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tion of the discontinuity sets of interest.

Finally we should comment on the assumption (7.7). It ought to be justified
on its own merits rather than simply being a necessary condition for our
main conclusions to hold. Indeed, smooth surface patches in the scene generi-
cally intersect along smooth curves, whose projections onto the image plane
generically are smooth. Hence the edges in the “true” image should be
expected to be piecewise smooth for just about the same reasons as the
“true” image function, which we are trying to estimate, is expected to
be piecewise smooth. This calls for mechanisms analog to those governed
by the smoothness and edge cost terms in the cost (7.1). In this context
condition (7.7) is merely a straight forward analog of the edge cost. The
action of the smoothness term is roughly taken care of by imposing the
bound, (p < 00,) on the Hélder modulus of the derivatives of the components
of the image segmentation components 7.
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1. Introduction

Mumford and Shah [262][264] suggested performing edge detection by
minimizing functionals of the form

BUK) =8 [(f-gfde+ [ VP dztalK],

where Q is the image domain (a rectangle), dz denotes Lebesgue measure, g
is the observed grey level image, i.e., a real valued function, f approximates
g, K denotes the set of edges (a closed set), | K | is the total length? of
K, and 8 and a are real positive scalars. This approach is a modification of
one due to Geman and Geman [132] that uses Markov random fields, which

'Research supported by the US Army Research Office under grant ARO DAAL03-92-
G-0115 (Center for Intelligent Control Systems).

2In general I cannot be represented as a union of curves so one-dimensional Hausdorff
measure is used to define ‘total length.” See the contribution of Leaci and Solimini in this
book.
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170 8. Approximation, Computation, and Distortion

was developed by Marroquin [249] and by Blake and Zisserman [34]. It is
referred to as the variational formulation of edge detection.

The three terms of E ‘compete’ to determine the set K and the function f.
The first term penalizes infidelity of f to the data while the second term
forces smoothness of the approximation f, except on the edge set K. Thus,
f will be a piecewise smooth approximation to g. The third term forces some
conservativeness in the use of edges by penalizing their total length.

The primary difficulty in constructing an efficient algorithm to minimize E
is appropriately representing the edges. One approach is to absorb the edges
into the interaction between neighboring pixels. This idea appears in the an-
isotropic diffusion approach [293] [273], GNC (Graduated non-convexity)
type algorithms [34], and in mean field annealing [33][129]. An(?t?ler
approach has emerged from the cross fertilization between computer vision
and mathematical physics. The variational formulation, besides being a
model for edge detection, now serves as a prototypical example of a ‘free-
discontinuity’ problem. (See the contribution of Leaci and Solimini for an
elaboration of this.) Within the framework developed for such problems the
theory of I'-convergence, approximation of one functional by another, has
also been developed. Ambrosio and Tortorelli [12, 13] applied that theory
to E. The approximation is achieved primarily by replacing the edge set
with a function that modulates the smoothing of the image. Additional
terms in the functional force this function to behave as if it were a smeared
version of the corresponding edge set. The degree of smearing, i.e., the
width of the effective edges, is controlled by a parameter. Convergence of
the approximation to E occurs by taking the parameter to the appropriate
limit, causing the effective edge width to tend to zero.

A benefit of replacing the edge set with a smooth function is that an
obvious algorithmic approach suggests itself: discretize the functions and
minimize the functional using descent methods. The product is an edge
detector that can be represented as a coupled pair of non-linear partial
differential equations (see Section 3). The idea of using coupled partial
differential equations of this type is now being applied to many problems
in computer vision. The chapter in this book by Proesmans, Pauwels, and
Van Gool contains several examples. March [244] applied this approach to
the stereo matching problem. In Section 2, we will outline the application
of P—convergence to the variational formulation of edge detection and show
how it leads to a coupled pair of partial differential equations.

The variational formulation was motivated in part by the desire to combine
the processes of edge placement and image smoothing. Earlier edge detection
techniques such as the Marr-Hildreth edge detector, the Canny edge
detector, and their variants separated these processes; the image is first
smoothed to suppress noise and control the scale, and edges are detected
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subsequently, as gradient maxima, for example. One consequence of this
two step approach is pronounced distortion of the edges, especially at high
curvature locations. Corners tend to retract and be smoothed out; the
connectedness of the edges at T-junctions is lost. By introducing interaction
between the edge placement and the smoothing, it was expected that this
effect could be abated. There is evidence, both theoretical, in one dimension
(see [34]), and experimental, in two dimensions, that this is indeed the case.
However, the model is known to place undesirable restrictions on admissible
edge geometries (see Section 5). Nevertheless, certain limit theorems that
have been proven by one of us in [306] and are discused in Section 5 indicate
that the restrictions may not be too serious and that, asymptotically, any
edge geometry is possible. Moreover, heuristic arguments suggest that the
approximate formulation indicated above behaves better with respect to
these distortions/restrictions than the original model. The relaxation of the
distortion is achieved at the cost of the smearing of the edges. Hence, there
is trade-off here between the resolution of the edges and the systematic
distortion of the model.

