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Local Versus Nonlocal Computation 
of Length of Digitized Curves 

S. R. Kulkami, S. K. Mitter, Fellow, IEEE, T. J. Richardson, and J. N. Tsitsiklis 

Abstract-In this paper, we consider the problem of computing 
the length of a curve from digitized versions of the curve using 
parallel computation. Our aim is to study the inherent parallel 
computational complexity of this problem as a function of the 
digitization level. Precise formulations for the digitization, the 
parallel computation, and notions of local and nonlocal computa- 
tions are given. We show that length cannot be computed locally 
from digitizations on rectangular tessellations. However, for a 
random tessellation and appropriate deterministic ones, we show 
that the length of straight line segments can be computed locally. 
Implications of our results for a method for image segmentation 
and a number of open problems are discussed. 

Index Terms- Local, nonlocal, parallel computation, length, 
digitized curve. 

I. INTRODUCTION 

HERE has been a great deal of work on designing parallel T algorithms for a broad range of computational tasks, but 
far less work on understanding the inherent “parallel computa- 
tional complexity” of specific problems. In fact, the proper no- 
tion of parallel computational complexity may depend greatly 
on the parallel architecture, model of computation, and the 
specific problem at hand. One notion of complexity for certain 
types of parallel computation was considered by Minsky and 
Papert in their study of perceptrons [19]. They defined notions 
of “local” and “global” computations, variations of which have 
been further studied and used by others (e.g., see [l], [17], 
[111). 

Here, we also use notions of local and nonlocal computation 
inspired by the definitions in [19] to study the complexity of 
parallel computations used to estimate the length of a curve 
from digitized versions of the curve. Specifically, we study 
whether the computations can remain local as the digitization 
gets finer and finer, or whether to recover length in the 
continuum limit the computations must necessarily become 
nonlocal. Hence, an important aspect of our work is the idea 
of studying complexity as a function of the digitization level. 
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This is a natural quantity to consider when one is interested in 
an underlying continuous problem, but chooses (or is forced) 
to solve the continuous problem by discrete approximations. 

Given a curve in the plane, we consider digitizations formed 
by partitioning the plane into a number of regions (pixels), and 
representing the curve by the union of those regions through 
which the curve passes. For the computation, we imagine a 
processor located in each region whose state indicates whether 
or not the curve intersects the corresponding region. Each 
processor contributes additively to the final result based on the 
states of processors in a neighborhood. The notion of the “com- 
plexity” of the parallel computation for a fixed digitization 
level is the size of neighborhood required by the processors. 
The computation is said to be local if the neighborhood size 
remains uniformly bounded as the digitization gets finer. If the 
neighborhood size grows without bound as a function of the 
digitization level then the computation is said to be nonlocal. 

We show that for the usual rectangular tessellations, length 
cunnot be computed locally. On the other hand, using a 
classical result from stochastic geometry [26] we show that for 
straight line segments length can be computed locally using 
a random tessellation. Using a result from [22], it follows 
that length can also be computed locally for appropriate 
deterministic tessellations. 

There has been previous work done on studying digitized 
curves and trying to estimate length from such digitizations 
(e.g., see [12], [13], [20], [21]). Our results provide a new 
perspective on this work. Furthermore, the original motivation 
for the present work arose in connection with a method for 
the restoration and segmentation of images [23], [8], [lo]. Our 
results show the inherent complexity of using certain discrete 
Markov random fields in order to approximate continuous 
variational formulations of these problems. 

In Section 11, we give a precise description of the model of 
computation considered and definitions of local and nonlocal 
computations. In Section 111, we provide local/nonlocal results 
for various tessellations. Implications of our results for the 
segmentation problem are discussed in Section IV. Finally, 
in Section V, we discuss a number of open problems and 
directions for further work. 

11. DEFINITION OF LOCAL COMPUTATION 

In studying the question of local versus nonlocal compu- 
tation of length, we restrict ourselves to a particular type 
of discrete representation of curves. First, for simplicity, we 
consider only curves contained in the unit square. For each n, 
we assume that the unit square is partitioned (or tessellated) 

0162-8828/94$04.00 0 1994 IEEE 

mailto:kulkami@ee.princeton.edu


112 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 16, NO. I ,  JULY 1994 

Fig. 1. 
spacing 1 / 7 1 .  

