )  a(t), ~ ( t ) )  - h(t, a(t)) = max [(B~t) z, ~7(t)) - h(t, z)[z ~ O] 

almost everywhere. 
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Since g2 is the effective domain of h(t, z), (4.41) may be written as 

(B ( t )  f~(t), el(t)) - h(t, •(t)) = sup [(B(t)  z, 3( t ) )  - h(t, z)[z ~ R rn] 

= h*(t, B*(t )  3(t)) almost everywhere. 

From this and from Theorem 2.9 it readily follows that 

B*(t)  3(t) ~ Oh(t, f~(t)) almost everywhere. 

As before we write A* (-qg*,3(T)) = (fi*,ff*), where fi*(t) = B*( t )3( t )  and 
if* = 3(0) according to (4.11), (4.12). 

Hence it follows that 

(4.42) A*( -~* ,  3(T)) E Of ((ft, ~)). 

Furthermore ~*(t) ~ Ok(t,~(fO(t)) and -~ (T )  ~ Oll(qb(fO(T)) imply 
ff(fi) (t) ~ ak*(t, ~*(t)) and ~b(t~) (T) ~ alz*(-~7(T)), respectively, by Theorem 2.9. 
Therefore we must have, since A(tT,:~) = (~(~), ~(t~)(T)), that 

(4.43) A(~, ~) ~ Og*(-~*, 3(T)). 

Hence from (4.42), (4.43) and Theorem 3.7, it follows that (ti,,2) is a 
solution to (P), that is, (tT,:?) is an optimal pair. II 

Remark. If the initial state x = x0 is fixed, we show below that the condition 
¢1(0) ~ Olo(xo) is automatically satisfied. 

For  fixed x = Xo, lo(xo) is a constant and could be left out of the cost func- 
tion. But to correspond to the formulation of the problem (OC), we define l0 as 

lo(x) = I O' x = Xo, 
t +o% X # Xo, 

We thus have the same problem formulation as in Theorem 4.2 with 
Go = {x0}. 

But 

3(0) E Olo(xo) if and only if lo(x) >1 lo(xo) + ( x  - Xo, 3(0)), V x  ~ R", 

and it follows from the definition of l0 that Ol(xo) is all of  (R")* so that indeed 
3(0) E Olo(xo) is always satisfied. Similar considerations are useful in the 
state-constrained problem presented in Section 4.5. 

4.4. An Application to a Reaehability Problem 

In this section we show that certain problems of reachability can be 
transformed into convex optimization problems and solved using methods 
developed in this paper. 

For  the linear system (~9 v) defined in Section 4.1 the set of admissible 
controllers will be defined as 

Ok' = {u E L'[0, T; Rm][u(t) E g2 ~ R"  a.e. on [0, T], g2 is convex and closed}. 
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Assume that Go = {0} and the set X defined by (4.2) is a closed convex set 
inLp[O,T;R"], 1 < p < oo. 

It is required to find necessary and sufficient conditions for the existence 
of  a u e q / s u c h  that the corresponding response ~(u) e X, and ~(u)(0) = 0. 
We shall first transform this problem into a convex optimization problem. 

L e t f b e  the proper convex indicator function of the closed convex set q/, 
that is, 

0, if u E ~ ,  
f (u)  = +o% if u ¢ q/, 

Then 
f*(u*) = sup [(u, u*) : u ~ ok']. 

Let g be the negative indicator function of the non-empty convex set X, 

= / 0 ,  if ~b ~ X, 
g(~b) 

-0% if ~b ¢ X. 

g*(qb*) = inf [(~b, ~b*) : ~b ~ X]. 

Define the linear continuous map 

A: L'[O,T;R"] ~ LP[O,T;R"I 

such that 

t 

(Au) (t) = f ~(t,  "r) B(z) u('r) dr, 
o 

Vt ~ [0, T], where • is the fundamental matrix. 

