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Model and Optimal Control Theory

Michael S. Branicky,Member, IEEE, Vivek S. Borkar,Senior Member, IEEE, and Sanjoy K. Mitter,Fellow

Abstract—Complex natural and engineered systems typically
possess a hierarchical structure, characterized by continuous-
variable dynamics at the lowest level and logical decision-making
at the highest. Virtually all control systems today—from flight
control to the factory floor—perform computer-coded checks and
issue logical as well as continuous-variable control commands.
The interaction of these different types of dynamics and informa-
tion leads to a challenging set of “hybrid” control problems. We
propose a very general framework that systematizes the notion of
a hybrid system, combining differential equations and automata,
governed by a hybrid controller that issues continuous-variable
commands and makes logical decisions. We first identify the
phenomena that arise in real-world hybrid systems. Then, we
introduce a mathematical model of hybrid systems as interacting
collections of dynamical systems, evolving on continuous-variable
state spaces and subject to continuous controls and discrete
transitions. The model captures the identified phenomena, sub-
sumes previous models, yet retains enough structure on which
to pose and solve meaningful control problems. We develop a
theory for synthesizing hybrid controllers for hybrid plants in
an optimal control framework. In particular, we demonstrate the
existence of optimal (relaxed) and near-optimal (precise) controls
and derive “generalized quasi-variational inequalities” that the
associated value function satisfies. We summarize algorithms
for solving these inequalities based on a generalized Bellman
equation, impulse control, and linear programming.

Index Terms—Automata, control systems, differential equa-
tions, dynamic programming, hierarchical systems, hybrid sys-
tems, optimal control, state-space methods.

I. INTRODUCTION

M ANY COMPLICATED control systems today (e.g.,
those for flight control, manufacturing systems, and

transportation) have vast amounts of computer code at their
highest level. More pervasively, programmable logic con-
trollers are widely used in industrial process control. We also
see that today’s products incorporate logical decision-making
into even the simplest control loops (e.g., embedded systems).
Thus, virtually all control systems today issue continuous-
variable controls and perform logical checks that determine
the mode—and hence the control algorithms—the continuous-
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Fig. 1. (a) Hybrid system. (b) Hybrid control system.

variable system is operating under at any given moment. As
such, these “hybrid control” systems offer a challenging set
of problems.

Hybrid systems involve both continuous-valued and
discrete-valued variables. Their evolution is given by equations
of motion that generally depend on both. In turn these
equations contain mixtures of logic and discrete-valued or
digital dynamics and continuous-variable oranalogdynamics.
The continuous dynamics of such systems may be continuous-
time, discrete-time, or mixed (sampled-data), but is generally
given by differential equations. The discrete-variable dynamics
of hybrid systems is generally governed by adigital automaton
or input–output transition system with a countable number
of states. The continuous and discrete dynamics interact at
“event” or “trigger” times when the continuous state hits
certain prescribed sets in the continuous state space; see
Fig. 1(a).

Hybrid control systemsare control systems that involve both
continuous and discrete dynamics and continuous and discrete
controls. The continuous dynamics of such a system is usually
modeled by a controlled vector field or difference equation. Its
hybrid nature is expressed by a dependence on some discrete
phenomena, corresponding to discrete states, dynamics, and
controls. The result is a system as in Fig. 1(b).

Examples of such systems are given in some depth in
[1]. They include computer disk drives [2], transmissions
and stepper motors [3], constrained robotic systems [4], and
automated highway systems [5]. More generally, such systems
arise whenever one mixes logical decision-making with the
generation of continuous control laws. Thus, applications
range from programmable logic controllers on our factory
floors to flight vehicle management systems [6] in our skies.

So, “hybrid” systems are certainly pervasive today. But
they have been with us at least since the days of the relay.
Traditionally, though, the hybrid nature of systems and con-
trollers has been suppressed by converting them into either
purely discrete or purely continuous entities. The reason is that
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science and engineering’sformal modeling, analysis, and con-
trol “toolboxes” deal largely—and largely successfully—with
these “pure” systems.