Discretization method shown for rectangular tessellation with lattice 

into a number of regions s,,l,. . . , s,,k(,) with k ( n )  + CO 

as n + oc1. We think of n as indicating the discretization 
level, so that n + 30 typically corresponds to finer and finer 
tessellations. The discrete representation of a curve r on the 
tessellation at level n will consist of those regions s , , ~  through 
which passes, i.e., for which r f’ s,,~ # 8. Figure 1 shows 
an example of a rectangular tessellation together with a curve 
and its digitization on this tessellation. 

The notions of local versus global computation we use are 
similar to those considered by Minsky and Papert [ 191 (see also 
[l] ,  [17]). For a lattice at level n, we imagine a processor in 
each region s,,~, . . . , s,,k(,). Let P , , ~  denote the location (x, y 
coordinates) of the processor in region s, ,~.  For simplicity, we 
will also let p , , ]  refer to the processor itself (as well as its 
position). 

We assume that each processor has information as to 
whether or not the curve r passes through its region. Fur- 
thermore, each processor P , , ~  has an associated neighborhood 
Nn,J which is a set of other processors at level n which 
provide information to the processor P , , ~ .  That is, processor 
p , , ]  performs a computation depending only on the state of 
the pixels in its neighborhood, which will be denoted by 
rlNn,,. We assume that the outputs of each of the processors 
are combined linearly to produce the final computed value. 
Hence, the computed value t,(r) for the length of the curve 
r from its discretization at level n is given by an expression 
of the form 

J=1 

where 4,,) is a function capturing the particular local compu- 
tation performed by processor P , , ~  based on its neighborhood 
Nw. 

The diameter of a neighborhood Nn,j is the maximum 
distance between any two processors in N n , J .  The diameter 
d ,  of the computation at discretization level n is the largest 
diameter over all neighborhoods N,,J. Note that as n + m, 
the processors necessarily get closer together, since they are all 
within the unit square. Since we are interested in computations 
in which each processor does not communicate to too many 
other processors, it is not sufficient simply to bound d, as 
n + m. Instead, we will bound the scaled diameter m d , .  
A computation of the above form is said to be diameter limited 
(in the limit, or as the lattice spacing tends to zero) if m d ,  

is uniformly bounded as a function of n, i.e., for some d < CO 

we have m d ,  5 d for all n. 
A diameter limited computation provides one notion of what 

we mean by a local computation. Following [19], another 
notion is that of an order limited computation. The order of 
a neighborhood Nn,J is simply the number of processors in 
IV,,~, i.e. its cardinality. The order a, of a computation at 
discretization level n is the maximum order over all j of 
N,,J. Then, an order limited computation is one for which 
a,  is uniformly bounded as a function of n, so that there is 
some a < cc such that a, < Q: for all n. 

It is difficult to prove any results without imposing some 
additional structure on the computation. We consider the 
case of a translation invariant neighborhood structure and 
translation invariant processors meaning that for each n, 
the neighborhoods N n , J ,  N n , J ~  of processors 3 ,  j’ are simply 
translates of each other, and the are independent of j .  
(Of course there is an issue for processors at the boundary 
of the region, but for our purposes this can be ignored since 
we are interested in letting the digitization level get finer and 
finer in a such a way that the proportion of such boundary 
processors becomes negligible.) We also consider the case in 
which only those processors which are “on” can contribute 
to the computation. That is, we assume that the contribution 
4,,J (rlnr,, 3 )  of processor P , , ~  is zero if r does not pass 
through the region associated with P , , ~ .  In the case of regular 
tessellations, these assumptions allow a simplification of the 
form of the computation in (1). Specifically, for an order 
or diameter limited computation there are a finite number 
K of distinct patterns for r lN,  , (i.e., states of pixels in a 
neighborhood). Each processor which sees pattem i in its 
neighborhood contributes the same quantity an,z to the total 
computation. Therefore, if we let t, denote the total number 
of pixels through which r passes, and let f n , z ( l ? )  denote the 
frequency of occurrence of pattem i ,  then L, is given by 

K 

111. LOCAL/NONLOCAL RESULTS FOR VARIOUS TESSELLATIONS 
A rectangular digitization is the one most commonly used 

in image processing. In this case, at discretization level n the 
unit square is partitioned along the coordinate axes into n2 
square pixels of size 1/n by l / n .  The pixels correspond to the 
closed lattice squares of i Z 2 .  The discrete version of a curve 
r is composed of the union of closed lattice squares of kZ2  
through which r passes (see Fig. 1). For such discretizations, 
we have the following result. 