Then the adjoint A* of A is 

A* : Lq[O, T; (R")*I ~ L~[O, r ;  (R")*], 1 + 1 = 1,1 + 1 = 1 
p q r s 

such that 

T 

(A*~*)( t )  = B * ( t )  f ~*(z , t )~*(rldT,  Vt e [0, r ] ,  
t 

T 

= B*(t)~(t),  where ~/(t) = f ~*('r, t)~*(~')dT. 
t 

The reachability problem can now be written as 

(P) minimizef(u) - g(Au), u ~ L'[O, T; Rm]. 

and its dual is 

(P*) maximize g*(~*) - f * ( A *  ¢*), ~b* e L~[0, T;(R")*]. 
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Since ~ and X are closed, f is 1.s.c. and g is u.s.c, and therefore we may 
apply the general results, as far as they do not rely on the property that the 
problem is stably set. 

From the sufficiency part of Theorem 4.4 we can see that ti is a solution 
to (P) and ~* a solution to (P*) if there exist a vector ~(t) such that 

(B( t )  ~(t), ~(t))  >~ (B ( t ) z ,  ~7(t)), Vz  ~ f2, almost everywhere on [0, T] 

where ~/(t) satisfies 

d~7/dt = - A * ( t )  71(t ) + ~*(t), ~7(T) = 0 

and ~*(t) is a solution of 

($(ti) (t), ~*(t)) = min [<x, ff*(t))Ix e G,] almost everywhere on [0, T] 

I f 0  ~ ~ and 0 ~ int(X), then (P) is stably set from Theorem 3.4 and the 
above conditions are also necessary from Theorem 4.4. 

4.5. Example o f  a State-Constrained Problem 

Consider the following state-constrained optimal control problem. 

(.ga) dx/dt  = A(t)  x(t)  + B( t )  u(t), ~(u) (0) = c, 

C(u) = :~rl~(u) (T)lr z, 

q / =  {u ~ L2[0, T; Rm]lllu(t)fl < p a.e. on [0, T], p > 0}, 

= {¢ ff L2[0, T; R"]]¢(0) = c, [Icrl < fl, II¢(t)ll ~< fl a.e. on 
]o, r ] ,  f~ > 0}. 

Let £2 = {z e R'~lllzll < 0}, 
= {x e R~[llxll </~}. 

The problem is equivalent to minimizing 
T 

-}ll~(u) (T)II 2 + ~c(x) + f {~b~(u(t)) + ~bo(~(u ) (t))} dt. 
o 

subject to 
dx/dt = A( t ) x ( t )  + B(t)u( t ) ,  ¢(u)(0) = c, 

where ~c, ~bt~, and ~b~ are the indicator functions of the sets {c}, f2, and ~,  
respectively. 

Since (0,c) ~ q / @  {c}, and (c,c) e int(X @ R n) the problem is stably set. 
Therefore we may apply Theorem 4.4 to obtain the necessary and sufficient 
conditions of optimality. The main computation involves the subgradients 
of indicator functions of closed bails in R n. 

It is known that a~bs~(z) is the normal cone to f2 at z, 

O¢~(z) = {z* ~ (Rm)* pllz*[I ~ (z, z*)).  
and similarly 

O~(x) = {x* ~ (R")*lf~llx*ll < (x,x*)}. 
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Hence conditions (4.26)-(4.29) read that a is an optimal controller with 
response ~(t~) if and only if there is a vector ~(t) satisfying 

dn/dt : -A*(t)9(t) + x*(t),-'~(T) = ~(tT)(T), 

where x*(t) is any element of the set {x* e (R")*l/311x*ll ~< (¢(a)(t),x*>}, and 
the maximal principle holds 

(B(t) ~7(t), ~(t)> = max [(B(t) z, ~(t)> : Ilzl[ ~< p] 

(it(t), B*(t) ~(t)> = plln*(t) ~(t)ll, a.e., 

from which 
B*(t) ~(t) 

t~(t) = p I[B*(t) ~(t)[l' provided [IB*(t) ~(t)ll v~ 0. 