It is no surprise, then, that there are two current paradigms
for dealing with hybrid systems: aggregation and continuation.
In the aggregation paradigm, one endeavors to treat the entire
system as a finite automaton or discrete-event dynamic system
(DEDS). This is usually accomplished by partitioning the
continuous state space and considering only the aggregated
dynamics from cell to cell in the partition (cf., [7]). In
the continuation paradigm, one endeavors to treat the whole
system as a differential equation. This is accomplished by 1)
“simulating” or “embedding” the discrete actions in nonlinear
ordinary differential equations (ODE’s) or 2) treating the
discrete actions as “disturbances” of some (usually linear)
differential equation.

In current applications of interest (mentioned above), both
these paradigms have been found lacking. In a nutshell,
they are too conservative. Aggregation often leads to non-
deterministic automata and yields the problem of how to
pick appropriate partitions. Indeed, Digennaroet al. have
shown that there are systems consisting of just two constant
rate clocks with reset (evolving on the unit square [0, 1]2

and resetting to zero on hitting one) for which no parti-
tion exists that yields a deterministic finite automaton [8].
Continuation’s first route hides the discrete dynamics in the
right-hand sides of ODE’s, yielding nonlinear systems for
which there is a dearth of tools and engineering insight.
Indeed, Branicky has shown that there are smooth, Lipschitz
continuous ODE’s in 3, which possess the power of uni-
versal computation, hence yielding most control questions
in 3 undecidable [9] (one such question is constructed
in Section IX-B). Continuation’s second route may treat the
discrete dynamics as small unmodeled dynamics (and then
use robust control), slowly-varying (and gain-scheduling), or
rare and independent of the continuous state (jump linear
systems). In hybrid systems of interest, each or all of these as-
sumptions may be violated, leading to hopelessly conservative
designs.

Herein, we propose a truly hybrid paradigm for hybrid
systems by developing a new, unified framework that captures
both the important discrete and continuous features of such
systems—and their interactions—in such a way that we can
build on the considerable engineering insight on both sides and
provide natural, nonconservative solutions to hybrid control
problems. In particular, in this paper we address and answer
the problem of synthesizing hybrid controllers—which issue
continuous controls and make discrete decisions—that achieve
certain prescribed safety and performance goals for hybrid
systems.

Problem 1.1: How do we control a plant as in Fig. 1(b)
with a controller as in Fig. 1(b)?

In order to turn this profound, abstract problem into a
tractable one, we require two prerequisites:

P1) a mathematical model for a box like Fig. 1(b);
P2) a mathematical control problem which leads to a hybrid

controller.

Briefly, we build on the structure of dynamical systems for
P1) and use an optimal control framework for P2). The details
follow.

In other work, we have looked at real-world examples
and previously posed hybrid systems models and identified
four phenomena that need to be covered by any useful
model: 1) autonomous switching; 2) autonomous impulses;
3) controlled switching; and 4) controlled impulses. In
[1], Branicky introducedgeneral hybrid dynamical systems
(GHDS’s) as interacting collections of dynamical systems,
each evolving on continuous-variable state spaces, with
switching among systems occurring at “autonomous jump
times” when the state variable intersects specified subsets
of the constituent state spaces. Controlled GHDS’s, or
CGHDS’s, first add the possibility of continuous controls
for each constituent dynamical system. They also allow
discrete decisions at autonomous jump times as well the
ability to discontinuously reset state variables at “intervention
times” when the state satisfies certain conditions, given by
its membership in another collection of specified subsets of
the state space. In general, the allowed resettings depend on
the state.

The CGHDS model has three important properties as fol-
lows. It covers the identified phenomena, encompasses all
the studied previous models, and has sufficient mathematical
structure to allow the posing and proving of deeper results
[1]. This satisfies P1).

For P2), we use a variant of the CGHDS that possesses
all its generalization and structural properties and covers most
situations of interest to both control engineers and computer
scientists. It also includes conventional impulse control [10].
Because of this, we dubbed it the “unified model.” Finally,
we use an optimal control framework to formulate and solve
for hybrid controllers governing hybrid plants. In particular,
our collection is indexed by , and our dynamical
systems are given by controlled vector fields in , for
some . Maps representing the costs of continuous
controls and autonomous and controlled jumps are presumed.
The control objective is then to minimize the total accumulated
cost over all available decisions and controls.

