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Absfmct--In this paper, we discuss the problem of recogniz- 
ing single-dimensional, real-valued, functions in the presence of 
domain noise (Le., noise that affects the domain rather than 
the amplitud~). This problem is inspired by the field of on-line 
character recognition where it is more natural to view the hand as 
deforming the domain of the character rather than adding noise 
to its am~l~tude. The results obtained illutrate the di 
faces when dealing with both domain and amplitude deformation 
of waveforms or images. Our major result is a set of sufficient 
conditions that, a recognition metric has to satisfy. Examples of 
metrics that satisfy these conditions, and hence are appropriate 
for recognition when the deformation affects the domain rather 
than the amp~itude, include the supnorm metric and the total 
variation metric. Furthermore, we extend the results to the case 
when a waveform is corrupted by both amplitude and domain 
deformation. 

Index Terms- Character recognition, metric, domain, ampli- 
tude. deformation. 

I. MATHEMATICAL PRELIMINMES 
OR the sake of our analysis, we assume that the functions 
under consideration have bounded support. Alternatively, 

and without loss of generality, we can assume these functions 
to be defined on the unit interval. Let H be the space of real- 
valued functions of bounded variation, defined over the unit 
interval I, satisfying the following.' 

1) At every point t in the interval [0,1], the left- and 

2) Vt E (0,1),Vf E H , f ( t )  = f ( t  + O f )  or f ( t )  = 

3) The values taken by f at 0 and 1 are arbitrary. 

right-hand limits exist. 

f ( t  - 0). 

Let hl , hz, . . . , hM be elements of H called hypotheses. Let 
g E H be the received signal. Determine a plausible detection 
rule to determine the most likely h; that was transmitted. 

The traditional approach in signal transmission theory is 
to assume that g was obtained from one of the hi's through 
amplitude deformation (additive or multiplicative). In other 
words, we make M hypotheses H I ,  Hz  , . . . , H M ,  where under 
hypothesis Hi (assuming additive noise) 

g(t) = hi(t) + n( t ) ,  0 I t I 1 
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Fig. 1. Counter example showing weakness of Lz metric 

and n(t) denotes the amplitude noise, lying in some suitable 
space. Next, we define a cost functional for n(t) .  Finally, we 
select the hypothesis that minimizes the cost. 

If the L2 metric were used as a cost on H ,  for instance, the 
detection rule would be to choose the h; that minimizes 

J'(s(t) - h;(t))' dt. 

To use a probabilistic interpretation, this is the rule that 
corresponds to maximum-likelihood detection when n(t) is 
modeled as Gaussian white noise. 

Unfortunately, comparing signals based on their amplitude 
difference only does not satisfy our intuition. Consider, for 
instance, the following example: 

0.125, 0.1 5 t 5 0.99 
otherwise 
0.5 5 t 5 0.51 
otherwise 
0.52 5 t 5 0.53 
otherwise. 

In this example, g is closer to hl in the L2-sense, whereas it 
is closer to hz in any intuitive sense (see Fig. 1). 

To explain the apparent inconsistency, note that the L2 
metric assigns a large cost to domain deformation. On the 
other hand, it seems that humans do not assign such a cost to 
domain deformation when comparing objects. So it seems that 
we should formulate the problem in a way that accounts for 
domain deformation in addition to amplitude deformation. 

First, we focus on domain deformation only. Then, we 
combine both domain and amplitude deformations. A naive 
attempt to solve the problem is to say: under hypothesis H; 
we have 

0018-9448/97$10.00 0 1997 IEEE 



AKRA AND MI'lTER WAVEFORM RECOGNITION IN THE PRESENCE OF DOMAIN AND AMPLITUDE NOISE 

~ 

175 

Fig. 2. 
and h; .  

Domain deformation shown as a curve in the product domain of g 

and then use the cost function 

J w(t )2  d t  

as a measure of similarity (in the intuitive sense). However, 
this function has annoying asymmetry. The reason is, if we 
write g ( t )  = h;(t + w;(t)), and alternatively, h,(t) = g ( t  + 
w:(t)) ,  then it is not true that 

W i ( t ) 2  d t  = J w:(t)z d t .  J 
Furthermore, if we decide later to shift our interest to functions 
having infinite support, it is possible for a small domain shift 
to cause a large increase in the cost function (consider cos ( t )  
and cos (t + e ) ) ,  which means it is not translation-invariant. A 
more convenient relation than (1) is 

g ( t )  = h,(z(t)) or h,(t) = g(x- l ( t ) )  (2) 

assuming x is invertible. Using (2) we can immediately see 
that for a cost functional to be symmetric, it has to remain the 
same when x is replaced by z- l .  These ideas will be made 
more concrete in the following section. 