Localization of edges cannot be reasonably discussed without also making
reference to scale. The notion of ‘scale’, scale of features and scale of
representation, is widely held to be of fundamental importance in vision.
(This book contains two substantial chapters devoted to ‘scale-space.’)
One reason for this is that hierarchal descriptions of scenes offer potential
reductions in complexity of various visual processing tasks. Coarse scale
segmentation of an image, for example, can be used to identify regions of
interest for further processing, thereby reducing the computational load. It
is important, therefore, that coarse scale descriptions retain those features
of the data that are required for effective decision making. In the case of
edge detection, T-junctions and corners play important roles in estimating
the depth and shape of objects in a scene [126]. It is desirable, therefore,
to accurately represent these features even at coarse scales. The ‘finger-
print’ images of gradient maxima of one dimensional images in scale-space
[386][395] are well known; the localization of edges degrades badly as scale
increases. Many two dimensional examples can be found in the literature.
By embedding the ideas implicit in the limit theorems mentioned above
into the approximation scheme also mentioned above, one can develop an
edge focusing scheme that essentially removes the restrictions on the edge
geometry present in the original model and, at the same time, circumvents
the smearing/geometry trade-off to produce well localized, sharp edges. We
indicate how this is done in Section 6. A complete description can be found
in [307]. The resulting algorithm is described by a coupled set of non-linear
second order parabolic partial differential equations (eqns. (8.5)—(8.8)) with
explicit parameters § and ¢ which are adjusted in an appropriate way (see
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eqns. (8.9)—(8.11)). The adjustment induces focusing of the edges. The global
coarse scale nature of the edges is retained by introducing scale stabilizing
feedback mechanisms. The adjustment process commences after the non-
linear parabolic equations have nearly converged to their equilibrium. The
set of equations (8.5)-(8.8) and (8.9)—(8.11) should be viewed as an adaptive
non-linear filter which performs edge detection via focusing. Indeed, the
equations are the fundamental objects in this theory and, apparently, are
far more well behaved (for example, convergence to global minima) than the
original variational problem. It is apparent that the form and the properties
of the I'-convergent approximation mesh well with the parameter adjustment
proposed for the edge focusing algorithm. In particular, the relaxation of the
edge geometries due to the smearing of the edges is retained, by adjusting
the parameters, while the edges are sharpened

2. Approximation via '-Convergence

To compute minimizers of E the critical question is how to represent the
set K. This issue was raised in the section of this book by D. Mumford.
A natural approach is to discretize K into “edge elements” and treat them
combinatorially, adding or removing elements in an attempt to minimize E.
Appending a stochastic component, based on 2 Markov random field model,
leads to the simulated annealing approach first suggested in [132]. This tends

to produce computationally impractical algorithms. Modifications which -

incorporate the edge elements into the interaction between image pixels
have been proposed. One of these is based on mean field approximations
of the Markov random field [128] [33] and another, GNC [34], is based on
a homotopy of the interactions. Both these approaches have their strong
points, and are in fact quite similar [33] [129]. A novel and powerful approach
has appeared from the mathematical theory of approximation of functionals
via ['-convergence.

The concept of I'-convergence is due, independently, to E. De Giorgi [84] and
H. Attouch [23]. The idea is to approximate one functional, E for example,
by more regular ones, E., so that minimizers of E, approximate minimizers
of E while enjoying greater regularity. For the variational formulation of edge
detection, one would like to replace the edges, which are singular objects (in
the context of 2-dimensional measure), with something more manageable.
In this section, we provide a definition of I'-convergence, state some of its
basic properties, and present the application to the variational formulation
of edge detection.

Let (S,d) be a separable metric space and let F, : S — [0, +o0],n = 1,2, ...
be a sequence of functions. We say this sequence I'(S) — converges to F :
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§ — [0, +00] if the following two conditions hold for all f € S,

Vfaos [ liminf Fa(fa) 2 F(f)
and 3f, =/ liminf Fa(fa) < F(f).-

The limit F. when it exists, is unique and lower-semicontinuous. The

l

following theorem characterizes the main properties of '-convergence.

Theorem (I—Convergence.) Assume that {F;} I'(S)-converges to F.
Then the following statements hold.
(i) Let t, | 0. Then, every cluster point of the sequence of sets

{f €S : Fa(f) S inf Fa+ ta}

minimizes F.

(ii) Assume that the functions F, are lower semicontinuous and, for every
t € [0,00), there exists a compact set C; C S such that for all n {f €
S : Fo(f) < t} C C;. Then the functions F,, have minimizers in S, and
any sequence of minimizers of F,, admits subsequences converging to some
minimizer of F.

The point of (i) is that approximate minimizers of I, approximate minimi-
zers of F. Condition (ii) is useful for proving that minimizers of F, exist
and are well behaved.

To properly formulate the ['-convergence results it is convenient to define
E in terms of f alone, letting K be implicitly defined as the closure of the
discontinuity set of f. This implicit definition is described in the chapter by
Leaci and Solimini in this book.

We consider functionals of the form

E.= [ (B -9 +2(0) | VS | +a(c¥(2)| Vo F +(1 = v)’/4c)) dz.