Theorem 1: The length of a curve cannot be computed 
using a diameter limited computation from discrete approx- 
imations on a rectangular tessellation. In particular, if nd, 5 
d < x then for some straight line r, lim,+mL,(r) # L(r ) .  

Proof: We will proceed by showing that any diameter 
limited computation fails to compute length appropriately in 
the limit on many straight lines. Consider a line segment of 
unit length and let 0 be the angle that the extension of the 
segment makes with the x-axis. Since we are considering only 
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Fig. 2. A line segment with small slope and its digitization. 

..e- --.-____--- 
(a) 

simplify ( 3 )  to 

L ( 8 )  = tn(6')[an,1fn,1(6') + an,2fn,2(6')1, (4) 

where f n , l  and f n , 2  denote the frequency of occurrence of 
patterns without a comer and with a comer respectively. 

For large n, there are approximately n sin 8 ,  comers for 
a unit length segment at angle 0, and the segment passes 
through approximately n cos 8 columns. Hence, the digitized 
version of the line segment contains approximately t ,(8) = 
n cos 6' + n sin 8 total pixels. Also, since the computation is 
diameter limited with nd, 5 d, at most d pixels see a given 
comer, so that ndsin6' pixels see some comer. Therefore, 
fiL,2(@) = dsin@/(cos@ +sine) and f , , l ( O )  = 1 - fn,z(0). 
Substituting these expressions in (4), letting n .+ 30, and 
assuming that linin-m = a, < M for i = 1 , 2  gives 

L ( o )  = a1 cos0 + (a1 + d(a2 - a l ) )  sine, ( 5 )  

for 0 5 8 < tan-' 2. Since the line segments at all angles 
have unit length, in the interval 0 5 6 < tan-' i ,  the 
computation is correct only for those 6' for which i ( 8 )  = 1. 
For finite d, from (5) i(6') = 1 clearly cannot be satisfied for 
all 0 5 8 < tan-' 2 (in fact, it can be exactly satisfied for at 
most two values of 0 in the desired interval). 

We expect that similar results are true for the other standard 
regular tessellations (i.e.. hexagonal and triangular). However, 
it is interesting that it is not true for all tessellations, as shown 
below. 

We first consider random tessellations produced by a number 
of random straight lines. A "random" straight line (i.e., a 
uniform distribution for the set of straight lines intersecting 

Fig. 3. Two types of pattems in diameter limited neighborhood of a pixel 
arising from line segments with sufficiently small slope. 

the case where r is such a straight line segment, we will write 
(2 )  indexed by 6': 

For lines with small 8, as n gets large the digitization 
consists of long stretches of pixels in a row with occasional 
corners (or shifts) to different rows (see Fig. 2) .  Now, suppose 
the computation is diameter limited with n d ,  5 d. Then for 
0 5 8 < tan-' $ the comers are sufficiently far apart so that 
the digitized pattem in the neighborhood of every processor 
contains either no comers or exactly one comer (see Fig. 3 ) ,  
with the different locations of the comer in the neighborhood 
corresponding to different patterns. 

Since we are concerned with the behavior of the computa- 
tion as n .+ ca, we can ignore the effects at the ends of the 
line segment, and the effects of the offset of the line segment 
with respect to the digitization. For each 0 5 6' < tan-' $, 
the frequencies of occurrence of all patterns which contain a 
comer are approximately the same for large 71. Hence, we can 

a bounded domain) can be defined as follows. A line in the 
plane will be parameterized by the polar coordinates T.  @ of 
the point on the line which is closest to the prigin, where 
T 2 0 and 0 5 6' 5 27r. The set (manifold) of all lines in 
the plane parameterized in this way corresponds to a semi- 
infinite cylinder. A well known result from stochastic geometry 
states that the unique measure (up to a scale factor) on the 
set of lines which is invariant to rigid transformations of the 
plane (translation, rotation) is drd8, i.e., uniform density in 
T and 8. This measure is thus independent of the choice of 
coordinate system, and is referred to as the uniform measure 
(or density) for the set of straight lines in the plane. This 
measure corresponds precisely to the surface area measure on 
the cylinder. 

