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Abstract

In this technical note we present a duality theory of linear time-invariant finite-dimensional
systems both in the context of linear input-output maps and in the context of linear behavioural
systems. The dual input-output map is shown to correspond to the adjoint systems. A defi-
nition of an adjoint linear behaviour is presented and properties of the adjoint behaviour are
investigated.

I Introduction

The objective of this technical note is to close a gap in the module theory of stationary finite-
dimensional linear system as developed by R.E. Kalman (see e.g. KALMAN-FALB-ARBIB [3]). This
is concerned with the duality of linear input-output maps and makes precise in what sense the dual
of a linear input-output map gives rise to a dual linear state-space system and how reachability
and observability of the original system corresponds to observability and reachability of the dual
system.

We also relate these results to a theory of duality in the context of behavioural systems in the
sense of WILLEMS [5]. This is motivated by applications to coding theory as evidenced in the work
of FORNEY-TROTT [1] on duality for behavioral systems defined on compact abelian groups.

It is appropriate that this note be dedicated to Jim Massey. He more than anybody else has
investigated the deep connections that exist between systems theory and coding (decoding) theory.
We see ample demonstration of this in his early work on the Berlekamp-Massey algorithm and its
connections to Partial Realization Theory, his joint work with Sain on inverses of linear sequential
systems and in his recent joint work with his students Loeliger and Mittelholzer on the relationship
between the behavioural theory of linear systems and coding theory.



II The Linear Dynamical System X

In this section we review the concepts associated with linear dynamic systems. The treatment is a
minor extension of that in chapter ten of KALMAN, FALB and ARBIB [3] as in JOHNSTON [2]. All
modules are assumed to be unitary left-modules, that is, the rings always will have a 1, which acts
as an identity operator on the module, and the ring acts on module elements from the left.

Definition 2.1 A discrete-time, linear, time-invarant (D.L.T.1.) system ¥ over a ring R is a triple
of R-module homomorphisms, ¥ = (F: X - X, G:U = X, H: X - Y), where U (the input
module) and Y (the output module) are finitely generated R-modules. X 1s the state module.

The interpretation of this definition is that the triple ¥ defines the dynamic equations
Ti41 =F'2}g+G'Uf, (2.1)

and
nw=H- x4 (2.2)

where u, € U denotes the input applied at time t;zy, 2441 € X denotes the states at times t and
t+ 1 respectively, and y. € Y denotes the output at time t. Note that in this formulation, an input
u, applied at time t has no effect on the output y, at time t, although it does affect the output at
time t + 1. In other words, there is no “feed-through”.

Secondly, each generator of U can be thought of as an input “port”. If U has m generators over
R, an input u, can be specified by m elements of R, and so ¥ can be pictured as having m input
“vorts.” Similarly, each generator of Y can be thought of as an output port. This interpretation is
strengthened if U and Y are free modules, i.e., of the form R™.

When no confusion can arise, the dynamical system ¥ will simply be denoted by the triple
(F,G,H).

There are several important maps that can be derived from ¥ = (F,G,H). Equalion 2.1 de-
scribes the operation of ¥ under the application of an input at a single instant of time, and can be
viewed as a map : X x U — X. This map can be extended to sequences of inputs of arbitrary but
finite length:

Definition 2.2 Let U* denote the set of all finite length sequences of elements from U. That is,
U* = {(ug,u1,-..,un)|u; € U;n arbitrary}
We will represent U* by the finitely generated R[z] module Q, where
Q = U[2] = {all polynomials in z with coefficients from U}. (2.3)

Given an element w € U, we will interpret the coefficient of 2* as the inpul applied i instants of
time before the present. Thus zw will denote the input sequence w followed by a zero input; the
inputs are pictured as being applied up to and including time = 0, and the output resulling from
this sequence of inputs appears at lime = 1.



Definition 2.3 Let & = (F,G, H) be D.L.T.I. system over R. If

n—1
W= Z uizn—l—t € Q,

1=0
the map R* : X x Q — X is defined by
n—1 )
'R,":(a:o,w)r—)Fm-x0+ZFm_l_’-G-ui (2.4)
i=0

R*(zo,w) is the stale reached by starting ¥ in state xo, and applying the sequence of the n inputs
represented by w.

Definition 2.4 Ry : Q — X, the extended 0-state transition map of ¥, is defined by

Ry : w+— R*(0,w). (2.5)

Definition 2.5 Let X = (F: X - X,G:U - X,H: X - Y) be a D.L.T.I. system over R, and
let Ry, : @ — X be its extended 0-state transition map.