. (8.1)
Here ®(v) is playing the role of the K in E, ie., it is modulating the
smoothness constraint on f. The other terms involving v force ®(v) to
simulate the effect that K has in E. Implicitly, we have 0 < v < 1. The
algorithmic intention is to minimize E. with respect to f and v. An obvious
advantage the approximation offers over the original formulation is that v,
since it is a function on €, can be discretized in a straightforward way and
(local) minimizers of E, can be computed using descent methods. Ambrosio
and Tortorelli [13] proved that if one sets

®(v)=v? and ¥(v)=1, (8.2)
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then E. I'-converges to E as ¢ — 0, i.e., for any sequence ¢, — 0. Some
computational results based on this functional have already appeared in
March [245], see also Shah [341].

The choice for ® and ¥ given above may be one of the simplest possible, but
it is far from unique. (See [12] for an example which is not of the form 8.1.)
When one considers algorithms based on these functionals there are trade-
offs to be made between speed and performance. For example, the choice
reflected in equation (8.2) leads to simple equations and fast computation.
However, other choices may produce sharper singularities in ® and hence
less smearing of f near the edges. With slight modifications, the proof of
I'-convergence found in [12] and [13] can be made to go through for a large
class of ¥ and ®. In particular, one can choose ¥ to be any C! function
satisfying

¥(z) > 0 for z € (0,1],
1

2/ (1 — w) ¥/ (w)du = 1.
0

Note that any C! function satisfying the first property can be made to
satisfy the second property by suitable normalization. Given such a ¥, one
can choose ® to be any C! function satisfying

o(1)=1,
®(0)=0,
®(z) € (0,1) for z € (0,1).

Although the conditions given above are sufficient for the proof of I'-
convergence, for algorithms based on ‘gradient’ descent on E. one should
also impose the condition that ¥ be monotonically non-decreasing and @
be monotonically increasing on (0, 1). Furthermore, for our implementation,
which is discussed in Section 7, the condition lim,_q <I>(:z:) [z < o should
be imposed.

Eve-n more general ¥ and ® than defined above are possible. For example,
setting

U(v) = d(v) = %e-(l-v)’ ' (8.3)

also produces a I-convergent set of functionals. Examples in the class defined
above are

_(m+1)}m+ 2)?”%
4

where m > 0 and n > 0. Equation (8.2) is a special case of this with
(n,m) == (170)

®(v) =v®™ and ¥(v) A (8.4)
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To formulate the I'-convergence of E. to E, one must find an appropriate
metric space for f and v and extend the definition of E and E; to this space.

In [13], the choice of S is
(fiv) e L®(Q) x {ve L®(Q) : 0<v < 1},

and the metric is that induced by the L2(Q2) norm. (In [12], slightly different
choices were made.) First, it is possible to mathematically recast E {ina
weak setting with f € SBV(Q), see the chapter by Leaci and Solimini},
whereby one defines K in terms of the discontinuities in f. In this way
one can write E(f, K) = E(f). The functional E can then be extended to
S by setting E(f,v) = E(f) if v = 1 (in L%(Q)) and f € SBV(Q) and
E(f,v) = oc otherwise. Some additional care must be taken to define F. on
all of S. When Vv and V f are not appropriately well defined, one should set
E.(f,v) = oo; we refer the reader to [12] or [13] for technical details. Once
the metric space is specified, the proof of I'-convergence involves basically
two steps. The first is to show that for any sequence {f., v} where ¢; —
0, fo, = f, and v, — 1 (in the appropriate sense, not pointwise) that
liminfioo Ee, (fersve) = E(f,K). The second is to construct a sequence
such that limsup;_, ., Ee,(feir V) < E(f, K). If (f, K) minimizes E, then
this second step requires constructing near minimizers of E.. If

liminf E, (fs,v;) < 00,

1—0o0
then, roughly speaking, z € K implies lim;o ®(ve,(z)) = 0. (Thus at
these points we do not have v, (z) — 1; however, K is a set of Lebesgue
measure 0.) On the other hand, the last term in equation (8.1) forces ve(z) to
converge to 1 for almost all z € Q (in the sense of Lebesgue measure), hence
one has lim._0 ®(v.(z)) = 1 for almost all z € Q. The near minimizers
of E, are constructed by setting ®(v.(z)) =~ 0 on K and ®(v.(z)) =~ 1
outside some neighborhood of K, with a smooth transition in between. The
approximations indicated here become equalities in the limit as ¢ — 0. The
width of the transition depends on ¥ and on c. We give a brief heuristic
description of how this occurs.
In the transition region of ®ov, we expect f to be relatively smooth, so only
the terms not involving f in E. will have a significant effect on the form of
v there. In the following inequality,

i 1/2
(@) | Vo P+ 320 > vz | vo) (- 0),

equality holds only if | Vv |= W~1/2(v)iz2. This suggests that (in one

dimension) if u(t) satisfies 228 = 1=2=ly~1/2(y(t)) with ®(u(0)) = 0,
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then setting v(z) = u.(dist (z, K)), fordist (z, K) < 7. where ®{u.(r.)) ~ 1
(with u.(7.) = 1 as ¢ — 0), will produce near optimal transitions. This is
how the near optimal v, are constructed in [12] and [13]. Note that assuming
that u.(0) does not depend on ¢, we obtain u.(t) = u;(¢/c). Thus the edge
width is proportional to c. Let G(s) = f5 (1 —r)¥/?(r)dr. We now compute