11. DOMAIN DEFORMATION: THEORY 
Assume that under hypothesis H; 

g ( t )  = h;(x( t ) )  = (hi 0 l.)(t) 

where ~ ( t )  is an order-preserving homeomorphism of the unit 
interval I onto itself. We will show later that a solution IC for 
the above equation exists if and only if g and h; have the 
same sequence of extrema. 

The reader should note that, throughout the coming discus- 
sion, we will be dealing with three different spaces: X ,  H ,  
and W. First, we will define X ,  and then we will present a 
few lemmas to gain some understanding about the space X .  

Let X be the space of all order-preserving homeomorphisms 
of the unit interval I onto itself. Then, the following two 
lemmas are well known. 

Lemma 2.1: A function x is an element of X if and only 
if it can be represented as a continuous, strictly increasing 
function joining the origin to the point (1,l) of I x I (see 
Fig. 2) .  The horizontal axis in Fig. 2 (also called the t-axis) is 
the domain of g, and the vertical axis (also called the z-axis) 
is the domain of h;. 

Note that the functions g and h; are to be visualized normal 

Lemma 2.2: The pair ( X ,  0 )  is a group. 
Note that the inverse 2-l is a reflection of x around the 

Lemma 2.3: The space X ,  viewed as a set, is convex. 

to the plane of Fig. 2. 

diagonal of I x I .  

Proof: By convex we mean, if x1 and x2 belong to 
X ,  then so do ax1 + (1 - a ) z ~  for all a in [0,1]. Let 
z = ax1 + (1 - a)x2. Then x is continuous, being a weighted 
sum of continuous functions. Letting tl < t 2 ,  we get 

Z ( t 2 )  = az1(tz) + (1 - a)xz(tz)  
> azl(t1) + (1 - a)Q(tl)  
= IC(t1). 

Finally, ~ ( 0 )  = 0, and ~ ( 1 )  = 1. Hence, x is in X .  
Next, we define the second space of interest, H ,  and its 

subspace H, . 
De$nition 2.4: Let H be the space of real functions of 

bounded variations defined over I .  Let g be an element of 
H. H,  is defined to be the set of all functions in H which can 
be obtained from g through order-preserving, homeomorphic, 
domain deformation. In other words 

H, = { f :  g = f o I C , ~  E X } .  

Note that we already have an onto mapping from X to H,, 
mapping x to g o IC-'. However, this mapping is not one-to- 
one in general. Consider, for instance, the constant function 
g ( t )  = 1. Then, H, is the singleton { g } ,  since 1 o x-' = 1 
for all z in X .  By removing from X the "redundant" x's, 
the onto mapping becomes a bijection. For the case g = 1, 
the redundant deformations are all the deformations except the 
identity deformation 11: = i. The following lemmas characterize 
the redundant domain deformations for a general function g .  

Lemma 2.5: Let f and g be both strictly increasing (de- 
creasing) functions. Assume that the relation g = f o x has a 
solution in X .  Then, that solution is unique. 

Proof: Assume the contrary. Let x1 and 2 2  be two 
different solutions of the equation g = f o IC .  Then, there exists 
a point a at which they differ. Let ~ ( a )  = b l ,  I C Z ( ~ )  = bz. 
However, g(a) = f [ x l ( a ) ]  = f [ x ~ ( a ) ] .  Therefore, f ( b 1 )  = 
f ( b 2 )  for bl # bz. This is a contradiction, since f is strictly 
monotonic. Hence, the solution IC is unique. 

Lemma 2.6: Let f ,  g E H. Let g = f o x have a solution in 
X .  Then, IC is a bijection between the local maxima (minima) 
of g and the local maxima (minima) of f .  