Then X., the reachable set of X, is defined by
X, = imRy
Rs(9). (2.6)

Another map of interest derivable from 2.1 and 2.2 is the free response map which describes the
oulput of © started in some state  and supplied with an all-zero input sequence. In general, this
output sequence is semi-infinite.

Definition 2.6 Let Y** denote the set of all semi-infinite sequences of elements drawn from the
R-module Y. We will identify Y** with the R[z]-module I where

r = Y[z
= D_wilmeY}) (2.7)
i=1

I' is an R|[z]-module under the following action of z : ordinary multiplication by z followed by
discarding non-negative powers of z.

Definition 2.7 Let ¥ = (F: X - X,G:U - X,H : X — Y) be a D.L.T.I. system over R.
Then Osx: : Z — T, the free response map of L, is defined by

Os : z +— io:(HF‘"1 -x)z”" (2.8)

i=1

Thus, Ox(z) represents the sequence {H(z), HF(z),..., HF(z),...}.



Definition 2.8 Let ¥ = (F,G, H) be a D.L.T.I. system over R and let Rz : @ — X, Og : X —T
be the extended O-state transition map and free response map respectively.

Then fs : Q — T, the input/output map of X, is defined by

fe=0s-Rx (2.9)

Proposition 2.1 Q = U[z] and T = Y[[z71]] are both R[z]-modules, as discussed above. X is also
an R|[z]-module with the action of z defined by

VzeX, z-z=F(z). (2.10)

With this structure, Ry, : @ — X and Oyx : X — T are both R[z]-homomorphisms, and hence so is
fo:Q—-T.

Proof. See Chapter 10 of KALMAN, FALB, ARBIB [3]. [ |

Thus, a D.L.T.L. system £ = (F : X —» X,G : U — X,H : X — X) over R induces an
R[z]-homomorphism [y, : U[z] — Y/[[27}]]. The converse is also true, as outlined next.

2.1 Linear, Zero-state, Input/Output Maps

Definition 2.9 Let U,Y be finitely-generated (F.G.) R-modules, and let Q,T' denote the R[z]-
modules U[z),Y[[z""]] as above. A linear, zero-stale, inpul-output map f over R is simply an
R|[z]-homomorphism f : Q@ — T.

Proposition 2.2 Let f : O — T be linear, zero-stale, input/put map over R. Then f induces a
D.L.T.I systemXy=(F: X - X,G:U - X,H: X -Y).

Proof. Take X = Q\ker f. Let Ry : @ — X be the canonical surjection and let Of: X — T be
the canonical injection induced by f. The action of F on X is taken to be the action of z on X,
viewed as an R-module. G is defined by letting finding the images under R 7 of U’s generators and
extending this map by R-linearity. H is defined by finding the images in T' of X’s generators an
R-module, retaining only the coefficients of 2~', and extending this map by R-linearity. (For more
details, see chapter 10 of KALMAN, FALB, ARBIB [3]). ]

Definition 2.10 Xy, the D.L.T.I. system induced by a linear input/outpul map f:Q—=T, will be
called the canonical system induced by f.

Notice that R s and @) s are precisely the extended 0-state transition map and free response map
of Xy. The facts that these maps are surjective and injective respectively have several inleresting
interpretations and ramifications.



2.2 Reachability, Observability, and Realizability

Definition 2.11 Let X be the state module of a D.L.T.I. system ¥. ¥ is said to be completely
reachable iff X, = X, where X, = im Ry, = the set of reachable states.

Proposition 2.3 The canonical system Xy induced by a linear input/put map is completely reach-
able. The proof follows from the fact that Ry : Q@ — X = Q\ ker f 1s surjective.

Definition 2.12 Let X be the state module of a D.L.T.I. system . A state x € X is said to be
indistinguishable from 0 iff Ox(z) = 0 € T'. The set of all indistinguishable stales is denoted X;. A
D.L.T.I. system is said to be completely distinguishable iff X; = (0).

Proposition 2.4 The set Xi of indistinguishable states in a D.L.T.I. system ¥ is equal to the
R[z]-submodule ker Ox;. The canonical system induced_by a linear input/output map is completely
distinguishable (since H; is injective and so X; = ker Oy = (0)).

Definition 2.13 A D.L.T.I. system X = (F: X - X,G:U — X,H : X = Y) over R will be
called a finite D.L.T.L system iff X is a finitely generated R-module. (This will be the usual case
and the adjective “finite” will be dropped if there is no cause for confusion).