& ('—“I‘(u(t» 20 Lo uW) ‘s

t 4dc
[ (wrouen 1 222 o - ue) de =
Te 6
| ]0 2 lu)dt|= G(r) = .21.

with the last approximate equality becoming equality in the limit as ¢ —
0. In the one dimensional case, we now see that the last term in 8.1 will
contribute approximately a times the number of discontinuity points of f.
In two dimensions, one obtains approximately « times the length of K.
Thus, we see that E. approximates E.

3. Minimizing E.

Local minimers of E. can be found by gradient descent. Simple, practical
algorithms can be obtained from finite element discretizations. In this
section, we formulate the main ideas in the continuum setting.

The Euler-Lagrange equations associated with E. are given by d,E. = 0
and dyE, = 0 with Neumann boundary conditions, where

0E. = B(f—9)-V-(2(v)V/), (8-5)
,E. 2 dw)a ! |VFP —cV- (T(v)Vo)+2c¥(v) | Vo |2 +
(1-v)/2c (8.6)

are the functional derivatives of E..
Allowing f and v to depend on t, we can write a ‘gradient’ descent on E,
in the form

a
af(z,t) = —c;0sF (8.7)
“g;v(x,t) = —c,0¢FE (8.8)

with Neumann boundary conditions, where ¢; and ¢, control the rates of
descent; they would be constant for a strict gradient descent, but may not be
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in general. It turns out that better implementations (faster and with more
stable convergence) can be obtained with ¢, not held constant (see Section
7).

Since the functional E. is not jointly convex in v and f, we do not expect
to always reach a global minimum by a descent method. Thus the solution
obtained will depend on the initial conditions and also on the parameters
¢y and c,.

Equation (8.7) (after substituting from equation (8.5)) strongly resembles
the anisotropic diffusion scheme for image enhancement introduced by
Perona and Malik [293] and, even more strongly resembles, the ‘biased’
anisotropic diffusion scheme of Norstrém [273]. The solution to the diffusion
equation

)
af(l‘,t)zllrf(z,t), f(z,0) = g(z)

(with Neumann boundary conditions) is identified with ‘scale-space’
smoothings of g, parametrized by ¢. The solution f {z,t) is obtained by
convolving g(z) with a Gaussian kernel whose variance is linear in ¢. Perona
and Malik [293] suggested performing image enhancement by controlling the
diffusion coefficient to prevent smoothing across edges. Thus they were led
to consider equations of the form

d
/@t = Vo (b(| V=f(=0) DVzf(z.t), f(z,0) = g(z).
They experimented with h(s) = TT(J%')T and h(s) = e~ (%) where J

and K are constants. Equation (8.7) resembles this equation in that it is
a diffusion with controlled conductivity. The control of the conductivity
depends on | Vf | indirectly through equation (8.8). The term 3(f — q)
in equation (8.7) stabilizes the solution at some particular scale. Such a
term also appears in the ‘biased’ anisotropic diffusion scheme studied in
[273]. In [293], the authors analyze their scheme to show that the maximum
principle holds, i.e., that the solution’s extrema never exceed those of the
original image®. They argue that this implies that no new ‘features’ (blobs)
are introduced into the solution. Here, as in [273], this property is a trivial
consequence of the formulation. The functionals E. would increase if such
new features appeared. (Truncating such a new feature would decrease E..)
An advantage of the scheme represented by equations (8.7) and (8.8) is that
it yields an explicit representation of the edges ( via the function ®(v}). The
resulting system of equations admits a particularly simple implementation
in digital mesh connected parallel machines with simple processors or,

3]t is unclear that the maximum principle can be invoked since an appropriate
existence theorem for the Perona-Malik eguation has not been proved.
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potentially, in an analog network, such as discussed in [149]. Although a
direct study of the existence, uniqueness, and well-posedness of (8.7) and
(8.8) has not been carried out, local stability of these equations can be
proved [305].

4. Remarks on Energy Functionals, Associated Non-Linear
Diffusions and Stochastic Quantization

The methodology of minimizing energy functionals involving an “elliptic”
form and a “geometric” term (leading to free discontinuity problems)
for filtering and boundary reconstruction of images is quite general. For
example, a modified energy functional which does not have some of the
disadvantages of the functional considered in this chapter is

E(f,K) = /Q(f—g)2dx+/m_1Vf|2dz+/K|H2|dul

+ No. of singular points in K with multiplicities,

where H is the curvature of K (appropriately defined), and #!-represents
the one-dimensional Hausdorff measure. This class of problems has been
considered in the recent work of Ambrosio and Mantegazza (cf. thesis of
Mantegazza at the University of Pisa in 1993). If an elliptic approximation

to this class of free-discontinuity problems can be found, then the method -

of computation of minimizers via non-linear parabolic equations can in
principle be constructed.

