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In this article we attempt to give a historical account of the main 
ideas leading to the development of non-linear filtering and 

stochastic control as we know it today. 

The article contains six sections. In the next section we 
present a development of linear filtering theory, beginning with 
Wiener-Kolmogoroff filtering and ending with Kalman filtering. 
The method of development is the innovations method as origi­
nally proposed hy Roue and Shannon and later presen led in ils 
modern form by Kailath. The third section is concerned with the 
Linear-Quadratic-Gaussian problem of stochastic control. Here 
we give a discussion of the separation theorem which states that 
for this problem the optimal stochastic control can be constructed 
by solving separately a state estimation problem and a determi­

nistic optimal control problem. Many of the ideas presented here 
generalize to the non-linear situation. The fourth section gives a 
reasonably detailed discussion of non-linear filtering, again from 
the innovations viewpoint. Finally, the fifth and sixth sections 
are concerned with optimal stochastic control. The general 
method of discussing these problems is Dynamic Programming. 

We have chosen to develop the subject in continuous time. In 
order to obtain correct results for nonlinear stochastic problems 
in continuous time it is essential that the modern language and 
theory of stochastic processes and stochastic differential equa­
tions be used. The book of Wong [5] is the preferred text. Some 
of this language is summarized in the third section. 

Wiener and Kalman Filtering 
In order to introduce the main ideas of non-linear filtering we 

first consider linear filtering theory. A rather comprehensive 
survey of linear filtering theory was undertaken by Kailath in [1] 
and therefore we shall only expose those ideas which generalize 
to the non-linear situation. Suppose we have a signal process (Zt) 
and an orthogonal increment process (w,), the noise process and 
we have the observation equation 

(1) 

Note that if w, is Brownian motion then this represents the 
observation 
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(2) 

where 111 is the formal (distributional) derivative of Brownian 
motion and hence it is white noise. We make the following 
assumptions. 

(AI) (Wt) has stationary orthogonal increments 
(A2) (Zt) is a second-order q.m. continuous process 

(A3) For 'ds and t> s 

where H;"z is the Hilbert space spanned by (w�, z� I T:S: s). 

The last assumption is a causality requirement but includes 
situations where the signal Zs may be influenced by past obser­
vations as would typically arise in feedback control problems. A 
slightly stronger assumption is 

(A3)' HW ..1 HZ 
which states that the signal and noise are uncorrelated, a situation 
which often arises in communication problems. The situation 
which Wiener considered corresponds to (2), where he assumed 
that (Zt) is a stationary, second-order, q.m. continuous process. 

The filtering problem is to obtain the best linear estimate z/ 

of Zt based on the past observations (Ys Iss t). There are two other 
problems of interest, namely, prediction, when we are interested 
in the best linear estimate zr' r> t based on observations (ys I s 

s t) and smoothing, where we require obtaining the best linear 

estimate zr' r < t based on observations (ys Iss t). Abstractly, 

the solution to the problem of filtering corresponds to explicitly 
computing 

(3) 

where p,Y is the projection operator onto the Hilbert space Hi. 
We proceed to outline the solution using a method originally 
proposed by Bode and Shannon l2 J and later presented in modern 
form by Kailath [3]. For a textbook account see Davis [4] and 
Wong [5], which we largely follow. 

Let us operate under the assumption (A3)', although all the 
results are true under the weaker assumption (A3). The key to 
obtaining a solution is the introduction of the innovations process 

vt = Y, -f�ZsdS 
(4) 
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(Fl) Vt is an orthogonal increment process. 