From this measure, a uniform probability measure can be 
obtained for the set of all straight lines intersecting a bounded 
domain. Specifically, the set of straight lines intersecting a 
bounded domain is a bounded subset of the cylinder. The 
uniform probability measure is then just the surface area 
measure of the cylinder suitably normalized (i.e.. by the area 
of the subset of the cylinder). 

We can now state the following classic result from stochastic 
geometry (e.g., see [26, section 3.2, pp. 3&32] or [6, (3), p. 

Theorem 2 :  Let X be a bounded convex subset of R2,  and 
let c C X be a rectifiable curve. Suppose lines intersecting 
X are chosen uniformly, and let n(2 .  c )  denote the number of 

41). 
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Fig. 4. 
lines, and a digitization of a straight line segment using this tessellation. 

An irregular tessellation produced by drawing a number of straight 

intersections of the random line 2 with the curve c. Then 
2 
A 

En(5,c) = -,c(c) 

where L(c)  denotes the length of the curve c and A is the 
perimeter of X .  

For simplicity, we are considering the case where X is 
the unit square. In this case, the theorem reduces simply to 

A random tessellation can be formed by drawing a set 
of random lines as described above. Figure 4 shows what a 
tessellation of this type might look like, as well as a digitization 
of a straight line segment on this tessellation (although the 
lines in the figure were not actually generated randomly). The 
“lattice spacing” of the tessellation is related to the number 
of random lines drawn, and we will refer to a tessellation 
formed by n lines as a tessellation at level n. For such 
randomly formed tessellations, we have the following result 
for computing the length of any straight line segment. 

Theorem 3: Let r be any straight line segment. There is 
a diameter limited computation on tessellations formed from 
independent lines drawn uniformly which converges to the 
length of r with probability one. 

Proof: For the computation on the tessellation at level n, 
we will let each processor which is “on” (i.e., which r passes 
through) contribute 2/n independent of the state of all other 
processors. Hence, the neighborhood of a given processor 
consists only of the processor itself, so that the computation 
is clearly diameter limited. 

Now we need to show that as n + cc this computation 
recovers the length of a straight line segment r. Let /3(n,r) 
denote the number of pixels comprising the digitized version 
of r on the lattice at level n. For a random line t ,  let m(l, r) 
denote the number of intersections between t and r. Since r 
is a straight line segment, for almost all e,  m( l , r )  is either 
zero or one. Furthermore, since the pixels consist of regions 
formed by straight lines and r is a straight line segment, the 
number of pixels comprising the digitized version of r is just 
one plus the number of straight lines intersecting I?. That is, 
P ( 7 ~ r )  = 1 + m(ti ,r)  SO that 

E n ( 2 , c )  = iC(C). 

1 ,  2 
m(ei, r) + -. L, = 2 .  - 

n i=l 

From the law of large numbers, we have that as n + cc, 
L, -+ 2 . Em( t , r )  with probability one. The stochastic 

Fig. 5 .  A tessellation produced by a set of equally spaced lines taken at a 
number of angles-i.e., by sampling the set of lines regularly in both the 
radial and angular coordinates. Shown here are lines from 0” to 150O in 30’ 
increments. 

geometry result mentioned above (Theorem 2)  states that 
if r is any rectifiable curve in the unit square and is a 
random line intersecting the unit square drawn uniformly then 
Em([,  I?) = i L ( r )  (e.g., see [26]) .  Thus, using this result we 

0 
The intuitive idea of the results above is that the length 

of a line segment is twice the area of a corresponding subset 
of the cylinder, namely the area of the set of lines which 
intersect the line segment. With a rectangular tessellation, we 
obtain samples on the cylinder only for 0 = 0 and 0 = 7r/2. 
On the other hand, with the random tessellation, we obtain a 
random sampling of points on the cylinder from which we can 
easily estimate the desired area. This suggests that there is a 
tradeoff between the complexity of the sampling used and the 
complexity of the resulting computation. It also suggests that 
appropriate deterministic sampling strategies which sample the 
set of lines in both the radial and angular coordinates on the 
cylinder should allow a local computation of the length of 
a line segment. Figure 5 shows an example of a tessellation 
formed in this way. The lines of the tessellation in the figure 
are formed from a set of equally spaced lines taken at several 
orientations. The theorem below shows a local computation 
result for such a deterministic sampling strategy. Specifically, 
we consider the tessellation at level n to be that formed by 
parallel lines with spacing h, taken at angles 7rj/n for j = 
0, . . . , n-1, where h, ---f 0 as n 4 00. Clearly this tessellation 
samples lines over the entire cylinder of lines. (Note that 
for each angle we consider a whole set of parallel lines, so 
that we need only consider angles from 0 to 7r rather than 
0 to 27r.) Denote this tessellation by U,,&. Moran [22] has 
obtained results on estimating the length of a curve by counting 
intersections with the straight lines forming the tessellation 
Un,h,, . The following result on the local computation of length 
for the tessellation Un,h, uses a result from [22] (attibributed 
in [22] to Steinhaus). 