There is a connection between the ideas presented in this chapter and the
ideas of stochastic quantization and the Bayesian formulation of Image
Analysis (cf. Mitter [255] and the chapter of Mumford in this book). For
this purpose consider

exp(—f /ﬂ (f - g)*da) -

exp(—E.)

)2
exp(~ [ [@()IVS +aleb(o)| Vol + i P

4c
exp(—BL(f,g)) exp(=Ac(f,v)) -

Then it is necessary to give meaning to the expression

du. = exp(—A.(f,v)) H d(f(z),v(z))

rER?

as a probability measure on an appropriate distribution space. This
probability measure is formally interpreted as a prior measure on (f,v)
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while the expression exp(—BL(f, g)) is formally interpretated as a likelihood
function.

The minimization of the energy functional E. corresponds to computing the
maximum a posteriori probability estimate of (f,v), but the probabilistic
interpretation via the measure y. and the likelihood function allows one
to compute other estimates such as the conditional mean estimate. Finally,
the connection to stochastic quantization can be made by considering the
coupled infinite dimensional stochastic differential equations

df(t,2) = -9y E.dt + d&(t,z)
dv(t,z) = —0,E.dt + dnlt, ),

where
9sE. and 9,E;

denote functional derivatives as above and & and 7 are infinite dimensional
Brownian motions. Formally, pi. is the invariant measure of this coupled pair
of stochastic differential equations.

5. Scale, Noise, and Accuracy

The notion of scale-space representation of an image is a central one in
this book. With regard to edge detection one of the central problems arising
from the scale-space concept is the correspondence problem: which of the fine
scale edges correspond to coarse scale edges? The problem is aggravated by
the fact that the distortion of the edges, mentioned earlier, depends on scale.
Typically ‘coarse scale’ implies more smoothing and, hence, more distortion.
This is undesirable in many situations because salient features, corners and
T-junctions for example, tend to be obscured. The correspondence problem
is therefore of great importance.

Since the variational approach combats the distortion caused by smoothing,
one hopes that the correspondence problem will be alleviated by using
it. Although this appears to be the case, problems remain; there still are
distortions, depending on scale, and the model intrinsically restricts the
geometry of possible edge sets in an unnatural way. The analysis of Mumford
and Shah [263] showed that edge sets produced by the variational approach
have the following properties, which are illustrated in figure 8.1.

If K is composed of C!+! arcs, then

e at most three arcs can meet at a single point and they do so at 120°,

e they meet Q only at an angle of 90°,

e it never occurs that exactly two arcs meet at a point (other than the
degenerate case of two arcs meeting at 180°), i.e., there are no corners.
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120°

Non-minimal Geometries Cor ding Minimal

ies

Figure 8.1. Calculus of Variations Resuits
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These results are a consequence of the fact that the term |K| in E locally
dominates the behavior of singularities in K. Hence, the types of singularities
observed are identical to those of minimal surfaces. Of course ‘real’ edges are
not restricted to these geometries. The dependence on scale derives from the
interaction between the singularities of f and those of K. Roughly speaking,
smaller values of 3 produce greater distortion. This becomes more clear in
light of the theorem quoted below and the analysis of Mumford and Shah
[264]. It turns out that under some mild assumptions on the data, it is
possible to prove that the edge set produced by the variational formulation
can approximate arbitrarily well, depending on the parameters, any edge
geometry.

To quantify the disparity between one edge set and another, we introduce
the Hausdorff metric. For A C B2, the e-neighborhood of A will be denoted
by [A]. and is defined by [A]. = {z € R? : infyea |z — y| < €} where |- |
denotes the Euclidean norm. Denoted by dg(-,-), the Hausdorfl metric is
evaluated by

(A, B) =inf{e: AC[B]. and B C [A]} .

Elementary analysis shows that dg is a metric on the space of non-empty
compact sets in R2.

Suppose for the moment that we have ideal data: g is a piecewise smooth
function. To make this clear we denote it by g;. We assume that there
exists a set K, a union of curves, satisfying length (Ky) < oo such that
g1 is discontinuous on K, and smooth elsewhere. More precisely, we require
that fo_g | Var |2 du < oo, that there exists a constant L such that
g1, restricted to any straight line segment lying in Q — K, is a Lipschitz
function with Lipschitz constant L, and that g actually has a discontinuity
everywhere on K, except, possibly, for a set having zero total length.
Under these condmons it can be proved that minimizers of E have the
property that the edge sets converge to I'y in Hausdorff metric as 3 — oo.
This means, in particular, that edge sets can assume arbitrary geometries
asymptotically. This result can be interpreted as an asymptotic fidelity result
for the variatio- nal approach. It implies that the distortions resulting from
ad hoc functions of this type are local, small scale effects.

From a practical point of view this convergence is inadequate because
B — oo forces f to match gy exactly; noise in gr will result in the
appearance of many spurious boundaries. However, noise and smearing
effects can be incorporated into the result if they are scaled appropriately.
Roughly speaking, if the admissible noise magnitude scales as o(ﬂ”%) and
the admissible smearing acts over a radius of o(37'), then their presence
can be tolerated and we have the following,
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Theorem (Approximation.) For any fized @ > 0 and € > 0 there ezists
3* < oo such that if 3 > 8~ and Kg is minimal for E for some g € v(3),
then

dH(I(Q,.Kg) < €.