(F2) Vs, Vt> s 

cov(Vt) = cov(Wt) 

(F3) Hi �Hi . 
The name "innovations" originates in the fact that the optimum 
filter extracts the maximal probabilistic information from the 
observations in the sense that what remains is essentially equiva­
lent to the noise present in the observation. Furthermore, (F3) 
states that the innovations process contains the same information 
as the observations. This can be proved by showing that the linear 
transformation relating the observations and innovations is 
causal and causally invertible. As we shall see later, these results 
are true in a much more general context. To proceed further, we 
need a concrete representation of vectors residing in the Hilbert 

space H! . The important result is that every vector Y E Hi' can 

be represented as 

(5) 

where � is a deterministic square integrable function and the 
above integral is a stochastic integral. For an account of stochas­
tic integrals see the book of Wong [loco cit.]. Now using the 
Projection Theorem, (5), and (Fl)-(F3) we can obtain a repre­
sentation theorem for the estimate it as: 

(6) 

What we have done so far is quite general. As we have 
mentioned. Wiener assumed that (zs) was a stationary q.m. 
second-order process, and he obtained a linear integral repre­
sentation for the estimate where the kernel of the integral opera­
tor was obtained as a solution to an integral equation, the 
Wiener-Hopf equation. As Wiener himself remarked, effective 
solution to the Wiener-Hopf equation using the method of spec­
tral factorization (see, for example, Youla [6]) could only be 
obtained when (zs) had a rational spectral density. In his funda­
mental work Kalman ([7,8,9]) made this explicit by introducing 
a Gauss-Markov diffusion model for the signal 

Jdxt = Fxtdt+Gdl3s 
1 Zt = HXt (7) 

where the last integral is a stochastic integral. The Gauss-Markov 
assumption is no loss of generality since in Wiener's work the 
best linear estimate was sought for signals modeled as second­
order random processes. The filtering problem now is to compute 
the best estimate (which is provably linear) 

(8) 

Moreover, in this new setup no assumption of stationarity is 
needed. Indeed the matrices F, G, and H may depend on time. 
The delivation of the Kalman filter can now proceed as follows. 
First note that 

(9) 

(See EquaLion (6).) 
Now we can show that 

(10) 

where K(s) is a square integrable matrix-valued function. This is 
analogous to the representation theorem given by (5). 

Equation (10) can be written in differential form as 

(11) 

and let us assume that Xo = O. The structure of Equation (11) 
shows that the Kalman Filter incorporates a model of the signal 
and a correction term, which is an optimally weighted error 
= K(t)(dYt - Ztdt) (see Figure 1). 

It remains to find an explicit expression for K(t). Here we see 
an interplay between filteTIng theory and linear systems theory. 
The solution of (II) can be written as 

(12) 

where <1>(t, s) is the transition matrix corresponding to F. From 
(9) and (12) 

and hence 

<;!let, s )K(s) = � E(Xt v�) as 

where Xt is an n-vector-valued Gaussian random process, Wt is Some further calculations using the fact that xtilt; shows that 
m-dimensional Brownian motion, Zt is a p-vector-valued Gauss-
ian random process, and F, G, and H are matrices of appropriate K(t) = P(t)H' , 
order. We note that (7) is actually an integral equation 

68 

where pet) = E(;tx;), Xt = Xt - Xt. Finally, using the repre­

sentation of solutions of the linear stochastic differential equa­
(7') t ions (7) and using (11) we can wrile a linear stochastic 
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differential equation for xI and write down a representation for 

pet) = E(xtx;) as 

pet) � ljf(t,o)P(O)Ijf'(r,O)+ f�ljf(t'S)GG'Ij!'(t'S)dS 

+ f�ljf(t,S)P(S)H'HP(S)Ijf'(t'S)dS 
(13') 

where \II(t, s) is the transition matrix corresponding to (F - PH'H) , 
There is again a role of linear systems theory evident here, 

Differentiating W.r. to t, we get a matrix differential equation for 

pet), the matrix Ricatti equation 

1 dP � GG' -P(t)H'HP(t)+ FP(t) + P(t)F' 
dt 

P(O)=cov(xo)=Po· (14) 

Kote that K(t) = P(t)H' is deterministic and does not depend on 
the observation process Yr, and hence can be pre-computed. The 
approach to the solution of the Wiener Filtering Problem consists 

in studying the equilibrium behavior of pet) as t�oo. There is 

again a beautiful interplay between the infinite time behavior of 

the filter and the structural properties of Equation (7). One can 

prove that if the pair (F, G) is stabilizable and (H, F) is detectable 

then P(t)�p as t�oo where p is the unique non-negative 

solution to the algebraic Ricatti equation corresponding to (14) 
and that F - P H'H is a stability matrix. Thus the filter is stable, 
in the sense that the error covariance converges to the optimal 
error covariance for the stationary problem even if F is not a 
stability matrix. For the linear systems concepts introduced here 
and the proof of the above results the reader may consult Won­

ham [10]. 