Proof: Let a be a point at which g has a local maximum. 
Then, there is an open neighborhood of a ,  B ( a )  c I ,  such that 
g ( t )  5 g ( a )  for all t in B ( u ) . ~  Consider x[B(a ) ] .  It is open 
since 5 is a homeomorphism, and contains .(a). For all U in 
x[B(a)] ,  we have f ( u )  5 f [ % ( a ) ] ,  otherwise x-l(u) would 
be a point in B ( a )  such that g [ ~ - ~ ( u ) ]  2 g(a). Hence, $(a )  is 
a local maximum of f .  Similarly, if b is a local maximum of 
f ,  we can prove that x-'(b) is a local maximum of g .  Finally, 
the minima can be treated in an analogous way. Note that the 

2To handle the extreme points 0 and 1, view I as a subspace of R, where 
the topology is inherited by taking the intersections of open sets of R with I .  



theorem holds for straddle points as well. However, the proof 
for this case is only a small modification of the one above. 

Theorem 2.7: Suppose that g is not constant on any subin- 
terval of I ,  and that the relation g = f o z has a solution in 
X .  Then, the solution is unique on the whole interval. 

Proof: Let a1 < a2 < . . . be the points at which g has ex- 
trema. Let bl < b2 < . . . be the points at which f has extrema. 
Let g = f o x has a solution. Then x in Fig. 2 should pass 
through the points ( O , O ) ,  (a l ,  b l ) ,  (a2, b z ) ,  
wise x would not be increasing. Furthermore, between any two 
consecutive points (az l  b z ) ,  (a,+1 , b 2 + 1 ) ,  f and g are either 
both increasing or decreasing. As a consequence of Lemma 
2.5, the solution is unique in [a,, a,+l]. Therefore, the solution 
is unique on the whole interval. 

Corollary 2.8: Suppose that g is not constant on any subin- 
terval of 1. Then there exists a bijection between H, and X ,  
mapping f in Hg to the unique x in X ,  satisfying g = f o x. 

Corollary 2.9: Let g be constant on the ordered intervals 
( c l ,  c2), ( c 3 ,  e*), . . .. Let f be constant on the ordered intervals 

1) any valid solution of f = g o x maps (c,,c,+I) to 

2) outside these subintervals, x is uniquely determined. 
Throughout the work, we will choose the solution x that maps 
(c2,  c,+1) to (d,, d,+l) linearly. As a consequence of this, the 
solution to g = f o x becomes unique. We denote by X ,  the 
subset of X obtained after deleting every x which is not linear 
in the constant subintervals of g. 

Our goal has been to define a distinction function d* 
over H, x H,, which handles domain deformation in a way 
analogous to the way L2 or other meu-ics handle amplitude 
deformation. The direct consequence is that d* becomes a 
metric over H .  The second consequence is that @ ( f ,  f o x) 
becomes a function of x only. 

The second consequence implies that d* ( f i  , f 2 )  should not 
change if we deform both domains by the same deformation 
(invariance to composition). The equivalent assumption in the 
classical case is to say the amplitude noise cost is dependent 
on the difference g ( t )  - h,(t) only (invariance to translation). 

Let us denote d * ( f ,  f o x) by (z). Then, the properties of 
a distinction function are 

1) z E X is the identity function if and only if (x) = 0; 
2) if x E X ,  then (x) = (x-‘); 
3 )  if z1 and x2 are in X ,  then 

(dl,d2), ( d 3 , d 4 ) , “ ‘ .  Then 

(d, ,d,+l) for all i; 

(21) -I- ( 2 2 )  2. (21 0 22). 

Clearly, if (x) = d* ( f ,  f o x) is a distinction function, then 
so is X(5) for any positive constant A. 

Note that the distinction function d* defined on Hg induces 
a metric on X,. In other words, if 21 and x2 are in X,, then 
dXg(x l ,xZ)  = (21 0 xT1) is a metric on X,. Furthermore, 
the two metric spaces Hg and X ,  become very similar in the 
sense of the following theorem: 

Theorem 2.10: Let d* be a function over Hg x H,. Let d 
be a function over X ,  x X ,  defined as follows: 

d(z1,xz) = d * ( f l , f 2 )  such that g = f~ o x1 = f 2  o x2. 

Then, d* is a distinction function if and only if d is a 
composition-invariant metric. Furthermore, if d is a compo- 
sition invariant metric on X ,  the mapping 

b: (H,, d * )  ( X ,  d )  
f t x E X , : g =  f 0 2 

is an isometric embedding of H ,  in X .  
Pro08 The mapping b is well defined since x is uniquely 

determined (see Corollary 2.9 and the following remark). 
Furthermore 

dk,(f l ,  f2) = d X ( b ( f l ) ,  b ( f 2 ) ) .  