5. INTERCONNECTED CONTROL PROCESSES 

In practice one frequently encounters control processes of large dimension 
which, however, have the structure of mutually interconnected subprocesses of 
smaller dimension. In this section we consider a linear interconnected optimal 
control process with a cost function of separable type and show how the 
duality theory developed in this paper is of help in finding a symmetric 
subprocess structure of the interconnected process and its dual. In particular 
we obtain a decomposition theorem which relates optimal controllers to 
solutions of the individual dual subprocesses. For  related work see [35, 3, 36] 
and the bibliography of these papers. II 

5.1. Formulation of the Problem 
Consider the linear interconnected control process 

[dx,/dt = A, ( t )  x , ( t )  + B,( t )  u,( t)  + v,(t) ,  i = 1 , 2 , . ,  N, 
( ~ )  ~x,(0) = 0, "" 

N 
(..¢) v , ( t )=  ~ Fil(t)xj(t), i - - 1 , 2  . . . . .  N, 

J=l  
J ¢ l  

where v~, xi are elements of LP[0, T; R"], 1 < p ~< oo, u~ e L'[0, T; Rm'], 1 < r < oo 
and Ai(t), B~(t), F~j(t) are continuous matrices of appropriate order i,j -- 1, 
2, ..., N. 

Let u = (ul . . . . .  uN). 
The responses ¢~(u) of (~a) are constrained to lie in the convex subsets 

X, of LP[0, T; R'q where 

(5.1) Xt = {4, e LP[O, T; R",]l¢,(0 ) = 0, ¢,(t) e G,(t) _ R"' a.e. in ]0, T], G,(t) 
is convex}, i = 1,2 . . . . .  N. 
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Let  °'//l be the convex subset in Lr[0, T; R"q defined by 

(5.2) qli = {ul e Z'[0, T; Rr",]lul(t) E [21 ~_ R"e a.e. in [0, T], 121 is convex}, 
i = 1 , 2  . . . . .  N. 

The class q / o f  admissible controllers u is defined as 

(5.3) ok' = {u eL'[O,T;R"][ul ~ qZl, responses el(u) E Xl, i =  1,2 . . . . .  N}, 
N 

where m = ~ mi. 
l = i  

It is assumed that  /2 e and Gl(t), t E ]0 ,T]  have non-empty  interiors, 
i = 1 , 2  . . . . .  N. 

The cost function is 

T ~ r  

(5.4) C(u) = ~ f [hi(t, ul(t)) + kl(t, el(u) (t))] dt. 
1=1 

The functions hi and ki satisfy hypothesis (ii), (iii), and (iv) of  Section 4.1. 
By defining 

x(t) = (xl(t) '"  x~(t)) r, u(t) = (ul(t) '" uN(t)) r, 

I/Al(t)FI2(t) '"F'~(t)\  (B~t).  0 ) 
A(t)=(F..z.'}t.!A..2.!t!.'.'.'.F. 2. u.!t.!~, B ( t ) =  "'BN(t) ' 

\ FNl(t) FN2(t)""" An(t)/  
(.L.e) may be written as 

(5.5) [dx/dt = A(t) x(t) + B(t)u(t), 
~x(O) = o. 

It follows f rom the hypotheses that  the funct ionsf i ,  i = 1, 2 . . . .  , N 

T 

f~(ui) = I hi(t, ul(t)) (5.6) dt 
0 

are l.s.c, p roper  convex functions on U[O,T;R"q with effective domains °k' t 
and conjugate functions 

T 

= I hl*(t, ul*(t)) f,*(ui*) dt 
0 

L~[0, T; (R",)*], 1 + 1 = 1. 
r $ 

In particularf~* has a non-empty effective domain  which we denote by ql~*. 
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L e t f b e  defined by 

f:  L'[O,T;R"] 0 " "  OL,[O,T;R mu] --~ 
such that 

(5.8) f(u) = (f l  @ " "  @fN) (u) =f l (u l )  + " "  +fN(Uu), Vu e Lr[0, T;R"]. 