The Linear Quadratic Gaussian (LQG) Problem 
and the Separation Principle 

At about the same time that the theory of filtering using linear 
stochastic differential equations (Gauss-Markov Processes) was 
being developed, an analogous development for the optimal 
control of linear dynamical systems with a quadratic cost func­
tion was taking place. This work was inspired by the develop­
ment of Dynamic Programming by Bellman [11] and the ideas 

ofCaratheodory related to Hamilton-Jacobi Theory [12] and was 

developed by Merriam [13] and Kalman [14]. For textbook 

accounts see Brockett [15], Wonham [10], and Bryson and Ho 
[16]. An extension of the quadratic cost optimal control problem 
for linear dynamical systems in the presence of additive white 
process noise perturbations leads us to consider the quadratic 
cost problem for linear stochastic dynamical systems. 

The general situation here is that we are given a linear 
stochastic dynamical system 

(15) 

and the observation equation 

(16) 
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Here (�t) and (Wt) are taken to be independent vector Brownian 
motions and Ut is a control variable which needs to be chosen 
based on the information available to the controller so as to 
minimize the cost function 

(17) 

where Q :? ° is symmetric and R > ° is symmetric. In the general 
partial observation case the control Ut is required to be a function 

of the past of the observation, i.e., of (ys I 0 ::;; s::;; t). Historically, 
these problems in somewhat specialized situations were first 
examined and solved by Florentin [17,18], by Joseph [19] in 
discrete-time, and by Kushner [20]. The definitive treatment of 
this problem is due to Wonham [21]. See also the important paper 
of Lindquist [22]. 

When stochastic disturbances are present, there is a funda­
mental difference between open-loop control (that is, where the 
control is not a function of the observations) and feedback 
control (where control is a function of the past of the observa­
tions). In general, feedback control will lead to a lower cost than 
open-loop control. Furthermore, the only general methodology 
for handling these problems is Dynamic Programming. To ap­
proach the partially observable-stochastic control problem in­
volving linear stochastic dynamics and a quadratic cost function, 
we first consider the corresponding fully observable stochastic 

control problem by setting Wt'" 0, '\It E lO, 1J and H '" 1. In this 
case, the problem can be solved using Dynamic Programming 
and certain ideas of stochastic calculus which we now describe. 
We set up the necessary language, which will be useful later. 

All stochastic processes will be defined on a fixed probability 
space (0, F, P) and a finite time interval [0, n on which there 

is defined an increasing family of O"-fields (Ft, ° ::;; t::;; T). It is 
assumed that each process {xt} is adapted to F,-i.e" Xt is 

Frmeasurable for all t. The O"-field generated by (xs, 0:::; s::;; t) 
is denoted by F/ = 0" (xs, ° ::;; s ::;; t). (Xt, Ft) is a martingale if it 

is a supemwrtingale and a sub-JrWrtingale. E[xt I Fs] = xs, Xt is a 
supermartingale if E[Xt I Fs] ::;; Xs and a submartingale if E[xt I Fs] 
:2 Xs. The process (Xt, Ft) is a semimartingale if it has a decom­
position Xt = XO + at + m" where (mt, Ft) is a martingale and {at} 
is a process of bounded variation. Given two square integrable 
martingales (mTo Ft) and (nt, Ft), one can define the predictable 
quadratic co variation «m, n>t, Ft) to be the unique "predictable 
process of integrable variation" such that (mt nt - <m, 11>, Ft) is 
a martingale. For the purposes of this article, however, the only 
necessary facts concerning <m, n> are that (a) <m, n>i = ° if mt 
Ilt is a martingale; and (b) if � is a standard Brownian motion 
process, then 

Finally, we need to use the Ito differential rule. Suppose that XI 
is a vector diffusion process given by 

(18) 
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where XI E R", �t E Rm is a vector of independent Brownian 
motions and f and g are vector and matrix-valued functions, 
suitably smooth. 