Hence, b is an isometric embedding of Hg in X ,  or an isometry 
between Hg and X,. Since b is a bijection between H g  and X,, 
then d is a metric if and only if d* is a metric. Furthermore, let 

if and only if d(x1,x2) = d(i ,xT1 o 5 1 ) .  

Isometry has important consequences since isometric spaces 
are identical in all respects except for the nature of their 
elements, which is inessential [2]. 

The question is :  “Does there exist a valid distinction func- 
tion?” Happily, the answer is “Yes!” Later in the discussion we 
will present several examples. For now, the reader can verify 
that the following is one such function: 

g = f i o x l  = f 2 0 z 2 , t h e n d * ( f i , f 2 ) = d Y ( g , g o x 2  -l 0 XI) 

d * ( f ,  f 0 x) = sup Ix(t) - CI.  
ttI 

In what follows, we define the third space of interest W. 
Dejinition 2.11: Let X be the space of order-preserving 

homeomorphisms defined earlier. Define W to be the noise 
part of the domain deformation. In other words 

W = {w(t): w ( t )  = x ( t )  - t ,z E X } .  

The bijection between W and X is immediate, and the con- 
vexity of ( X ,  +) implies the convexity of (W, +). However, 
(W, 0 )  is not a group. Also, (W, +) is not a linear space, so 
we cannot define a norm over it. However, if we extend W 
by including all continuous functions w satisfying w(0)  = 
w(1) = 0, then the extended space becomes a linear space. 
Any norm on the extended space may be inherited by W. 
Alternatively, any metric on the extended space can also be 
used to metrize W. 

Theorem 2.12: Let d’ be a metric over W ,  induced by 
defining a norm over the extended W. Let d be a function 
over X x X defined as follows: 

d(x1, x2) = d’(x1 - i ,  x‘2 - i). 

Let x1 and x2 be two points in X .  Then, the following 
mapping: 

r: [o, 11 x 
Q H ax1 + (1 - a)x2 

is a shortest path joining z1 to 5 2  in ( X ,  d) .  Furthermore, the 
mapping 

b : X + W  
x ~ w = x - i  

is an isometry between ( X ,  d) and (W, d’) .  
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Pro03 b is a bijection that preserves distances, hence it 
is an isometry. Let d‘ be a norm in W. Consider the mapping 

a t+ a w l +  (1 - a)w2. 

Then I? is a shortest path in W, since 

d’(w1, a w l  + (1 - Q)W2) + d ( a w 1  + (1 - a)w2, w2) 

= Il(1 - ab1 - (1 - a)wall + Ibw1 - aw2Il 

= (1 - .)llWl - wall + QllWl - wall 
= l lWl  - wall 

= d’(w1, Wa).  

Since ( X , d )  and (W,d’) are isometric, shortest paths in 
one space are also shortest paths in the other. Therefore, 
ax1 + (1 - a)x2 is a shortest path in ( X , d ) ,  joining z1 
to 2 2 .  Note that the converse is not true. In other words, 
ax1 + (1 - a)zp can be a shortest path in a metric space 
( X ,  d )  without d being a norm. An example of this is X = I 
with the metric 

d(21 ,Q)  = IlI’ dlFiFdl1, 

To summarize what has been done so far, consider the three 

1) H,, the space of observations, when only domain defor- 

2) X,, the space of domain deformations, constructed in a 

3) W,, the space of domain noise. 

spaces: 

mation is involved; 

way to make a bijection with H g ;  

Then the following theorem illustrates the links between the 
various spaces. 

Theorem 2.13: Let d’ be a norm metric over W ,  i.e., 
d’(w1, w2) = llwl - wpll. Let d be the corresponding metric 
over X ,  i.e., d(z1, $ 2 )  = d’(z1 -i, 2 2 - 4 .  Assume further that 
d is composition-invariant, i.e., d(x1 ,22)  = d(i,x1 o xi’). 
Let d* be the corresponding metric over H,, i.e., 

d * ( f l , f 2 )  = d(x1,m): 9 = fl 0 $1 = f2 0 2 2 .  