It is clear that f is a 1.s.c. proper convex function with effective domain 
q / =  q/1 @ "'" @ q/N and conjugate f *  where 

(5.9) f*(u*) = (f l* 0 " "  OfN*) (U*), Vu* E L'[0, T;(R")*]. 

f *  has effective domain q/* = q/l* Q "'" Q q/u*. 
Also from the hypothesis it follows that the functions g~, i = 1 . . . .  , N, 

T 

g,(~,) = - f  k,(t, q~,(t)) dt (5 10) 
0 

are u.s.c, proper concave functions on LP[0, T;R"q with effective domains X~ 
and conjugate functions 

T 

g,*(¢,*) = - f  k*(t,-¢,*(t)) dt 
0 

o n  

1 1 
L~[0, T;(R"0*], - + - = 1. 

P q 

In particular gl* has non-empty effective domain which we denote by Xl*. 
Let g be the function defined by 

g: LP[O,T;R"q 0 " "  @ LP[O,T;R "N] ~ 
such that 

(5.11) g(~b) = (gl @ " "  @ g~) (4) = g1($1) + " "  + gN($N), 
N 

V~ ~ LP[0, T; R"], n = ~ n,. 
t= l  

Then g is an u.s.c, proper concave function with effective domain 
X = )(1 O " "  Q XN and its conjugate g* given by 

(5.12) g*(~b*) = (gl* 0 " "  0 gu*) (~b*), V~b* ~ Lq[0, T;(Rn)*], 

with effective domain X* = )(1" O "'" Q XN*. Finally define the map A by, 

A: L"[O,T;R rnl] (~ . . .  GLr[O,T;R'n~']--~ Lr'[O,T;R n,] Q "" (~ LP[O,T;R nN] 

such that 

(5.13) Au=$(y) ,  Vu, 
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(5.16) 

similarly for 

define 

237 

A* 4* = (ul* . . . . .  uN*), 4" ~ L~[ O, T; (R")*], 

A,*: Lq[0, T; (R")*] --* L'[0, T; (Rm') *] 
such that 

(5.17) Al*4* =ul*, i =  1,2 . . . . .  N. 

Note that A~* is not the adjoint of A~. From the above definitions, it follows 
that 

N N 
(5.18) (Au ,4*)  = ~ [(Alu,4,*)]; (u ,A*4*)  = E [(u,,A,*~*)]. 

i~l  1-1 
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and 4(u) is defined by 
t 

(5.14) 4(u)(t) = f 4(t,'c)B(z)u(-r)dt, t E [0,  T], 
0 

where 4 is the fundamental matrix of (5.5). Thus 4 satisfies 

d4/dt = A(t) 4,  4(0) = I, 

which is a system of N × N matrix differential equations 

'd411/dt = Al(t) 411 + Fl2(t) t~21 + ' ' '  -1- F1N(t) 4N1, 
(5.15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

d4sN/dt = FNI(t ) 41N -b FN2(t) 42N "{-''" -[- AN(t) 4NN, 
1, i= j ,  

4ts(O)= O, i # j .  

The interconnected control process (~e) and (~') in terms off ,  g, A defined 
by (5.8), (5.11) and (5.13) (5.14) becomes 

(P) minimizef(u) - g(Au), subject to u ~ q/, Au ~ X, 

and consequently the dual (P*) is 

(P*) maximize g*(4*) - f * ( A *  4"), subject to 4* E X*, A* 4" E q/* 

where f* ,  g* are defined by (5.9), (5.12) and A* is the adjoint of A. 
Thus the general duality theory of Section 3 can be applied to the inter- 

connected control problem. II 

We shall write (P) and (P*) in a form which emphasizes the subproblem 
structure of both (P) and (P*). 