In the above the last integral is a stochastic integral which is 

a generalization of the Wiener integral we have encountered 

before and is defined through an appropriate approximation 
process and a quadratic mean-limiting process (see, for example, 
Wong [5]). This cannot bc dcfincd as a Lcbesgue-Stieltjes inte­
gral because the trajectories of Brownian motion are not of 

bounded variation almost surely. Now, if \jf is a twice continu­
ously differentiable function of X, then 

(19) 

where A(x) = (aU(x)(. = G(x)G'(x). , I,J�1 
Note that in contrast to ordinary calculus we have a second­

order term in the formula arising from the variance properties of 
Brownian motion, This is the Ito differential rule, 

Let us now return to the fully observable s tochastic control 
problem, Associated with the linear stochastic differential equa­
tion 

{dXS=FxsdS+Gd�S sE[t,T] 
xt = x(fixed) 

and L is the operator 

(L/)(t,x) = It + I;Fx+!tr(Gfx,xG) , 2 

(20) 

Then an application of Ito's differential rule shows that for V 
smuuth 

where x? is the solution of 

{d:: :�+BKo(t»)xs+Gd�s 

SO (t) = SKo (t) = Q+ K6(t)RKo 

For a feedback matrix K(f), let 

(LKI)(t,x) = it + I;(F+ BK(t»)x+± tr(GfxxG) 

and let SK(t) = Q + K(t)RK(t), 

Then applying Bellman's Principle of Optimality we obtain 

where Ko is the optimal feedback gain and K is any admissible 

feedback gain, The above equation can be explicitly written as 

, [Vr + J:..tr(G'Vx,xG) + Vx(F-BK(t»)X: 
mm 2 =0, K +x'(Q+K'(t)RK(t»)x (24) 

Note that in contrast to the deterministic situation (� '" 0), there 

is a second-order operator in the above equation. This equation 
can be solved for Ku, Vo using essentially the same method as in 

the deterministic case. The result is that the optimal control u
O
(t) 

is given by 

V(t,x) = -Et,x[ih(s,Xs )ds - xY.MxT ] where P(t) is a symmetric non-negative solution of the matrix 

(21) Riccati equation 

(Dynkin's furmula), 
This formula is valid in a much more general context. Kow 

returning to the control problem let us consider admissible 
controls (feedback) in the class 

u(t, XI) = K(f)Xt (22) 

where K(t) is a piecewise continuous matrix-valued function, 
This is quite a general class of control laws, and it can be shown 
that there is nothing to be gained by considering more general 
linear non-anticipative control laws, Cunsider an optimal control 
u? = Ko(t)xt, Then 

70 

{�� +S(I)F+ F'S(t) + Q-S(t)BR-1 B'S(t) = 0 

S(T)=M 

and the optimal cost function is 

J(uo) = (tr(G'P(S)G)ds+ m6P(0)mo +tr(LoP(O») 

where E(xo) = rno and cov(xo) = La, 

(25) 

(26) 

It is interesting to note that the optimal control is the same as 

in the determinislic case, but not the expression for the optimal 
cost function, Indeed the deterministic situation can be recovered 

by selling C = 0 and PLo = 0, This result, however, crucially 
depends on the quadratic nalure of the cost functions and the 

linearity of the dynamics, 
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In proving optimality we have restricted ourselves to control 
laws which are I inear. One can prove the same results by cunsid­
ering non-linear control laws which are Lipschitz function of x 
(see Wonham, Loc. at). 