The paper is organized as follows. In the next section, we
quickly review previous work on hybrid control. In Section III
we 1) identify the phenomena present in real-world systems
we must capture and 2) classify previous modeling efforts.
In Section IV, we present our CGHDS model and show
that it is sufficiently rich to cover the identified phenomena
and reviewed models. In Section V, we define an optimal
control problem on our unified model. The problem, and all
assumptions used in obtaining the remaining results, are ex-
pressly stated. Sections VI and VII contain the main theoretical
results, which are as follows.

• We prove the existence of optimal (relaxed or chatter-
ing) controls and near-optimal (precise or nonchattering)
controls.

• We derive “generalized quasi-variational inequalities”
(GQVI’s) that the associated value function is expected
to satisfy.
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Further, the necessity of our assumptions—or ones like
them—is demonstrated. Section VIII gives some quick
examples, and in Section IX are conclusions and a discussion,
including open issues and a summary of our work to date on
control synthesis algorithms. The latter is based on solving
our GQVI’s and will appear in full as a future paper.

The optimal control theory of this paper grew out of [11].
Early references are [12]–[14].

Below, , , , and denote the reals, nonnegative
reals, integers, and nonnegative integers, respectively.
represents the complement ofin ; represents the closure
of , its interior, its boundary; denotes the
space of continuous functions with domain and range ;

denotes the transpose of vector; and denotes an
arbitrary norm of vector . More special notation is defined
as it is introduced.

II. PREVIOUS WORK

Hybrid systems are certainly pervasive today, but they
have been with us at least since the days of the relay.
The earliest direct reference we know of is the visionary
work of Witsenhausen from MIT, who formulated a class of
hybrid-state continuous-time dynamic systems and examined
an optimal control problem [15]. Another early gem is the
modeling paper of Tavernini [16].

Hybrid systems is now a rapidly expanding field that has just
started to be addressed more wholeheartedly by the control and
computer science communities. Explicit reference to general
papers is beyond our scope here (see [1] for review, references,
and other results). However, our modeling work has been
influenced by [2]–[4], [12], and [15]–[17].

Our work was largely inspired by the well-known theo-
ries of impulse control and piecewise deterministic processes
[18]–[21]. Close to our results are those of [22], discovered
after this work was completed. That paper considers switching
and “impulse obstacle” operators akin to those in (13) and
(12) for autonomous and (controlled) impulsive jumps, re-
spectively. Yongrestricts the switching and impulse operators
to be uniform in the whole space,which is unrealistic in
hybrid systems. However, he derives viscosity solutions of
his corresponding Hamilton–Jacobi–Bellman system. His work
may be useful in deriving viscosity solutions to our GQVI’s.

Also after this work was completed, we became aware
of the model and work of [15], mentioned above. In that
paper, Witsenhausen considers an optimal terminal constraint
problem on his hybrid systems model. His model contains
no autonomous impulses, no controlled switching, and no
controlled impulses.

Optimal control of hybrid systems has also been considered
in [23] (for the discrete-time case) and [17]. Kohn is the
first we know of to speak of using relaxed controls and
their -optimal approximations in a hybrid systems setting
(see the discussion and references of [17, Appendix I]). The
algorithmic importance of these was further described in [24].
A different approach to the control of hybrid systems has been
pursued by Kohn and Nerode [17, Appendix II], in which
the discrete portion of the dynamics is itself designed as a

Fig. 2. Hysteresis function.

realizable implementation (i.e., a sufficient approximation) of
some continuous controller. Finally, viable control of hybrid
systems has been considered by researchers subsequent to our
initial findings [25], [26].

III. A T AXONOMY FOR HYBRID SYSTEMS

A. Hybrid Phenomena

A hybrid system has continuous dynamics modeled by a
differential equation

(1)

that depends on some discrete phenomena. Here,is the
continuous componentof the state taking values in some
subset of a Euclidean space. is a controlled vector field
that generally depends on , the continuous component

of the control policy, and the aforementioned discrete
phenomena.

An examination of real-world examples and a review of
other hybrid systems models has led us to an identification
of these phenomena. The discrete phenomena generally con-
sidered are as follows. The real-world examples we examined
may be found in [1] and [12].

1) Autonomous Switching:Here the vector field
changes discontinuously, or “switches,” when the state
hits certain “boundaries” [16], [17]. The simplest example of
this is when it changes depending on a “clock” that may be
modeled as a supplementary state variable [3].