Definition 2.14 Let f : Q — T be a linear input/output map over R. f is said to be realizable iff
there ezists a finite D.L.T.1. system & such that fx. (the input/output map of £) equal f. In this
case, ¥ is said to realize, or be a realization of, f : @ — T'. Note that if £y, the canonical system
induced by f, is a finite D.L.T.I. system, then f is realizable. In other words, if X = Q\ker f is
F.G. (finitely-generated) over R, then f is realizable, and furthermore, Xy is a canonical realization

of f.

III The Adjoint Linear System

In this section take the ring R to be a field K. K will be either R (the real field) of C (complex
field) or a finite field. The R-modules U,Y and X are finite-dimensional K-vector spaces with

either the euclidean topology (in case K = R or C) or the discrete-topology (in case K is a finite
field).

Let (Y[[z~")]) and (U[z])’ denote the algebraic duals of Y|[[z~']] and Ul[z] respectively. Let
Q : Y[[z7']] = K be K-linecar and define the adjoint linear map

(Y27 — (Ul2]) as
{fZ'Q=Q'fz (3.1)

Now it is not a-priori clear that f5 defines an input-output map, since the algebraic dual of
Y[[z~Y]] is not a space of polynomials. This may be seen by using the fact that the space of
polynomials has a countable basis whereas the Y [[27!]]’ cannot have a countable basis. We first
consider the case when K = C or R. To surmount this difficulty we introduce a topology on the



space of formal power series F with coefficients in Y. To simplify the exposition, takeY =Cor R
but the same remains true when Y is a finite-dimensional vector space.

We put on F the topology of convergence of each coefficient. This topology can be defined by
the sequence of seminorms:

u= Y upz’~ sup |up|, K =0,1,2,--
pEN p<K
This topology converts F into a Fréchet space (cf. TREVES [4], p. 91).

On the other hand the algebraic dual of a space of polynomials P with coefficients in C or R is
a space of formal power series. In fact, there is a natural topology on the space of polynomials, the
inductive limit topology defined in terms of Hausdorff finite dimensional topologies on the space
of polynomials of degree < K, but the algebraic and topological duals coincide. Therfore for the
sequel, when we refer to dual space we could think of both dual spaces as topological duals.

There is a natural duality between polynomials and formal power series which can be expressed
by the bracket
< Pu>= Z Pyu,, where
peN

P=) B andu=)_up?.
p 14

This is well-defined since all coefficients P, except possibly a finite number of them are equal to
zero. We then have:

Theorem 3.1 (TREVES [4/, p. 228, Th. 22.1).

(a) The map. u~» (P ~< P,u >) is a vector space isomorphism of the Fréchet space of formal
power series F onto dual of the space P of polynomials.

(b) The map. P~ (u~< P,u >) is a vector space isomorphism of P onto the dual of F.

There is a natural K[z~!]-module structure on Y’[2~'] and U’[[z]], where / denotes the dual
space. Define multiplication of elements of Y’[2~!] by a polynomial as follows:

For

L m
a(z) =Y azta€Ca=0i>nf=) fiz7,[;eY
1=0 j=0

n+m
a(z"V) f=> gz t=g
£=0
£
where ge = Z ag_kfk.
k=0

This multiplication is well-defined and g € Y’[z~!]. The module axioms are easily checked. As far
as U’[[2]] is concerned, define multiplication of elements of U’[[z]] by a polynomial as follows:



n oo
For a(z7!) = Za,-z’*, a; € C,and [ = Zf_jzj with a; = 0 all other i € Z and f; =0, V
i=0 Jj=1
other j € Z.

a(z?l)- f= gef=yg
=1

4n
where g_p = Za_g+k Sk, > 1and g_p = 0, for £ < 1. Again the module axioms are easily

k=0
verified. Let (Y[[z~1]))’ and (U[z])’ denote the duals of Y[[z~']] and U[z] respectively.
Define the pairings
(i)
<> Y[ xY[z7Y)) — K

(f,y)— Zfiyi+l:

where n o
f=Y fiztandy=> w2

i=0 i=1

(ii)
<+->9 1 U'l[2]] xU[z] — K
(f,u) — Y foitioip
i=1
where

00 . n .
F=Y Fadu=) ui?.
i=1

1=0

Theorem 3.2 (a) The map

¢ @ Y[ — (Y[
f~y~<fy>1)

is a K[z~1]-module isomorphism from Y'[z7] to the dual of Y[[z™"]].
(b) The map

¥ Ullz]] — (U[a])
fr— (u~< f,u>2)

is a K[2~'])-module isomorphism.