Theorem 4: Let r be any straight line segment. There is a 
local computation on the deterministic tessellation that 
converges to the length of I?. 

Proof: If P ( 0 )  denotes the integral of the projection of a 
curve r on a line at direction B (with points counted according 

have that L, -+ L ( r )  with probability one. 
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to their multiplicity), then the length of r is given by Since h, -+ 0 and qn + 1 as n -+ CO, we have that 
L,(I') -+ L ( r ) .  Also, since the neighborhood of a given 
processor consists only of the processor itself, the computation qr)  = - ~ ( 0 )  do = lT P ( B )  do 
is clearly diameter limited. 0 : 1'" 

(e.g., see [22]). This suggests that the length of I' can be 
estimated using samples of P(0)  at a number of angles. 
This can be done, and in fact Moran [22] attributes the 
following result to Steinhaus which essentially bounds the 
error in estimating the length of a curve r by using the above 
expression and measurements of P ( . )  at a set of angles. Let 
Pj = P ( T j / n )  for j = 0,1, . . .  , n  - 1, i.e., the Pj are the 
values of P( . )  for n equally spaced angles between 0 and T .  

Then 

where 
7T -1 

qn = - 2n [sin (&)I . 

IV. RELATION TO A METHOD FOR IMAGE SEGMENTATION 

Our original motivation for considering the question of local 
versus nonlocal computation of length arose in connection 
with a problem in machine vision. Specifically, a variational 
method for image segmentation and restoration was proposed 
by Mumford and Shah in [23] (see also Blake and Zisserman 
[7], [SI). Their approach involves minimizing a cost functional 
over a space of boundaries with suitably smooth functions 
within the boundaries. If g represents the observed image 
defined on R c R2,  then a restored image f and its associated 
edges r are found by minimizing 

Note that q, + 1 as n -+ m so that as expected the 
approximation gives us the true length as the number of 
samples tends to infinity. 

Now we consider the effect of estimating the Pj as opposed 
to obtaining the exact value. If I? is a straight line segment, 
then Pj is simply the length of the projection of r in the 
direction corresponding to Pj. This length can be estimated 
by simply counting the number of intersections with parallel 
lines orthogonal to the direction corresponding to Pj and 
multiplying by the spacing of the parallel lines. If the spacing 
of the lines is h,, then the maximum possible error in 
estimating Pj in this manner is also h,. Thus, the maximum 
possible error in estimating & E,"=, Pj by counting the total 
number of intersections of r with the tessellation Un,h, is 

Now, as in Theorem 3, for straight line segments the 
number of intersections with the lines forming Un,h, is just 
the number of pixels in the digitization of r minus one. Hence, 
for the computation on the tessellation Un,h,, we will let 
each processor which is "on" (i.e., through which I? passes) 
contribute 2 independent of the state of all other processors. 
Then, 

hn/2. 

(8) 
hn L,(r) = - . (# "on" pixels) 2n 
hn = - . (1 + # intersections with lines in Un,h,). 
271 

(9) 

Therefore, 

Combining this with the bound of (6) from [22] we obtain 

qn cos (L)qr) - 
2n 2 

where c1, cp, c3 are constants and L( I?) denotes the length of r. 
Discrete versions of these problems have also been proposed 

[8], [23]. In these discrete problems, the original image g is 
defined on a subset of the lattice $ Z 2  with lattice spacing $. 
The restored image f is defined on the same lattice, while 
the boundary r consists of a set of line segments joining 
neighboring points of the dual lattice. For the discrete problem, 
f and r are found by minimizing 

2.2'EO 
adjacent 
zttnr=0 
- 

(13) 
where 2 is the line segment joining the lattice points i and 2'. 

Similar discrete problems arise in the context of using Markov 
random fields for problems in vision as proposed by Geman 
and Geman [lo] and studied in recent years by many other 
researchers (e.g., see [18]). 