Example 3.1—Hysteresis:Consider a control system with
hysteresis

where the multivalued function is shown in Fig. 2.
Note: This system is not just a differential equation whose

right-hand side is piecewise continuous. There is “memory” in
the system, which affects the value of the vector field. Indeed,
such a system naturally has a finite automaton associated with
the hysteresis function , as pictured in Fig. 3.

2) Autonomous Impulses:Here the continuous state
changes impulsively on hitting prescribed regions of the state
space [4], [27]. The simplest examples possessing this phe-
nomenon are those involving collisions.
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Fig. 3. Finite automaton associated with hysteresis function.

Example 3.2—Collisions:Consider the case of the vertical
and horizontal motion of a ball of mass in a room under
gravity with constant . In this case, the dynamics are given by

Further, upon hitting the boundaries 0 or ,
we instantly set to , where [0, 1] is the coefficient
of restitution. Likewise, upon hitting 0 or

is set to .
3) Controlled Switching:Here switches in response

to a control command with an associated cost. This can
be interpreted as switching between different vector fields
[21]. Controlled switching arises, for instance, when one is
allowed to pick among a number of vector fields ,

1, 2,
Example 3.3—Satellite Control:As a simple example of

satellite control consider

where is angular position, angular velocity of the satellite,
and 1, 0, 1 , depending on whether the reaction jets
are full reverse, off, or full on.

An example that includes controlled switching and contin-
uous controls is the following.

Example 3.4—Transmission:Consider a simplified manual
transmission model, modified from one in [3]

where is the ground speed, is the engine RPM, [0, 1]
is the throttle position, and 1, 2, 3, 4 is the gear shift
position. The function is positive for positive argument.

4) Controlled Impulses:Here jumps in response to a
control command with an associated cost [10].

Example 3.5—Inventory Management:In a simple inven-
tory management model [10], there is a “discrete” set of
restocking times as well as associated order
amounts . The equations governing the stock at
any given moment are

where represents degradation or utilization dynamics and
is the Dirac delta function.

B. Classification of Hybrid Systems Models

In this section, we give explicit representations of the broad
classes of hybrid systems for which our theory and algorithms
are applicable.

A (continuous-time)autonomous-switching hybrid system
may be defined as follows:

(2)

where , . Here,
, , each globally Lipschitz continuous

is the continuous dynamicsof (2); and
represents itsfinite dynamics.

Note: The notation may be used to indicate that the
finite state is piecewise continuous from the right:

Likewise, denotes it is
piecewise-continuous from the left. To avoid making the dis-
tinction here, we have used Sontag’s more evocative discrete-
time transition notation, where is used to denote the
“successor” of . Its “predecessor” is denoted . This
notation makes sense since no matter which convention is used
for ’s piecewise continuity, we still have .

Thus, starting at , the continuous-state trajectory
evolves according to . If hits some

at time , then the state becomes ,
from which the process continues. Clearly, this is an
instantiation of autonomous switching. Switchings that are
a fixed function of time may be taken care of by adding
another state dimension, as usual. Examples are the Tavernini
model [16] and the autonomous version of Witsenhausen’s
model [15].

By a continuous-controlled autonomous-switching hybrid
systemwe have in mind a system of the form

(3)

where everything is as above except that , with
and modified appropriately. An example is Witsenhausen’s
model [15]. Anautonomous-impulse hybrid systemis a system

(4)

where , , and . Examples
include autonomous systems with impulse effect [27].

Finally, a hybrid system with autonomous switching and
autonomous impulses is just a combination of (2) and (4).
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Fig. 4. Automaton associated with CGHDS.

Examples include the model of Backet al. [4] and hence all
the autonomous models in [3], [15]–[17], and [28] (see [1] and
[12]). Likewise, we can define discrete-time autonomous and
controlled hybrid systems by replacing the ODE’s above with
difference equations. In this case, (2) represents a simplified
view of some of the models in [3]. Also, adding controls—both
discrete and continuous—is straightforward. Finally, nonuni-
form continuous state spaces, i.e., , may be added
with little change.

The thesis [1] offers an in-depth review of previous hybrid
systems models, including comparisons, and a more complete
taxonomy for hybrid systems that is inclusive of the foregoing.