Let us nuw return tu the partially observable problem. The 
key idea here is to introduce the idea of an information state (cf. 
Davis and Varaiya [23]) and reduce the partially ohservahle 
problem to the fully observable problem. Now the information 
state is the conditional distribution 

pU(Xt I Ys, 0 � s � t) where the superscript denotes the depend­

ence on the control u. In our case this conditional distribution is 
conditionally Gaussian and given by the Kalman filter 

(27) 

whereK(t) is given by (13). Furthermore, the innovations process 

Vt as given by (4) satisfies (FI), (F2), and (F3) even in this case. 

In fact Vt is a Brownian motion adapted to F/, the (J-field 

generated hy (ys I 0 � s � t). This is true for control laws which 
are Lipschitz functions of the past of y. If we restrict ourselves 
to this class, then Wonham showed that the admissible control 

laws are Ut = <p( xt) where <p is Lipschitz. The issue of the choice 

of admissible control laws is a subtle one because of questions 
of existence and uniqueness of non-linear stochastic differential 
equations. For a detailed discussion cf. Lindquist [loco cit.]. Now 
by writing Xt = xt + Xt, where xt is the error process and using 

the fact that XtlEf"u, the cost function given by (17) can be 

rewritten as: 

J(n) = E[f�X;QXt +u;Rut )dt+xrMXt] 
+ I:Tr[p(t)Q]dt+Tr(p(T)M). 

(28) 

Mathematical Model 

Continuous System 

. 

�(t) 

Fig. 1. System model and continuous Kalmanfilter. 
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Measurement 
y(t) 

Now it can be shown using the arguments of the fully observ­

able case that the optimal control is given by 

(29) 

where A(t) is asymmetric nun-negati ve solution ufEquation (25) 
and xt is given by (27). Now A(t) is the same as in the determi­

nistic optimal control problem, and we have the separation 
theorem which states that the partially observahle stochastic 

control separates into the solution of a deterministic optimal 

control problem and a Kalman filtering problem. 

We do not go into a detailed discussion of the relationship 

between the separation principle and the certainty equivalence 

principle here (cf. Witsenhausen, [24]). It should be mentioned 

that thc ccrtainty cquivalcncc principle was discussed in the 

economics literature in the late '50s (cf. Holt et al. [25]). For an 

illuminating discussion on the distinctions between open-loop 
stochastic control, feedback control, and open-loop feedback 
control, see Dreyfus [26]. 

Nonlinear Filtering 
To develop the theory of non-linear filtering we follow the 

scheme of development of linear filtering theory. It is interesting 

that using the theory of martingales the generalization to the 

non-linear filtering case is very natural. The ideas that we use 
were first introduced and developed by Prost-Kailath l27 J and in 

somewhat definitive form by Fujisaki-Kallianpur-Kunita [28]. 

The historical development proceeded in a somewhat different 

manner and we shall discuss this in a later part of this section. 

Our basic model is the observation equation 

(30) 

Continuous Kalman Filter 
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with the assumptions 
(HI) YI is real-valued process 

(H2) Wt is standard Brownian motion 

(H3) E[Jo�; dS] < � 

(H4) (Zt) is independent of WI. 
These assumptions are similar to (AI), (A2), (A3)' in the 

linear situation. 

Consider the innovations process 

where (31) 

It can now be shown that: 

The process (vt,!'?) is standard Brownian motion and F/ and 

G(v" - V I I 0 :s; s :s; t < u:S; Tj are independent. This result is proved 

by showing that Vt is a square integrable martingale with con­
tinuous sample paths with quadratic variation t, and the result 
follows from the Levy characterization of Brownian motion. 

Now analogous to (F3) in the linear case one can prove that 

J/=J/; (32) 

that is. the innovations contains the same information as the 
observation, This rather delicate result was proved by Allinger­
Mitter [29]. 

Now combining this with the representation of square inte­
grable martingales as stochastic integrals due to Kunita and 
Watanabe, we obtain the following: 

Every square-integrable martingale (ml.F?) can be repre­

sented as 

(35) 

We want to obtain a recursive equation for 1tt( <p). We need some 
preliminaries. 