It has been pointed out [14], [16] that, unfortunately, the 
discrete version above does not properly approximate the 
continuous version as the lattice spacing tends to zero. The 
problem arises with the third term involving the length of 
the boundary. Clearly, by simply summing the lengths of the 
boundary elements in the discrete approximation one does not, 
in general, recover the true length of the curve for fine lattice 
spacings. For example, the diagonal of the unit square has 
length fi but a discrete approximation to the diagonal using 
boundary elements from the standard discretization has length 
close to 2 (see Fig. 6). Thus, for certain images and values 
of the constants c1 , cp. c3 solutions to the discrete problem do 
not approximate solutions to the continuous problem (even for 
arbitrarily small lattice spacings). 

In [ 141-[ 161, some discretizations which properly approxi- 
mate the continuous problem were presented. These formula- 
tions have the advantage that solutions to the discrete versions 
converge to a solution of the continuous problem as the lattice 
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Fig. 6. A diagonal of the unit square and a discrete approximation using the 
standard discretization. Note that the length of the diagonal is 6 while for 
fine discretizations the length of the approximation is almost 2. 

spacing tends to zero. However, they have the disadvantage 
that for discrete boundaries the cost functional is considerably 
more difficult to evaluate than for the standard discretization. 
This has important implications as to the suitability of these 
methods for computation on parallel architectures. 

Specifically, as we mentioned above, the discrete formu- 
lations have a close relationship to problems arising from a 
probabilistic approach using Markov random fields (MRF’s), 
which are attractive for a number of theoretical and practical 
reasons. One major reason for the attractiveness of MRF’s is 
their local neighborhood structure. A very useful property of 
the standard discretization is its small neighborhood structure 
independent of the level of discretization. In fact, for the stan- 
dard discretization the MRF requires no interaction between 
the boundary sites regardless of the discretization level. On the 
other hand, the discretizations in [ 141-[ 161 require complex 
potentials over a neighborhood whose size is required to grow 
(unboundedly) as the lattice spacing tends to zero. For very fine 
discretizations, the neighborhood structure is highly nonlocal 
and the advantages of the MRF structure are essentially lost. 
This is due to the choice of the cost for the discrete boundaries, 
which were selected for their convergence properties to the 
true length of the curves in the continuum limit. 

The distinction can also be formalized along the following 
lines. Consider a distributed implementation in which there 
is a processor at each lattice site. The state of a processor is 
either zero or one depending on whether or not the boundary 
passes through the associated lattice square. To compute the 
length terms in the approximations studied in [ 141-[ 161, each 
processor must perform a computation depending on the state 
of a very large number (tending to infinity) of other processors 
as the lattice spacing tends to zero. On the other hand, for 
the cost term of the usual discretization, the contribution of 
a particular processor to the total cost depends on the state 
of the processor but is independent of the state of all other 
processors (regardless of the discretization level). Hence, if 
implemented in parallel architectures in the natural way, the 
methods that possess the proper convergence properties require 
computations that are in some sense nonlocal as the lattice 
spacing tends to zero, while the usual discretization results in a 
local computation (independent of the discretization level) but 
fails to have the right convergence properties. Note that for the 
method using piecewise linear approximations, if implemented 

in the natural way, the computation can be done locally but 
each processor requires an unbounded number of states in 
the continuum limit (to indicate whether an endpoint of the 
line segment is present at that processor and, if so, at which 
processor the other endpoint lies). 

A natural question is whether the computational difficulties 
discussed above can be circumvented by a clever discrete 
approximation. That is, is it possible to retain the convergence 
properties with computations using local neighborhood struc- 
tures? The results of Section I11 suggest that for rectangular 
lattices (and probably for other regular tessellations such as 
hexagonal or triangular) the difficulties are not merely due to 
a poor choice of discrete approximations, but are inherent diffi- 
culties associated with any discrete approximation to measures 
of length. However, interestingly the results of Section I11 also 
suggest that the problems with nonlocal computation can be 
avoided for appropriate random and deterministic tessellations 
(although other computational or algorithmic difficulties may 
arise due to the nature of the tessellations). 