Proof. We first prove that ¢ and v are injective, surjective and K-linear and hence algebraic
isomorphisms. This can be carried out as in the proof of Theorem 3.1 by Treves. We make
(Y[[z~1]])) into a K[2~'] module in the following way:

For f € Y'[z71], let ¢(f) be denoted as Qy which belongs to Y [[27])’. Define multiplication of
Qs by a(z7!) € K[z7'] as
a(z"!) - Qs = Qg where g = a(z™") - f

Now we can easily check that the module axioms are satisfied. Using the K-linearity and the above
definition of multiplication it is easily checked that ¢ is K[z~!]-linear.

In a similar way we make (U[z]) into a K[2~']-module. [ |

In order to state the next theorem we introduce the adjoint system
() §i1 = F'&+Hn; §(400) =0
xt=G'&

where F/ : X' —» X',G' : X' - U’ and H' : X’ — Y’ are the adjoint linear maps.
Let fs5 represent the input-output map corresponding to 7

Theorem 3.3 There exists module isomorphism ¢ and v as in the previous theorem such that the
following diagram commutes:

Y Bl
Ty Ty
v B v
where £} is defined as, fi;-Q = Q- fr and Q: Y([z™"]] = K is K-lincar, f; is K[2~")-linear, and
f}_: t a2+ fn—]z—n+] +o 4+ for— g_lzl +g_222 4o,

with fi e Y and g—; = G'Fli"lH’fo +ooso4 G’F’"+i_1fllfn.

Proof. The proof is constructed by showing that

Jele(H))(w) = ¥[fs(f))(u),u € Ul2] (3.2)
where f = fo2™ + fa127 "+ oo+ fo, fi€eY,i=0,--- n.
Now fy[p(f)](w) = ¢(f)[fz(u)).

By solving the recurrence relation corresponding to (), we get

o(Nfs()) = fo(HGuo) + fi(HFGug) + -+ + fn(HF"Guo)
+ fo(HFGu_y) + fi(HF?*Gu_) + -+ fo(HF""'Gu_,)
+

+ fo(HFXGu_p) + filtHF** ' Gu_i) + - -+ + fa(HF"**Gu_y)
= (G'H' fo)(uo) + (G'F'H' f1)(uo) + - - + (G'F™H fn)(u0)



+ (G'F'H' fo)(u=1) + (G'F2H' fi)(u-1) + -+ + (G'F"™ H' f) (w1)

+ ...

+ (G'F¥ H' fo)(u—g) + (G'F**VH' fi)(u_1) + -+ +

- (G'F™RH fo) (u_) (3.3)

On the other hand if,

g = g1z'+g22 4+, g€l
o0
P(@)(w) = Y g-i(u—it1) (3.4)
1=1

By solving the recurrence relation corresponding to (), we get for g = fs(f), that

g-1= GIHlfo + 4 (GIFInI[fn)

g_i =G'F- H fo+--- + (G'F™H-1H'f,)

Therefore ¢[fs(f)](u) is precisely the right hand side of (3.1). [

The Case where K-Finite Field. Let K be a finite field with the discrete topology and U and Y
finite-dimensional K-vector spaces with the discrete topology. Let the topologies on K and U,Y
be generated by = norms |- |k, |- |u, | |y where [v| =04 v =0and |v| =1 iff v # 0. Here v € K,
U or Y. On Y[[z~!]] we put the product topology. Theorem 3.3 now remains true.

Remark 3.1 We may proceed using realization theory as in Section 2 instead of starting with an
explicit state-space realization. Thus given an input-output map fx : Ulz] — Y[[z7']) obtain a
minimal (reachable and observable) realizalion via the canonical factorization

Ulz) 2 (27
RN /0
Ulz]/ ker fs = X

where the reachability operator R and the observability operator 0 are defined by
R : Ulz] = X :uw[u] ([] denotes equivalence)

O : X—=Y[z™: [y~ f(w.

Let F: X - X,G:U — X and H : X — Y be K-linear maps defining the corresponding
minimal state space realization. Now define

fz: Y[z — U'[[2]] by
fsre=9¢-fs



Then as in Theorem 3.3, we can check that the state-space system defined by

Fl: XX
H:Y -5 X'
G: X' -U'

realizes the map f5, (note the timg-reversal). We can explicitly compute the reachability operator
R and the obvervability operator O corresponding to f5. We have that (X) is reachable iff (¥) is
observable and (X) is observable iff (X) is reachable.