Let L be the second-order elliptic operator defined by 

n . ci n .. a2 [1"= � f'l'X)'�+ � a'](x)� or £.... ax' £... . ax' ax] i=1 i,)=1 

and A(x) = (aiJ(x»)n =G(x)G'(x). 
l,j=l 

Then we can write Ito's differential rule (19) as: 

(36) 

(37) 

where V' is the gradient operator, and the last  term 

M,! = r (V'\jf(xs ))G(xs )d�s is a :Tri3 -martingale (being a stochas­Jo 
tic integral). 

To obtain the recursive equation for 1ttC<p), one shows that 

M,! =llt(<P)-llo(<P)-f�lls(L<P) is a square integrable :i/, hence 

:Trv martingale. Therefore from the representation theorem 

Mi = f�l1sdv s' where 1'], is square integrable and adapted to 

.cr;n, . Therefore 

(38) 

It remains to identify 1']5. This can be obtained as follows: 

(33) By the Ito differential rule (37) 

s: E( 11 � )ds < = and 11 I is adapted to F/ ' 

It should be remarked that Fujisaki -Kallianpur-Kunita in their 
important paper proved the same result without (32) holding but 

with 1']1 adapted to :TrY. 
To proceed further let us assume that 

Zt = h(Xt) (34) 

and XI satisfies a stochastic differential equation 

which is the same as Equation (18). 

Suppose we want to obtain the estimate 

Also 

Now, using the Ito-differential rule for semi-martingales, 

<p(Xt )Yt = <p(xo )Yo + f: Ysd<p(xs)+ f� <p(xsldys + (MljJ, w) t 

= <p(xo)yO+ f>s(L<P(xs)dS+dM�) 
+f� <p(xs )(h(x, )ds+ dw,) (39) 
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(since <M'I', W>t = 0 from the independence of (Xt) and (Wt). 
From the innovations representation 

Yt = Yo + f�n\(h)ds+Vt . 

Therefore 

1tt(<P)Yt = 1to(<p)yo + f� 1t,(<p)(1t, (h)ds+ dvs) 
+ J>s(1ts(L<P)dS+l1sdVs)-(N,V)t 

where Nt = f�ll,dV s 

= 1to(<p)yO + f: 1ts(<p)(1tsCh)ds+dvs) 
+ J�Ys(1ts(L<P)dS+llsdVs)+ J�Yl\dS. 

Now noting that 

from (40) and (41) we get 

and hence we get from (38): 

(40) 

(41) 

This is one of the fundamental equations of non-linear filtering. 
If the conditional distribution 1tt has a density given by p(t,x), 
then p satisfies the stochastic partial differential equation 

ap(t, x) = L*p(t,x)dt+ p(t,x)[h(x)-1tt(h)]dvt (43) 

where 1tt(h) = f h(x)p(t,x)dx. The question of existence of a 

conditional density can be discussed using the Malliavin calculus 
[46]. Equation (43) in this form, where the Ito calculus is in­
volved, was first derived by Kushner [30]. The difficulty in 
deriving a solut ion for  a condit ional  s ta t is t ic  

·�t � 1tt(x) = f xp(t.x)dx is the so-called closure problem. The 

equation is 

(44) 

Note that computation of "[ requires computing 

1tt(I) = f f(x)j3(t,x)dx, 1tt(hx) = J h(x)xp(t,x)dx 
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and 1ttCh)� J h(x)p(t,x), and this requires solving stochastic dif­

ferential equations for each of these above quantities, which in 
their turn involve higher moments. Hence non-linear filters are 
almost always infinite-dimensional. There are only a few known 
examples where the filter is known to be finite-dimensional. The 
first is the linear-gaussian situation leading to the Kalman filter 
which we have treated in an earlier section. The second is the 
finite-state case, first considered in an important paper by Won­
ham [31]. Let XI be a finite-state Markov process taking values S 
= (S1, ... , SN). Let Pt = (pi, . .. ,pt') be the probability vector where 

P; -Prob(xr = SI)' Then the evolution of Pt is given by the for­

ward Kolmogoroff equation 

B = diag (h(sl), ... , h(sN) and b' = (h(S1) . .... h(SN», 

then Pt satisfies 

(45) 