Also, as alluded to above, the nonlocal computations can 
likely be avoided if the processors are allowed to have 
infinitely many states. For example, this could correspond to 
associating a direction (or local tangent) to each boundary 
element in addition to just its presence or absence. Hence, 
in the MRF formulations this might correspond to coupled 
intensity and boundary fields both of which are real valued. A 
somewhat different approach to having real valued boundary 
elements is suggested by an important result of Ambrosio [ 3 ] ,  
[4]. He obtained an interesting approximation to the original 
variational problem. Specifically, he showed that the functional 

r-converges (e.g., see [5]) to E(f,I‘) of (12) as h -+ CO, 

so that minimizers of E h ( f ,  v) converge to a minimizer of 
E ( f ,  r) as h + 00. Here, f is as before and v:R ---f [0,1] 
plays the role of the boundaries. For finite h,v  represents 
a sort of smoothed version of l7 in the sense of having a 
value close to 1 near r and having a value of 0 away from 
J?, and varying continuously in between. This result suggests 
a natural digitization of E ( f , r )  of (10) by taking a finite 
difference approximation to E h ( f ,  v) as discussed in [25] and 
[9]. However, as far as we know, a proof of convergence 
for such finite difference approximations is lacking in this 
case. We expect that convergence should hold as long as 
h ---t 00 appropriately as the lattice spacing 1/n + 0, namely 
h/n  + 0. Such a conjecture is natural in light of the results 
of [14], [16] and was in fact stated in [25]. Furthermore, 
convergence issues aside, it is not clear that computational 
difficulties are avoided with these approaches. For example, in 
Ambrosio’s approximation, there may be some computational 
or numerical problems as h + 00. Further work needs to 
be done to understand whether any computational difficulties 
arise in this case. 
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V. DISCUSSION AND OPEN PROBLEMS 

There are a number of interesting questions and directions 
to pursue along the lines of this paper. It would be interesting 
to extend the local computation results for both the random 
and deterministic tessellations (Theorems 3 and 4) to general 
curves. The difficulty is that for general curves there isn’t 
a simple correspondence between the number of regions 
intersected by the curve and the number of intersections the 
lines make with the curve. It would also be interesting to 
extend the local and nonlocal results to other tessellations. 
For example, we conjecture that nonlocal results similar to 
Theorem 1 hold for regular tessellations such as triangular 
or hexagonal. Likewise, we conjecture that results similar to 
Theorem 3 hold for other random tessellations such as Voronoi 
tessellations obtained from homogeneous planar Poisson point 
processes. (For work on random tessellations see for example 
[2], [29].) The results of [27] may be useful in proving results 
of this type. One difficulty in dealing with tessellations which 
are not formed by a number of straight lines is that the duality 
between intersections of the lines and sampling on the cylinder 
(manifold of straight lines) is lost. Perhaps there is a more 
general way in which to view the sampling which works for 
other tessellations. 

Another direction to pursue is to try to relax some of the 
assumptions on the computation such as translation invariance, 
etc. However, it seems that proving results in these cases will 
be difficult. One extension that we feel should go through is 
to prove a nonlocal result like Theorem 1 for order limited 
computations as opposed to just diameter limited. Also, it 
would be useful to obtain error bounds in terms of the diameter 
(or order) of the computation, since it is likely that although 
an exact computation in the limit may be nonlocal, a good 
approximation can be obtained with a small diameter (order). 
In fact, one could use ( 5 )  to obtain a lower bound on the 
achievable error for diameter limited computations. 

A natural question is whether the tessellations which allow 
local computation of length can be used to construct a discrete 
version of the segmentation problem which is local and 
yet possesses the appropriate convergence properties in the 
continuum limit. We expect that this can be done, although the 
corresponding MRF structure would be somewhat complicated 
due to the irregular placements of lattice sites. 

The notion of local versus nonlocal computations appears 
to be of fundamental importance. The work presented in this 
paper suggests many other general directions which may be in- 
teresting to pursue. It may be worthwhile investigating whether 
other computations (e.g., determining convexity or connected- 
ness from discrete approximations of a set) can be done locally. 
One could consider questions of local/nonlocal computations 
using other discretizations or in which the processors have 
access to other types of data, as opposed to just data from 
a discretization on a tessellation as considered here. It might 
also be interesting to consider forms of computation other than 
just those of the type in (l) ,  as well as to investigate other 
notions of local and nonlocal computations. Our results show 
that certain local lattice systems may inherently lack the ability 
to perform specific computations due to the arrangement and 

connections of the lattice sites. It may be interesting to study 
whether other lattice-type systems such as cellular automata 
or spin systems in statistical mechanics also possess inherent 
computational limitations arising from their architecture. 
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