Then, d* is a distinction function over H,. Furthermore, the 
following mapping 

r: [a, b ] +  H, 
a H r(a) = f :  g = f o (ax1 + (1 - a)z z )  

is a shortest path in (H,, d*)  joining f1 to f2 .  
Let us list some examples of distinction functions over H,: 
Supremum: 

d”(f1, fl 0 z) = (4 = SUP Iz(t) - 4 
t 

Maxmux: 

d * ( f i ,  f1 o x) = max(z(t) - t) + mpx(t - x ( t ) )  
t 

0 

Fig. 3. Binary hypothesis of Example 1. 

1 

Variation: 

d* ( f1 ,  f i  o z) = 

Note that if z is differentiable, 

total variation of (z - t )  = V ( x  - t ) .  

V ( x  - t )  = - 11 d t  
t 

111. DOMAIN DEFORMATION: APPLICATION 

Given A4 functions hl, ha, . . . , hM in H, and a specific 
choice of the distinction function, we define the recognition 
rule as follows: Choose hi that minimizes (xi), where g = 
h; 0 x;. 

Example 1: 

hl( t )  = sin(rt), 0.0 5 t 5 1.0 
0.0 5 t 5 0.5 { 2(1 - t ) ,  0.5 5 t 5 1.0 

2 4  h2(t) = 

4t2, 0.0 5 t 5 0.5 
g( t )  { 4(1 - t )2,  0.5 5 t 5 1.0. 

Decide whether g is closer to hl or to h2 in all of the above 
metrics (see Fig. 3). 

Solution I :  Let g = hl  o xl. Solving, we get x ~ ( t )  = 
sin-l(4t2)/r for o < t < 1/2 with symmetry w.r.t. (I/& 1/2). 
To find the supremum distance we set E l  = 1 to obtain (using 
Maple) 

(21) = 0.187. 

Let g = h2 o 22. Solving, we get x2(t) = 2t2 for 0 < t < 1/2 
with symmetry w.r.t. (1/2,1/2). Similarly, we set k2 = 1 and 
we obtain the supremum distance 

( ~ 2 )  = 0.125 

Since ($1) > (zz), we say that g resembles hp more than 
hl in the supremum metric. The maxmax metric gives the 
same answer in this particular case since max(z(t) - t )  = 
max(t - z(t))  (see Fig. 4). Finally, the total variation metric 
also gives the same result since it is equal to twice the muxmax 
metric in this case. 

In practice, one can view the various solutions of the 
equation g(t) = hi(x( t ) )  by drawing the contour plot of the 
surface 1g(t) - h;(z)l in the plane of Fig. 2. The kernel of 
the surface (i.e., the regions where it is zero) contains all the 
solutions. This kernel can be viewed using a mathematical 
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x1 
.... 

!I 

Kernel for 9 - hz from 
Figure 1 

Domain deformations 
from Example 1 

Fig. 4. Calculation of deformation. 

package like MATLAB. Out of that kernel we choose the curve 
z that connects the origin (0,O) to the opposite comer (1,l) 
with minimum (z). Note that unless g is constant for some 
interval ( a ,  b )  c I ,  the kemel will be a finite collection of 
curves. However, only one of them will connect the origin 
to the opposite comer. If g is constant for some interval, 
the corresponding part of the kemel will be a rectangle (see 
Fig. 4). In all of the defined metrics, the reader can verify that 
taking the diagonal of that rectangle only and dropping the rest 
results in the minimum (z), which justifies the criteria made 
earlier in this section. 

Iv.  CONCLUSION 

In the classical amplitude-only deformation case, the invari- 
ance of the metric with respect to the order of the incremental 
noise addition was guaranteed by choosing a metric which i s  a 
function of the sum of the incremental noises, or, alternatively, 
a function of the difference between the transmitted and the 
received signal. This choice guarantees invariance because, 
obviously, the sum is invariant with respect to the order 
of the elements being added. Similarly, in the domain-only 
deformation case, the invariance was guaranteed by choosing a 
metric that depends on the overall deformation z ( t )  , regardless 
of the individual domain deformations. Also, by forcing an 
isometric embedding with the space W ,  we were able to 
guarantee that the shortest path of differential deformations 
dz,, is actually the line segment connecting the transmitted 
and received signals in the space W. 