IV Duality for Linear Behavioural Systems

Let K be a field and let W be a K-vector space of finite dimension g. Let W#Z denote the K-vector
space of biinfinite sequences taking values in W and let o : WZ — W¥Z be the left shift defined by
(ow)(t) = w(t + 1). Note that the same symbol w will be used to denote an element of WZ or W
when no confusion arises.

Definition 4.1 A linear behavior on W is any subspace B C W< which satisfies B is shift invari-
ant, that 1is,
oB=DB (4.1)

B is complete, that is

VY we W2, such that w|; € Bly Y 1C Z a finite interval 4.2)
=>weDB '
Definition 4.2 B is said to be N-memory if (4.2) holds with the restriction to intervals I C Z
such that length (I) < N + 1.

Definition 4.3 Let B be a linear shift-invariant subspace of WZ. The completion of B is defined

as )
B={weW?

wlfeBVICZ finite}.

It is easy to see that B is a linear behaviour and is in fact the smallest linear behavior containing
B.

For B a linear behavior and / C Z, let
B = {w € B| w|r =0}, (4.3)
where I¢ denotes the complement of I in Z, and

By = z B;. (4.4)

I finite

Clearly By is a linear shift-invariant subspace of B and B r CB.



Definition 4.4 A linear behavior is said to be controllable if:

YV wi,we € B,3w € B and 3 s € N such that
w(t) = wi(t) Vit <0 and (o°w)(t) = wa(t) Vit = 0.

B is said to be N-controllable if in the above s can always be chosen equal to N.

Let W’ be the dual space of W and let W[z, z7!] represent the space of polynomials in the
indeterminates z and z~!. In a manner similar to that of Section 2, W’[z, 27'] has the structure of
K|z, 27! module.

Consider the pairing,

(,):WZxW|2,2z7"| = K, (4.5)
defined by
@)= 3 (wi,ul)
i=—o00
where

N
W= (-, Wi-1, Wi, Wi+1, ) and w = Z wiz*
i=—N

and (, ) represents the pairing between W and W’. This is well-defined since the sum on the right
hand side of (4.5) is a finite sum. Now if B C WZ is a linear behavior B+ = {w'|(w,w’) =0, Vw €
B} is a K[z, 2z~!] submodule of W’[z,27"]. Conversely if M is a K[z, 27| submodule of W[z, Y
then M+ = {@|(w,w') =0, Vw' € W’[z,27"]} is a linear behaviour on W.

Based on the results of [5], the following theorem is easily proved.

Theorem 4.1 Let B C W7 be a linear behavior. Then
(a) (BH)* =B.
(b) B is N-memory for some N € N.
(¢) The following are equivalent:
i) B is controllable.
ii) B is M-controllable for some M € N.
iti) By = B
(d) There ezists a K -finite dimensional behavior C C B such that
B=B;PcC
(e) There exists two non-negative integers m(B) and n(B) such that

(i) dimensionk(Bj) = m(B)t + n(B).



(ii) dimensionk(Bj,y) = m(B)t —n(By).

Remark 4.1 m(B) is the number of input variables in any input-outpul representation of B. n(B)
is called the McMillan degree of B and is the dimension of the slate space of any minimal input-
state-output representation of B.

4.1 Adjoint Behaviour

Let V be a finite dimensional K-vector space. We have a canonical embedding

V{z,271 < VZ, given by

N ' (4.6)
Z: vizt 3 (ana"')v—N,"')v—laUO;vla""vN>0309"')'
i=—N
Clearly with this identification Vz, 27!] ~ (V%);.
Let BX C W'[z,27!] as a subspace of (W’)%. Clearly B* is shift-invariant.
Definition 4.5 The adjoint behaviour B* of B is defined as
B* = BL C (W')2. (4.7)

Since B+ C (B*); it follows that )
B*=BtC (F)f

Hence B* = (B*;) which implies from Theorem 4.1 that B* is controllable.
By identifying (W’)’ and W we can consider (B*)* C WZ. We have the following:

Proposition 4.1

(B*)* = By.
Proof.

i) Let I C Z be a finite subset and let w € B;. Let v € B*. Since v|_; € Bt|_;, it follows that
w € (B*)1. Hence By C (B*)*, which yields By C (B*)*.

ii) In the other direction, it follows from a) of Theorem 4.1 that
(B € ((BY)*)s =By C By

and hence (B*)* C By.