We shall discuss a further example leading to a finite-dimen­
sional filter a little later. One of the difficulties with Equation 
(43) is that it is a non-linear stochastic partial differential equa­
tion. An important idea due to Zakai [32], Duncan [33], and 
Mortensen [34] is to write TCt(<p) as 

1t ( ) = Pt(<p) [<p Pt(1) (46) 

where Pt(cp) satisfies 

(47) 

Pt is an un-normalized version of 1tt. Note that this is a linear 
stochastic partial differential equatim1. This is intimately related 
to the Feynman-Kac formula for integrating linear parabolic 
equations with a potential term. For a discussion between the 
analogies between non-linear filtering and quantum mechanics 
see �1itter [35]. Recall that the original probability space is (D, 
:r, P) un which there is an increasing family of a-fields ('Ft)t�O 
and the process (Xt) is adapted to it. Define a new probability 
measure Pu on (Q, 1) in terms of the Radon-Nikodym derivative 

u:; = expl-r h(xs )dys -± J� h2(xJds j 
A 
-:::-_At · (48) 
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Under Po, (Yt) is standard Brownian motion, (Xt) and (Vt) arc 

independent, and (Xt) has the same distribution under Po and P. 
Now, 

. y Eo(rp(xtlAtW/) 1tt(<D)E(rp(xtllJ[ )= 
( 

y) 

FUlthermore. we can prove that 

Eo AtlJ[ 

! pt(rpl 
Pt(1) (49) 

From (49) Pt (rp) = 1tt (rp )·::\t . Then using the Ito differential mle 

wc gct Equation (47). This derivation is due to Davis and Marcus 

[36], where the full details can be found. The measure transfor­

mation idea in &wchastic differential equ ation is due to Girsanov 
(d. Liptser and Shiryayev [37] and the references cited there). 

Equation (47) is an Ito stochastic partial differential equation. 
There is a calculus, the so-called Stratanovich calculus, which in 
many ways is like ordinary calculus. The conditional density 
equation for non-linear filtering was derived using this calculus 
by Stratanovich l38J. For the relation between the two calculi 

see Wong [5]. This is an important modeling question. The 

Stratanovich form of Equation (47) is 

where the last integral is a (symmetric) Stratanovich integral. It 
should be noted that geometry is preserved when we work with 
the Stratanovich form of the equation. The relation between (47) 
and (50) involves the Wong-Zakai correction (note that the 

generator L in Equation (50) has been replaced by L-±h2). If 

Pt has a density q(t, x) then q(t, x) satisfies a linear stochastic 
partial differential equation 

(51) 

It turns out that the Lie algebra generated by the operators 

[* _�h2 and h plays a role in the existence of a ±inite-dimcn-
2 

sional filter. For a discussion of this see Brockett [39] and Mitter 

[40]. An example where a finite-dimensional filter exists is the 

following: 

{dxt =f(xt)dt+d�t, 
dYt =xtdt+dwt 

andfsatisfies the Riccati equation 
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This example, first considered by Benes [41], is intimately 
related to the Kalman filter using a Gauge transformation q(t, x) 

f-,> 'If (x)q(t, x) where 'If is invertible (cf. Mitter, loe. cit.). On the 
other hand it can be shown that for the filtering problem 

Xt = �t 
dYt = xidt+dwt 

no finite-dimensional filter exists [42]. 
There are a number of other issues in non-linear filtering 

which we do not consider in this article. For discussions of 
pathwise non-linear filtering where the filter depends continu­
ously on y see Clark [43] and Davis [44]. For the important 
problem of obtaining lower bounds on the mean-squared error 
see Bobrovsky-Zakai l45J. Results can be obtained when the 
signal (ztl and the noise are correlated (d. the review papcr by 
Pardoux r46]). 