When considering both amplitude and domain deformations, 
special care is needed to make sure that, when the two types 
of deformation intermix, the cost function is not affected. This 
will be the subject of the following discussion. 

v. AMPLITUDE AND DOMAIN DEFORMATION: THEORY 

In the following theorem, which is easy to verify, we make 
a slight generalization: 

Theorem 5.1: Let H be the space of all functions of 
bounded variations whose domain is I .  Let X be the space 
of homeomorphisms over I .  Let d be a function over H x H 
defined as follows: 

d ( f 1 ,  fi) = (z) if there exists z in X such that 

d ( f i ,  f z )  = 00, otherwise. 
fl = f 2  0 x 

Then, d is a generalized metric over H .  Furthermore, we call 
d a domain metric. 

One can visualize H as a collection of disjoint slices where 
the distance d between any two slices is CO. In fact, these 
slices are called path components in the topological sense, 
since any pair of points belonging to the same slice are path- 
connected, and no two points belonging to different slices can 
be connected. 

On the other hand, we can define over H an amplitude 
metric as follows: 

Definition 5.2: Let d be a metric over N such that for any 
pair of points fl and fz  in H ,  d( f l  , f z )  is a function of f l  - f z  
only. Then, d is called an amplitude metric. 

Note that d is a pseudonorm but not necessarily a norm (e.g., 
consider the discrete metric). The most widely used examples 
of amplitude metrics are the so-called Lp metrics, where for 
p 2 1: 

1 l P  

d2(fl,f2) = (/Ifdt) - fz(t)IP d t )  

Having defined suitable metrics for domain-only and 
amplitude-only deformations, how can we use these results 
to develop a suitable metric for mixed amplitude and domain 
deformations? 

One way to do this is to note that the metrics obtained 
are also path metrics. In other words, they are defined over 
path-connected spaces in such a way that d ( p , q )  is equal to 
the length of the shortest path connecting p to q [3]. Now 
envision the space H with two metrics: d l ,  an amplitude 
metric, and dz, a domain metric. We can view H with these 
two metrics as a city with two modes of transportation, e.g., 
walking and train. d l (A,B)  can be thought of as the time 
needed to walk from A to B, while da(A,B) is the time 
needed to travel by train. Note that unless A and B are train 
stations for the same train line, &(A, B) = CO. When both 
means of transportation are possible, we can define the travel 
time between A and B as that time spent when the optimum 
use of both means is made. Along the same lines, we can 
define the cost of deforming a function f1 to another function 
f2  as the cost of optimum combination of amplitude and 
domain deformations. The recognition problem becomes that 
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of finding the hypothesis that requires the least such cost. In 
what follows, we present the above analysis in a more precise 
way. 

Let I?: [a, b] --+ ( H ,  dl) be a path in ( H ,  dl) joining fl to 
f 2 .  For any partition of [a,b] given by 

P = {to,tl, . . *  7 t m }  

the points I'(t,), I'(tl), . . . , r(tm) are the vertices of an in- 
scribed polygon. The length of this polygon is denoted A, ( P )  
and is defined to be the sum 

Ar ( P I  = 
m 

min(dl (r (tk-1) , r ( t k ) ) ,  d2 (r (tlc-i), r(tk))) .  
k = l  

DeJinition 5.3: The distance between f1 and f 2  is the least 
upper bound of Ap(P) over all partitions P of [a,  b] ,  i.e., 

d ( f i ,  f z )  = Sup{Ar(P): P E ?[a, bl}. 

Theorem 5.4: The distance function of Definition 5.3 is a 
metric. 

The fact that d is a metric comes from its very definition. 
The reader can refer to Shreider [5] for a discussion on this 
approach for defining distances. Nevertheless, we will include 
the proof here for completeness. 

Proof: 
1) (Identity) If f l  = f z ,  then the constant function r ( a )  = 

f1 is continuous and defines a path of zero length. 
Therefore, d( f1 , f ~ )  = 0. To prove the converse, assume 
that d(f1, f 2 )  = 0. Then, for any partition of the shortest 
path, we have to have either 

dl(r(tk-l),r(tk)) = 0 

d z ( r ( t k - l ) , r ( t k ) )  = 0. 

or 

However, if one of the distances is zero the two points 
are coincident, hence the other distance should be zero as 
well. Therefore, all points of the partition are the same. 
Consequently, f l  = f z .  

2)  (Symmetry) follows from the symmetry of d l  and dz. 
3) (Triangle Inequality) This is the easiest to prove. For if 

there exists a point f such that 

can describe any path emanating from fl in the following 
recursive form: 

p1 = f 1  + 721, 
pi+1 = p ;  0 2; + ni. 