The proof may be found in [306] and [305]. The relevant mathematical
framework is outlined in [11]. This theorem indicates how noise and
localization defects should scale with the parameter § to maintain fidelity.

6. Edge Focusing via Scaling

In [307] the theory outlined above is applied to the [-convergent approxima-
tion to the variational formulation to produce an edge-focusing algorithm.
The basic idea of edge-focusing is to start with coarse scale edges and then
adjust them to get better localization without introducing finer scale edges.
It is an attempt to circumvent the noise/accuracy/scale tradeoffs inherent
in the underlying edge detection model.

Bergholm [31] developed an edge focusing algorithm based on the Marr-
Hildreth edge detector. Since the variational model has inherently better
localization, the correction required by the focusing algorithm is smaller.
Prior to the existence of the theory outlined in previous sections, the main
barrier to edge focusing based on the variational formulation was the com-
putational difficulty of implementing such a scheme.

The edge focusing algorithm developed in [307] is based on the scaling
conditions of the Approximation Theorem and on the T-convergent
approximation to the variational formulation. Two problems immediately
suggest themselves with regard to applying the Approximation Theorem.
First, a real image has fixed noise which cannot be scaled since it cannot
be identified, and second, smearing is fixed and cannot (in general) be
removed. The algorithm resolves these objections by making a heuristic
identification of noise with error and of distortion of the edges with smearing.
A minimizer of the variational formulation provides a piecewise smooth
approximation to the data and a nominal set of edges. If we assume that
the edges are essentially correct but imprecisely localized, then, according
to the Approximation Theorem, if we increase (3, then the localization
should improve. To prevent the introduction of smaller scale edges, we
smooth the data g. This is accomplished by introducing feedback from
f into g. This smoothing is suppressed in a neighborhood of the coarse
scale edges to prevent smearing of the true edges in the data. These various
mechanisms are balanced in accordance with the scaling conditions of the
Approximation Theorem to achieve a stable, convergent algorithm. The edge
focusing algorithm adheres to this paradigm with the additional feature that
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the variational formulation is replace by I'-convergent approximation, where
the degree of approximation is refined as the algorithm proceeds.

Since we intend to use an approximation to the variational formulation, it is
prudent to consider whether the approximation deviates in a significant way
from the original formulation with regard to distortion of edges. Although
analysis is prohibitively difficult, we expect (and simulations have borne
this out) that the spreading of the edges in the I'-convergent approximation
actually ameliorates some of the geometric distortion. We recall that the
primary reason for the geometric distortion is that the term |K| in E
determines the structure of the singularities. Roughly speaking, this arises
because the length term is one dimensional and scales linearly while the
other terms are two dimensional integrals and hence scale quadratically
in the size of the domain. (Actually this is not precisely true because
singularities arise in f, but the dominance of the length term still occurs at
singularities in K.) When the edges are smeared and length is replaced by
a two-dimensional integral the concentration of cost in the length term is
alleviated and, hence, we expect the distortion to be relaxed. The price paid
for this is the lack of resolution of the edges. The edge focusing algorithm
begins with thick edges, thus relaxing distortion, but ends by sharpening the
edges while scaling the parameters in accordance with the Approximation
Theorem. Thus, the edges are focussed as resolution increases.

Edge focusing is achieved by perturbing equations (8.7) and (8.8),
introducing dynamics into 3,c, and g. The additional dynamics take the
following form,

29t = @U@0 -a@D)., (5.9)
28w = @), (8.10)
%c(t) = —ect), (8.11)

where ¢ is a small positive constant included to reflect the fact that these
equations are perturbations of equations (8.7) and (8.8).

The dynamics in 3,¢, and g are intended to come into effect only after the
basic descent equations (8.7) and (8.8) have essentially converged. Thus,
we assume g(z,0) is the initial data and f(z,0) and v(z,0) satisfy their
respective Euler-Lagrange equations with 3 = 3(0) and g(z) = g(,0). This
implies the presence of a nominal set of edges, i.e., a function v(z,0). We
will be guided by the heuristic that the subsequent focusing should only
focus the edges already found and not introduce new ones.

To understand the effect of these equations, it is best to first assume p =1
and eliminate equation (8.11), i.e., fix ¢(t) = ¢(0). When this is done, one
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obtains the solution

v(z,t) = v(z,0),
flz,t fl=z,0),
Blt) = B(0)e,
g9(z,t) = g(z,00e™+ f(z,0)(1 —e™).

It can be checked that 9E = 0 and 8,E = 0 for all ¢t and that f(z,t)
(locally) minimizes E for all ¢. From the perspective of the Approximation
Theorem, if we define gy = f(z,0) then by appropriately interpreting
g(z,t) as a smeared, noisy version of g we see that these equations
effectively implement a continuous version of the limit process described
in the Approximation Theorem. However, with the simplifying assumptions
made here, there is no change in the edge function with time, i.e., no edge
focusing. This is the role played by the dynamics in ¢ and the function p.