For u E L'[0, T; Rm], Au = (41 ..... 4N), define the maps Al, 

A,: L'[O,T;R m] ---~ Lv[O,T;R ",] 
such that 

Al u = 4 1 ,  i = 1 , 2 , . . . ,  N;  
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We can write (P) as 

(P) i n f{ f (u ) -g (Au)}  = i n f [ f ( u ) -  inf {(Au,~*)-g*(¢*)}]  
u~'g' ue¢/ ~b*~X* 

= inf [f(u) + sup {g*(¢*) - (Au,  ¢'7}]. 
ue~z ~b*ex* 

Or, in view of (5.12) and (5.18), 
N 

(5.19) (P) i n f [ f ( u ) +  ~ sup {g ,* (~ ,* ) - (A ,u ,¢ ,* ) } ] .  

Similarly we can write (P*) in the form 
N 

(5.20) (P*) sup [g*(¢*)+ ~ i n f { f~ (u , ) - (u , ,A ,*¢*)} ] .  
~b*~X* 1=1 ut~ql I 

For fixed u, (P) has N separated subproblems (P~) of the form 

(5.21) (P,) sup {g,*(¢,*) - (A, u, ¢,*)}, i = I, 2 . . . . .  N, 
(~I*EXI* 

where, for fixed $*, the dual (P*) has N separated subproblems (P~*) of the 
form 

(5.22) (P,*) inf {.f~(u,) - (u,,A,* ¢*)}, i =  1 ,2 , . . . ,N.  
I/IE~ 1 

Note that (P) as well as (P*) has the same subproblem structure, II 

Before we can relate the solutions of the subproblems (P,), (P~*) to those 
of the overall problems (P) and (P*) we need some results. 

Introduce the function K(u, ~*) where 

(5.23) K(u, ~*) = f ( u )  + g*(~*) - (Au, q~*). 

Then, K is a 1.s.c. proper convex function of u, with effective domain ql and 
an u.s.c, proper concave of ~* with effective domain X*. 

A point (if, ~*), 12 e q/, ~* e X* is a saddle-point of K(u, ~*) if 

K(ff, ~*) = min K(u, ~*) = max K(tT, ¢*). 
ueqz ~*ex* 

THEOREM 5.1. The function K(u,q~*) defined in (5.23) has a saddle-point 
(a,~*) i f  and only i f (P )  and (P*) are stably set in which case a is a solution 
(optimal controller) o f (P)  and ~* is a solution of(P*). 

Proof. See [16]. II 
We can now prove the decomposition theorem for the interconnected 

control problem P and its dual P*. 

THEOREM 5.2. Assume (P) and (P*) are both stably set. I f  for f ixed ~*, ffi 
solves the subproblem (5.22), i = 1 . . . . .  N of(P*) then a = (ftl . . . . .  fiN) is a solution 



CONJUGATE CONVEX FUNCTIONS 239 

to (1') i f  and only i f  ~* is a solution to (P*). Dually, i f  for fixed ft, ~l* solves 
the subproblem (5.20, i= 1,.. . ,  N, of(P) then ~* = (~1" .....  ~N*) is a solution 
of(P*) i f  and only i f  fl is a solution of(P). 

Proof Let for some ~* E X*, ~2~ be a solution to (P~*), i = 1 . . . .  , N. 
Because ~2~ solves (P~*) it readily follows that  

(5.24) -f~*(h,* qg*) =ft(~,)  - (5,, A,* ~*~, i = 1 . . . . .  N, 

and thus 

- f*(A* q~*) = f ( a )  - (ti, A* qg*). (5.25) 

Therefore, 

(5.26) K(t7, ~*) = g*(~*) +f( t7)  - (Az7, qg*) 
= g*(~*) - f * ( A *  q]*) < sup K(t7, 4'*)- 

~*EX* 

Assume t7 = (al . . . . .  tiu) is a solution to (P). Since (P) is stably set and has a 
solution 12, it follows from Theorem 3.6 that  (P*) has a solution and thus, 
by Theorem 5.1, we must have 

(5.27) min (P) = max K(a, ~*). 
~*EX* 

Hence, from (5.26) and (5.27), 

g*(4~*) - f * ( A *  ~*) < rain (P). 
But, by Lemma 3.1, 

min (P) >~ g*(~*) - f*(A* ~*), 
so that 

min (P) = g*(4~*) - f * ( A *  ~*), 

which implies that ~* is a solution of(P*) .  
On the other hand, assume ~* is a solution of(P*) .  Then, 

max (P*) = g*(4g*) - f * ( A *  4~*). 