The path length would be 

Our problem becomes: Find xi and n;, for i = 1 , 2 , .  . . that 
minimize 

+ lln4 
2 

subject to 

lim pi  = f i .  

However, the problem can be simplified remarkably if we 
choose the amplitude norm 1 1  1 1  also to be composition- 
invariant. In that case, we can prove the following theorem: 

Theorem 5.5: Let f l  and f z  be two functions defined over 
the unit interval I. Assume that f z  was obtained from f1 by 
an alternate sequence of domain and amplitude deformations, 
(2%) and {n2} .  Assume that the path length corresponding 
to a domain deformation is (xi) and that corresponding to 
an amplitude deformation is 1171; 1 1 .  Let 1 be the length of the 
shortest path joining f1 to f2.  Assume that the amplitude norm 
11 [ I  is composition-invariant. Then 1 does not increase if we 
restrict the number of deformations of each kind to be at most 
one. In other words, we can write 

a-m 

f 2 = f l O z + n  

1 = min((z) + llfz - f l  0 4) 
Finally, d ( f l ,  f 2 )  = 1 defines a metric. 

To prove it, however, we need one lemma. 
Lemma 5.6: Let H be the space of functions defined over I .  

Let f l  and f2 be two elements of H. Let dl be a composition- 
invariant amplitude metric over H. Let d2 be a domain metric 
over H .  Let (XI, nl)  be the shortest pair of domain-amplitude 
deformations taking f l  to f2, i.e., if we let 

then 

(21) + lblll I (4 + llnll V(z,n) E a. it means we can obtain a shorter path joining fl to f2 
by having the pa* pass through f 9  a contradiction. 

The question becomes, given f i  and f2, how do we find the 
shortest path between them? This is not an easy question. 

domain and amplitude deformations such that, starting from 
f1 we have: 

Similarly, let (n2, x2) be the shortest pair of amplitude-domain 
deformations taking fl to f2, i.e., if we let 

Assume that the shortest path is an alternate sequence of D2 = {(n,z) :  f 2  = (fl + n) 0 

then 

Hence 
where all ni's, except possibly n1, are different from 0. 
Similarly, all xi's are different from the identity. Then we lln1ll + (21) = 11~211 + ($2) V(.,.> E Dz. 
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Fig. 5. f ( t )  = l / (z  - 3)2  + 0.01 + l / (z  - 9)2 + 0.04 - 6 and g ( t )  = sin(.rrt). 

Proofi From the definition of XI and x2 we can write 

x1 = argmin(x) + I l f 2  - fi 0 211 

5 2  = argmin(z) + llfz o 5-l - fill. 

However, the amplitude metric 1 1  . 1 1  is composition-invariant. 
Hence 

2 

Ilfz 0 2-l - flll = ll(f2 0 x-l - fl) O 4 
= \ I f 2  - f l  0 4). 

Therefore 

min(2) + IIfz - f l  0 211 = min IIfz 0 2-l - Sill 

i.e., 

Note that nl  need not be the same as 712, only the n o m  is the 
same. Now, we are in a position to prove Theorem 5.5. 

Proof: Let {x,} and {n,} be the sequence of defoma- 
tions corresponding to the shortest path joining f l  to f 2 .  Con- 
sider a particular domain-amplitude deformation pair (.IC, n k ) ,  

joining I ' ( t k - 1 )  to I ' ( t k ) .  Then, using Lemma 5.6, we can 
replace (sk ) n k )  by another amplitude-domain deformation 
pair (ni)  xi) without increasing the length. Finally, nk can be 
added to n k - 1 ,  and xi can be composed with xk+l thereby 
reducing the number of points on the partition by 1. Repealing 
the process, we end up with one pair of amplitude-domain, or 
domain-amplitude, deformations without increasing the length. 
Obtaining one pair is equivalent to obtaining the other (see 
Lemma 5.6). Since every partition of the shortest path results 
in a polygon having the same length as one pair of domain- 
amplitude deformations, so is the supremum of all partition 
lengths. Q.E.D.. 

VI. DOMAIN AND AMPLITUDE DEFORMATION: APPLICATION 

To illustrate the consequences of Theorem 5.5, assume that 
we are using the supremum metric for both amplitude and 
domain deformations. Given two functions f l  and f ~ ,  Theorem 
5.5 implies that the following is also a metric over H 

d ( f 1 ,  fz) = inf (Xi sup t Iz(t)-tl+Xz SUP t Ifz(t)-fi(x(t))l) 

(3) 

where XI and X2 are positive weights included for conve- 
nience. 