Remark 4.2 It follows from Proposition 4.1 that B — B* induces a one-to-one corrrespondence
between controllable linear behaviors on W and controllable linear behaviors on W'.

Theorem 4.2 Let B C W2 be a controllable linear behavior. Then:
(0) (B)y = B*.
(1) B is N-memory < B* is N-controllable.
(2) dimg B|; + dimg(B*); = |I|dimc W, VI C Z finite.
(3) m(B) + m(B*) = dimcg W
(4) n(B) =n(B*)

Proof.
(, ), will denote the pairing between W% and W[z, z7"]

(, ), the pairing between Wz, 21] and (W’)%

It is evident that with the usual identifications (4.6),

( ! )IIW(z,z‘I]xW’[z,z‘l] = ( ) )2‘W[z,z'1)xW’[z,z"l] (48)
1; and L, will denote orthogonal complement with respect to pairing (, )1 and (, )2.
(0) Clearly
B C (B*); C B*. (4.9)
Hence
Bhb o (BY) ) 2 (B 2 B (4.10)

It follows from (4.10), using Prop. 4.1 and (a) of Theorem 4.1 that

B=((B))' = BY = (B*);.

Consider

E= Y. B

I interval
[I[|SN+1

It can be immediately seen that C is an N controllable linear behavior and C C B*. Hence C* 2 B.
Moreover, it is easy to see that

Cr=(B*),VICZ, I aninterval and |[I| < N +1
which, using (0) yields

C*ly=Bl;, VICZ, Ianinterval and |[I| <N + 1.
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In the other direction, consider

C={we WZ| w|; € B|;, VI CZ, I aninterval, [I| < N 41

Clearly C is an N-memory linear behavior and C 2 B. Hence C* C B*. Obviously C|; =B|; Y I C Z
such that |I| < N + 1. Using again (0) we thus obtain:

(€% 2 (€Y= (BY); = (B*)r, VI C Zsuch that |[I| < N + 1.
Since B is N-controllable it follows that B* C C*. Hence B* = C* and B = C. This implies that B

is N-memory.

(2): Tt is clear that
dimg B|; + dimg(BY); = |I|dimg W (4.11)

VY I C Z finite.
(2): now follows from (0) and (4).
(3) and (4) are immediate consequences of (2) together with part (e) of Theorem 4.1. [ |

V  From Dual Linear Behaviours to Dual Linear Input-Output
Maps

Let W = U x Y where U, the input space and Y the output space are finite-dimensional K-vector
spaces. Let B C W¥ be a linear behaviour which is controllable and satisfies

i) PyzB = U? where Pyz denotes the projection onto U Z,
ii) BN ({0} xY) is a K-finite dimensional vector space.
iii) B is non-anticipative, that is, if
(u,y) e Band v € UZ and V(=00,0] = Ul(=00,0]

then 3j € Y4, such that l(=00,0] = Yl(~c0,0) 2nd (v, %) € B.

Let B be a linear shift invariant subspace of B which has finite support on the left of the origin.
Since B is controllable, B = B.

We will identify trajectories with compact support to the left of the origin with the K-vector
space

o0
W) = (3wl € K)
i=N
W((z~1)) has the structure of a K|z, z~}-module. Using (i), (ii) and (iii) we can conclude that B
is the graph of a K[z, z~']-homomorphism ¥ : U((2™')) — Y ((2~!)) which is causal, that is

U[z7U((z7Y)]) c 2¢VY((z ) Vie 2.



Let Hg be the Hankel Operator corresponding to ¥ defined as
Hp : Ulz] = Y[[271]], where

Hp = P-iy[.—) ¥y z-

Note that U[z] and Y[[27!]] have the structure of a K[z]-module and Hp is a K[z]-module homo-
morphism.
Identify W’ with U’ x Y’ and let B* be the linear behavior in (W’)? defined as in section 4.

We may check that B* is the graph of an input-output map 7 which is causal. Let Hg- be the
corresponding Hankel operator. We then have that the following commutative diagram:

iy 2B (Ul

v 1 16

vl  — Uz
Hg»

where v and é are K|[z]-module isomorphisms and Hpg. is a K|[z]-module homomorphism. The
details of this construction as well as the corresponding theory of internal representation and
thereby obtaining an analogue of Theorem 3.3 will be published elsewhere.
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