IV. HYBRID DYNAMICAL SYSTEMS

A. Mathematical Model

The notion of a “dynamical system” has a long history
as an important conceptual tool in science and engineering
[29]–[34]. It is the foundation of our formulation of hybrid
dynamical systems.

Briefly, a dynamical systemis a system ,
where is an arbitrary topological space, thestate space
of . The transition semigroup is a topological semigroup
with identity. The (extended) transition map
is a continuous function satisfying the identity and semigroup
properties [34].

Examples of dynamical systems abound, including au-
tonomous ODE’s, autonomous difference equations, finite
automata, pushdown automata, Turing machines (TM’s), Petri
nets, etc. As seen from these examples, both digital and analog
systems can be viewed in this formalism. The utility of this has
been noted since the earliest days of control theory [32], [33].

We will also denote by dynamical system the system
where and are as above, but thetransition func-

tion is thegeneratorof the extended transition function.
Briefly, a hybrid dynamical system is an indexed collection

of dynamical systems along with some map for “jumping”
among them (switching dynamical system and/or resetting the

state). This jumping occurs whenever the state satisfies certain
conditions, given by its membership in a specified subset
of the state space. Hence, the entire system can be thought
of as a sequential patching together of dynamical systems
with initial and final states, the jumps performing a reset to
a (generally different) initial state of a (generally different)
dynamical system whenever a final state is reached.

Formally, a controlled general hybrid dynamical system
(CGHDS) [1] is a system

with constituent parts as follows.

• is the set ofindex statesor discrete states.
• is the collection ofcontrolled dynamical

systems, where each (or
) is a controlled dynamical system. Here,

the are thecontinuous state spacesand (or )
are thecontinuous dynamics; is the set ofcontinuous
controls.

• , for each , is the collection
of autonomous jump sets.

• , where is the
autonomous jump transition map, parameterized by the
transition control set , a subset of the collection

; they are said to represent thediscrete dynamics
and controls.

• , , is the collection ofcontrolled
jump sets.

• , where is the collection of
controlled jump destination maps.

Thus, is thehybrid state spaceof .
The case where the sets and through above are empty
is simply aGHDS:

A CGHDS can be pictured as an automaton as in Fig. 4.
There, each node is a constituent dynamical system, with
the index the name of the node. Each edge represents a
possible transition between constituent systems, labeled by the
appropriate condition for the transition’s being “enabled” and
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Fig. 5. Example dynamics of a CGHDS.

the update of the continuous state (cf., [35]). The notation
![ ] denotes that the transitionmust be taken when
enabled. The notation ?[ ] denotes an enabled transi-
tion thatmaybe taken on command; “” means reassignment
to some value in the given set.

Roughly, the dynamics of are as follows.1 The system
is assumed to start in some hybrid state in , say

. It evolves according to until the state
enters—if ever—either or at the point .
If it enters , then it must be transferred according to
transition map for some chosen . If it
enters , then wemay choose to jump and, if so, we may
choose the destination to be any point in . Either way,
we arrive at a point from which the process
continues; see Fig. 5.

B. Notes

The following are some important notes about CGHDS’s.
1) Dynamical Systems:GHDS with and empty

recover all these.
2) Hybrid Systems:The case of a GHDS with finite,

where each is a subset of and each largely
corresponds to theusual notion of a hybrid system, viz, a

1Precise statements appear in [1, Sec. 4.3].

coupling of finite automata and differential equations [9], [12],
[36]. Herein, ahybrid systemis a GHDS with countable
and with (or ) and , , for all

: where is a
vector field on .2

3) Changing State Space:The state space may change.
This is useful in modeling component failures or changes
in dynamical description based on autonomous or controlled
events which change it. Examples include the collision of two
inelastic particles or an aircraft mode transition that changes
variables to be controlled [38]. We also allow the to
overlap and the inclusion of multiple copies of the same
space. This may be used, for example, to take into account
overlapping local coordinate systems on a manifold [4].

4) Refinements:We may refine the concept of a CGHDS
by adding

• outputs, includingstate-outputfor each constituent system
as for dynamical systems [1], [34] andedge-output:

, , where produces
an output at each jump time.