In the literature on probability metrics, the above discovered 
metric3 is called the Skorokhod metric [4]. Using it to solve the 
recognition problem of Fig. 1, we find after some thought that 

d(g, hi)  =0.875)\2, 
d(g, h2) = min (0.02X1, A2). 

which implies that g is closer to hz (in agreement with the 
human sense) unless XI/& > 43.75. If the last inequality is 
true, it means that we are assuming a huge cost for domain 
deformation, and in that case only it is reasonable to say that 
g is closer to hl 

Note that we have used the supremum norm in (3) ,  since 
it is easier to deal with analytically. However, when running 
computer minimization algorithms that use gradient-descent- 
type techniques, it is more convenient to use the total variation 
n o m  instead. 

When the functions of interest cannot be expressed in 
analytic forms, we can discretize them as follows, and then 
use a software package such as MATLAB to find the solution. 

31t is important to note that H is not complete under this metnc. However, 
there is an equivalent metnc which makes H complete. We can prove that if 
f n  E H converges in the Skorokhod metric to a continuous function f then 
SUPL I fn ( t )  - f(t)l -+ 0. 
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t d(f ,g)=0.237 

t 

Fig. 6. The output a ( t )  of the multiresolution algorithm, using N = 5 and N 

d(f,g)=0.244 

= 9 samples. 

t d(f,g)=0.315 

Fig. 7. The output z ( t )  

t 

of the multiresolution algorithm, using N = 17 

d(f,g)=0.312 

and N = 33 samples. 

Let f and g be given waveforms. The distance between f 
and g is defined, in terms of the total variation metric, as 

where the parameters XI and have been chosen heuristi- 
cally. Discretizing t and z into column vectors of length N ,  

the distance d ( f , g )  is approximated with 

~(z; - zi-1) - ( i tz  - ti-l)l 

M t i )  - f(.i)) - (g(ti-1) - f(Zi--l))I + 
i 

where f ( z ; )  is obtained using interpolation. 
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To improve the convergence and speed, a multiresolution 
approach is adopted. First t and x are discretized into N = 5 
samples. Then a nonlinear optimization algorithm is run. When 
the termination tolerances for IC and d are met, the number of 
sampling points is doubled ( N  = 2N - 1). The algorithm 
terminates when N = 33. 

difference between the transmitted and the received signal. 
This choice guarantees invariance because, obviously, the sum 
is invariant with respect to the order of the elements being 
added. Similarly, in the domain-only deformation case, the 
invariance was guaranteed by choosing a metric that depends 
on the overall domain deformation z ( t ) ,  regardless of the 
individual domain deformations. Also, by forcing an isometric 
embedding into the space W ,  we were able to guarantee that 
the shortest path of differential deformations dx$, is actually 
the line segment connecting the transmitted and received 
signals in the space W. 

When both types of deformations were considered, special 
care was needed to m&e Sure that, when the different types of 

and = 9$ Fig. shows x ( t j  for the = l7 deformations intermix, the cost function is not affected. The 
an N = 33. main result of this paper is that this can be guaranteed if the 

amplitude metric is a composition-invariant function of f - g, 
and the domain metric is a composition-invariant metric of 

We tested the above algorithm using the functions 

f ( t )  = ‘/(IC - 3)2 + O.’’ + ‘/(IC - 9)2 ‘r 0’04 - 

g ( t )  = sin(nt) 

and 

displayed in Fig. 5. Fig. 6 shows z ( t )  for the cases N = 5 

VII. OBSERVATIONS AND CONCLUSIONS 

Part of the complication in the above analysis arose because 
we were trying to find a metric that “commutes” between the 
two types of deformation. The reason is that we wanted a 
cost function that was invariant with respect to the order of 
the two different types of noise occurrence, that is, invariant 
with respect to the incremental deformations: dxi for domain, 
and dn;  for amplitude, at time t;. Note that in the classical 
amplitude-only deformation case, the invariance was guaran- 
teed by choosing a metric which is a function of the sum 
of differential amplitudes, or, alternatively, a function of the 

z ( t )  - t. Examples of such met& were given. 
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