Consider now the full set of equations (8.9)-(8.11). Equation (8.11) reduces
c. This heuristic mimics the T-convergence to the variational formulation.
Thus, edges are sharpened as t increases. Equation (8.9) introduces feedback
from f into g, effectively smoothing g. We choose p to suppress the
smoothing of g in a neighborhood of the edges, i.e., we choose p so that
p(v(z,t)) will be approximately zero inside some neighborhood of the
edges and approximately one outside some larger neighborhood. We make

Il

a correspondence with the conditions of the Approximation Theorem by -

interpreting the effect of p on f(z,t) as a smearing of the edges in the ideal
data which is iterpreted as lim,_,, f(z,t).* Hence, the width of the larger
neighborhood should shrink as 371(t). A simple and reasonable choice, for
example, is p = ® since in this case the neighborhood width is proportional
to ¢(t) = (¢(0)/3(0))37(t). Since the edges in the data are not smoothed
and 3(t) is becoming large, the singularities of the edge function should
converge to the ‘true’ edge locations.

7. Discretization and Parameter Choices

In this section, we address some of the issues which arise as a consequence
of discretization of E.. In particular, appropriate step sizes for the discrete
versions of the descent algorithm are given, and the relative rates of the
gradient descent and the scaling dynamics are considered. A more detailed
version of this section can be found in [307].

We assume a discretization in which f and g are defined on a rectangular
subset of Z?, i.e., the lattice generated by the vectors (0,1),(1,0). The
discrete version of v is defined on the inter-leaving subset of a square

“See [307] for a detailed description of the correspondences.
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lattice which is twice as dense and rotated 45°, i.e., the lattice generated by
(1/v2,1/v?2),(1/v2,~1/v/2) and translated by (1/2,0). Presumably one
can consider different lattice spacings, but it turns out that, by scaling, the
lattice spacing can be absorbed into the other parameters.
Each pixel y in the discretization of v is uniquely associated with the two
nearest pixels z and z' in the discretization of f. For each such y let df (y)
denote (f(z) — f(2'))*. The derivatives of ¥ and @ as real functions will be
denoted ¥ and @ respectively. Note that in equations (8.7) and (8.8), time
scaling can be absorbed into ¢; and ¢,. Thus, time is discretized simply by
substituting

2wt = fe ) - @),

%v(y, t) = v(y,t+1) —v(y,t).

We now address the question of choosing ¢; and c,. A standard gradient
descent would have both ¢ and ¢, constant. If we try to set ¢, constant then
it must be chosen small since |V f|?/a can be quite large, hence convergence
will be slow. A computationally efficient choice that gives much faster
convergence is to approximate a Newton type descent. By appropriately
choosing ¢, (y) and making certain mild approximations®, we obtain

= +2c¥(v(y)) Tyen(y) v¥) ) (8.12)
))df (v)/(av(y)) + L + 8c¥(v(y))/

where all quantities on the right hand side are evaluated at time ¢. This
update formula enjoys many desirable properties. Note, in particular, that

v(y,t + 1) is an average of v(y,t) and a well behaved quantity which lies
between 0 and 1, so v(y,t + 1) € [0, 1] is guaranteed. Setting ¢; constant is
much less problematxc and for our simulations we have set it to (23 +8)~!
since this gives a good rate of convergence without allowing overshoot in
f. The initialization of f and v will effect which local minimum is reached
by the initial gradient descent. We expect this will have little effect on the
edge focusing part of the algorithm. We have experimented with f(0) = ¢(0)
and also letting f(0) be the solution to f = B(0)A(f — g) with Neumann
boundary conditions. The second choice is better when more smoothing is
desirable, i.e., in noisy or textured images. In general, we set v(0) =
With these choices, we observe that the basic descent on f and v converges
in about 30 iterations for the range of parameters we have experimented
with. (Larger values of ¢ and smaller values of 3 will reduce the rate of
convergence.)

deU=%(@) o

°An approximation is only required when ¥ # 1; the details may be found in [307].
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The scaling dynamics associated with edge focusing can be discretized in a
straightforward way.

g(z t+1) = glz.t) +eplz,t)(glz,t) — f(z.1),

Bt +1) (1-e7'8(1) ,
e(t +1) (1—e€)eft),

il

where p and ¢ are to be specified in each case.

Termination of the computation is best controlled through the value of
c(t). As c(t) becomes very small, the discretizauo_n error becomes more
significant. For the choices of ¥ and @ used for the sxmula,tlon.s presented.m
this chapter, we allowed ¢(t) to become small enough so that the effec.tlve
edge width is one pixel. (Effective edge width can be defined as the width

of the set {®(y) < 1/2}, for example.)

Figure 8.2. Square images, 120 x 490. From top to bottom: Data g, no edge smoothed
data f;, pre-focusing ®(v), pre-focusing f, final ®{v), and final f. lnm:.l parameters are
3 =0.01,a = 0.008,c(0) = 2.0 and final parameters are 8=0.1,c=02.
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8. Simulation Results

In this section, we present the results of some simulations of the edge
focusing algorithm. Image intensity is linearly scaled to lie in the range [0, 1].
In the two dimensional plots and in the images, we plotted ®(v) on the same
mesh as f, i.e., the plotting mesh corresponds to L. For each z € Lg, we
plot the minimum value of ®(v) among the four nearest neighbors.