Optimal Stochastic Control (Fully Observable Case) 
The theory of optimal stochastic control in the fully observ­

able case is quite similar to the theory we have sketched in the 
third section above, in connection with the linear quadratic 
stochastic control problem. The conceptual ideas here originated 
in the Dynamic Programming methodology developed by Bell­
man. An early work here is that of Howard [47], though not in 
the continuous-state continuous-time formulation. Important 
early papers related to this section are those of Florentin [17] and 
Fleming r481, Many other people, notably Kushner, have con­
tributed to this subject. For a textbook presentation where other 
refercnccs can bc found, see Fleming-Rishel [49J. 

Consider the problem of minimizing 

(52) 

where Xs E Rn evolves acco rding to the stochastic differential 
equation 

(53) 

We define the value function Vet, x) as: 

V(t,x) = lnf J(t,x,u) 
UEU (54) 

By Bellman's Principle of Optimality, 

(55) 

t:::;t+h:::;n 
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Now, if we take constant controls v on the interval ft, t + hl, we The controls u are required to be suitable functions of the past of 
clearly have y, 

(56) 

Now by Dynkin's formula (Ito Differential Rule) 

Dividing both sides by h and taking the limit as h ---c> 0, we obtain, 

Vv 

�(t,x)+LVV(t,x)+£(x,v);:>:O . (57) 

Now, if the class of admissible controls are taken to he Markov 
in the sense 

Us = g(s, xs) (58) 

with g Lipschitz say, and 

is an optimal Markov control we get 

Vr(t, xl + Ui* V (t, xl + e Cx, g* (t, xl) = o. 

Therefore from (57) and (58) we get the fundamental Dynamic 
Programming equation 

(60) 

An optimal Markov control policy g* is obtained by carrying 
out the minimization above pointwise. A solution Wet, xl (clas­
sical) of the above equation allows one to verify that W is a value 
function. 

Other than the linear quadratic prohlem discm-sed in the third 
section of this alticle, few explicit solutions of this equation are 
known. For controlled Markov processes with a finite state space 
equations (59) reduces to a non-linear system of ordinary differ­
ential equations. 

Optimal Stochastic Control 
(Partially Observable Case) 

We consider the following partially observable stochastic 
control problem 

(61) 

and we are required to minimize 

(62) 
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The conceptual idea to disCllSS this problem is similar 10 Ihal 
used for the LQG problem. But there al'e severe technical 
difficulties which we ignore in this presentation. First we intro­
duce the information state for this problem. For this purpose 
define the operator (see Equation (36» 

n ·  � 
U -L ' ( )Ol<p L ij(,' o�<p L <p- f X,u -, + u x)-.-.. 

ox' , ux'uxJ i=! i,) 

Then the information state is given by (see Equation (51» 

(63) 

d qU (t, xl = (L")* qU (t, x) dt + h (x) q" 
(t, x), d Yt. (64) 

Note that qU 
Ct, xl is the llnnormalized conditional density 

corresponding to the non-linear filtering problem for (60). 
The idea now is to rewrite the cost function given by (61) in 

terms of the information state q" (t. x). Formally this can bc donc 
and the resulting expression is 

J(t,x) = Erx[lt
T J L(x.u)qU(t,x)dx+ J Ijf(X)qU(t,X)dX] . 

(65) 

Equations (64) and (65) constitute the equivalent fully observ­
able stochastic control problem. Note that the problem is essen­
tially infinite-dimensional since the information state is 
infinite-dimensional. Tn principle we could write Dynamic Pro­
gramming conditions for this problem, but other than the linear 
quadratic gaussian situation and the casc of risk -sensitive control 
where the cost function is an exponential of a quadratic function 
(cf. Whittle [50], Bensoussan-Van Schllppen [51]), no explicit 
solution for these problems are known. 

The partially observable stochastic c(}ntrol problem was 
probably first treated by Plorentin [18]. There is important work 
hcrc by Davis and Varaiya [52] and Fleming and Pardoux 1531. 
For detailed discussions see the research monograph by Borkar 
[54] and the references cited there. 

Applications 
The linear quadratic gaussian methodology has found wide 

applications in aerospace systems. It is also used as a design tool 
for the design of multi-variable control systems. The principal 
application of optimal non-linear stochastic control seems to be 
in the domain of finance. For these applications see the important 
book of Merton [55]. 
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