Or in view of  (5.25), (5.26) 

max (P*) = g*(qg*) + f ( ~ )  - (Al7, ~*) = K(tT, 4S*). 

But (P*) is stably set and has a solution implies (P) has a solution, by Theorem 
3.5, such that  

min (P) = max(P*).  

That  is (see (5.19) and (5.20)), 

min max K(u, if*) - max min K(u, ¢*) 

and in view of  (5.26) 

rain max K(u, ~b*) = max rain K(u, q~*) = K(~, ~*). 
ue~ ~*ex* ~*ex* ueq[ 
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Hence, (ff,~*) is a saddle-point of K(u,¢*), implying that a is a solution of  
(P) by Theorem 5.1. This proves the first part of the theorem and the second 
part follows dually. [[ 

The following theorem guarantees that the subproblems (Pl) and (Pl*) in 
(5.21) and (5.22) are stably set and do have solutions. 

THEOREM 5.3. Given the interconnected control Problem (P ) and its dual (P*). 
Assume that, for  i = 1, ..., N, 

(i) the effective domain if2 t o f  hi(t, zi) is bounded, 
(ii) hl(t, zi) >1 Hi(t), Vzl e f21, where Hi is a summable function on [0, T], 
(iii) the effective domain Gl*(t) o f  kl*(t, yl*) is bounded, 
(iv) kl*(t, yl*) >1 Kl(t), Vyl* E Gl*(t), where Kl is a summable function on 

[0,T]. 

Then, the subproblems (Pl) in (5.2i) and (Pl*) in (5.22) are stably set and have 
solutions. 

Proof. 
(Pi) 

has a dual process 

where 

sup {gl*(¢l*) - (Al u, ¢l*)), for some u, 
¢l*EXt* 

inf {1,(¢1) - gl(¢,)}, 
Ct 

1,(¢,) = sup {(¢,, ¢ , '5  - (A,  u, ¢, '5} 

= sup (4', - Al u, ¢1") = / 0' 
¢~* (+~,  

Further, according to (5.10) 
T 

gl(¢l) = - f  k(t, el(t)) dt 
0 

1 ~ ~/11 U, 

¢1 ~ Al u. 

T 

/ I inf ( ' ¢ , ( t ) ,  y , )  + K,(t)] dt > -oo. 
0 lYl*~at" ] 

= f / s u p  
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We also know that gt is a proper concave function so that gt is finite on all 
of LP[O,T;Rnq. Thus the dual problem of (Pt) is stably set by Theorem 3.4. 
Clearly At u is also the solution to this dual problem from which it follows 
by Theorem 3.6 that (P~) is stably set and has a solution. 

(P,*) 

has a dual, 

where 

inf {fl(ut) - (ut, At* ~*)}, for some ~*, 
u tead i 

sup{pt*(ut*)-fl*(u,*)}, 
Ul* 

P,*(ut*) = inf{(u,, u,*~ - (ut, At* ~*)} 
ul 

= inf(u/, ut* - At* if*) = 0{I. 
U I C ~  

From (5.6) we have 

u, = A,* $*, 
ui # At* ~*. 

T 

f,*(ut*) = f ht*(t, ut*(t)) dt 
0 

= / ( sup (zu ut*(t)) - ht(t, zt)} dt 
0 ~zt~Dl 

T 

Becausef~* is also proper it follows that fl* is finite on all of L'[O,T;(RmO*]. 
It follows by Theorem 3.4 that the dual of  (Pt*) is stably set. Furthermore 
it has At*~* as a solution so that (P~*) is stably set and has a solution by 
Theorem 3.6. I[ 
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