Figure 2 serves as a demonstration of the behavior of the edge focusing
algorithm and its dependence on the parameters a and 3. The image is a
synthetic image of several squares of various sizes and rotation. The squares
have side lengths of 60, 50, 40, 30, 20, 10, and 6 pixels. We chose squares to
illustrate the effects observed at high curvature edges, and rotated them
to demonstrate the rotational invariance of the algorithm. The functions
® and V are as in equation (8.2) and we set p(v) = ®(v). The initial
value fr is given by the no-edge smoothing of g associated with 3(0).
We have carefully chosen the parameters to make the detection of some
of the squares marginal. For Figure 2, the initial values are 3(0) = 0.01,
a = 0.008, and ¢(0) = 2.0. This value of 3(0) corresponds to smoothing of
the image over a radius of approximately 10 pixels, relatively large compared
to the sizes of the squares. Such smoothing would not be required for good
quality ‘real’ images. The final values of the parameters are 3(T) = 0.1 and
¢(T) = 0.2 (where T is the time of termination), and ¢ was chosen so that
200 iterations with scaling are required to reach T. Figure 2 presents the
data g, f1,®(v(0)), f(0),®(v(T)), and f{T) from top to bottom. Note the
accurate localization of those edges detected. There is little visible distortion
in the edges even of the smallest square whose edges were detected at all.
Figure 3a and 3b illustrate the effects of variation in @ and 5. Both are
images of ®(v(T')). The image consists of the original with two more copies
of the series of squares with intensities chosen so that the difference in
intensity between the background and square has been reduced by a factor
of 0.7 and 0.5 respectively. By scaling, one can see that this has the same
effect as increasing o by a factor of 2 and 4, respectively. To generate
Figure 3a, we used parameters 3(0) = 0.01,a(0) = 0.003,¢(0) = 2.0 and
3(T) = 0.1,a(T) = 0.003,¢(T) = 0.2. The parameters used to generate
Figure 3b are the same except 5(0) = 0.006 and 3(T) = 0.06.

Figure 4 demonstrate the algorithm on ‘real’ images. Figure 4 is 512 x 512
pixels. In general, € is chosen so that 200 iterations with scaling are required.
The data is in Figure 4a. The image has been processed for two different
sets of parameters to indicate the stability of the edges under a change in
scale. In both cases, the displayed images are the following. Figures b.c, and
d are ®(v(0)), f(T), and ®(v(T)), respectively. Figures e.f, and g reiterate
b,c, and d for the second set of parameters. The first set of parameters is
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given by

8(0) = 0.01, a=0.001, c(0)=20, B(T)=0.1, ¢(T)=0.2
and the second by

B(0) =0.2, a=0.005, ¢(0)=20 5(T)=20, ¢(T)=02.
The value 3 = 0.01 roughly corresponds with smoothing by averaging over
a 10 x 10 window and hence represents a high degree of smoothing. The
value 3 = 0.2 roughly corresponds with smoothing by averaging over a 2 x 2
window. The degree of smoothing in the two examples is widely different

and yet the edges found at the coarse scale are essentially a subset of those
found at the finer scale. Virtually no scale dependent distortion is visible.
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Figure 8.3. Square images of varying intensities, 340 x 490. Final @(v). For Figure 3a
the initial parameters are 3 = 0.01,a = 0.003,¢(0) = 2.0 and the final parameters are
3 =0.1,c = 0.2. For Figure 3b the initial parameters are 3 = 0.006,a = 0.003,¢(0) = 2.0
and the final parameters are 3 = 0.06,c = 0.2.
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Fig. 4f Fig. 1g
Figure 8.{a, e. [. g. Original g, Prescaling ®(v). final f, and final ®{v), respective-
ly, with initial parameters g = 0.2, a = 0.003, ¢(0) = 2.0 and final parameters 3 = 2.0,

c=10.2.
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Abstract. This chapter introduces a2 number of systems of coupled, non-
linear diffusion equations and investigates their role in noise suppression and
edge-preserving smoothing. The basic idea is that several maps describing
the image, undergo coupled development towards an equilibrium state,
repre- senting the enhanced image. These maps could e.g. contain intensity,
local edge strength, range, or another quantity. All these maps, including
the edge map, contain continuous rather than all-or-nothing information,
following a strategy of least commitment. Each of the approaches has been
developed and tested on a parallel transputer neiwork.

1. Introduction and basic philosophy

1.1. Energy minimization and systems of coupled diffusion equations

Optimization of energy-functionals provides a clear-cut and, from a
conceptual point of view, very attractive framework for the regularisation
and processing of images. It is not surprising therefore that it has been the
inspiration and point of departure for many investigators (cfr. [362, 34, 264,
273] to name just a few). The underlying basic idea is that a given input-
signal ¢ is transformed into an output-signal f in such a way that the result
minimizes a predefined cost- or energy-functional. In its simplest form both
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