2Here, we may take the view that the system evolves on the state space
IR

�
�Q, whereIR� denotes the set of finite, but variable-length real-valued

vectors. For example,Q may be the set of labels of a computer program and
x 2 IR

� the values of all currently allocated variables. This then includes
Smale’s tame machines [37].
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• , the jump delay map, which can be used to
account for the time which abstracted-away lower-level
transition dynamics actually take.3

• We may add atransition time mapor timing map
(or ) for some or all dynamical systems. Of

particular interest are maps whereis constant on and
those that, in addition, are homomorphisms with subsets
of ( ). In the generator case, the timing map can be
defined on .

Timing maps provide a mechanism for reconciling
different “time scales” by giving a uniform meaning to
different transition semigroups in a hybrid system [1, Sec.
IV].

• Marked states (including initial, final, or accepting states).

Other Notes:

1) Nondeterminismin transitions may be taken care of by
partitioning [ ] into those which are controlled
and uncontrolled (cf., DEDS).Disturbances(and other
nondeterminism) may be modeled by partitioning, ,
and into portions that are under the influence of the
controller or nature, respectively. Systems with state-
output, edge-output, and autonomous and controlled
jump delay maps ( and , respectively) may be
added as above.

2) The model includes the “unified” model posed by Bran-
icky et al. [12] that is used below. It thus includes several
other previously posed hybrid systems models [3], [4],
[15]–[17], [28]. It also includes systems with impulse
effect [27] and hybrid automata [39].

C. Inclusion of Discrete Phenomena and Previous Models

We now show how CGHDS encompasses the discrete
phenomenon of Section III-A, and how it subsumes the hybrid
systems models classified above.

First, we have a simplification. If a set of parameters or
controls is countable and discrete, such as a set of strings, we
may take it to be isomorphic with a subset of. On the other
hand, consider a set of parameters or controls, where is a
compact, connected, locally connected metric space. By the
Hahn–Mazurkiewicz theorem [40], is the continuous image
of [0, 1] under some map, and thus we may set [0, 1]
without any loss of generality. Thus, we may assume below
without any loss of generality that parameters and controls
take values in a subset .

1) Autonomous Switching and Impulses:These are clearly
taken care of with the sets .

2) Controlled Switching and Impulses:These are clearly
taken care of with the sets .

Remark 4.1:Autonomous (respectively, controlled) switch-
ing can be viewed as a special case of autonomous (respec-
tively, controlled) jumps.

Proof: See the Appendix.

3Think of modeling the closure time of a discretely controlled hydraulic
valve or trading imperfections in economic markets. This mechanism shows
how hybrid systems naturally arise in hierarchical systems as one moves up
different levels of abstraction.

3) Digital Automata: A variety of automata interacting
with continuous dynamics are automatically subsumed by the
discrete dynamics of our model. The automata structure may
be captured by examining them; see Fig. 4. For example, if
that picture had a finite number of nodes, each with a single
nonempty edge emanating from it, the resulting automaton
would be a deterministic finite automaton.

4) Other Hybrid Models:Our model subsumes all those
classified and referenced in Section III-B. For example, mod-
els of the form of (2) can be accommodated merely by taking

and . The other classified models follow
readily [12].

Example 4.2—Brockett’s Type-Hybrid System:In [3],
Brockett introduces atype- hybrid systemas follows:

where , , ,
, , , ,

and . Here, and are open subsets
of and , respectively, and and are isomorphic to
subsets of . Finally, denotes the greatest integer less
than or equal to , and, in an abuse of common notation,
denotes the least integergreater than .

Brockett’s model may be captured by ours by choosing
, and for each , defining , ,

[0, 1] (with dimensions representingand )

, and .
It is clear that this can be extended to include the other

models in [3]. Subsumption of the other referenced models
follow readily [12].4

5) Setting Parameters and Timers:A system which, upon
hitting boundaries, sets parameters from an arbitrary compact
set can be modeled in our framework by redefining

, and , and defining
as

and as

each for all possible arguments. A system which sets timers
upon hitting boundaries can be modeled by a vector of the
rate equations as in the vector form of Brockett’smodel

4Herein,A subsumesB means that every system described by the equations
of modelB can be described by the equations of modelA. From the original
papers, it is clear that the referenced models were developed for a variety
of purposes. Moreover, there is a direct tradeoff between the generality of a
model and what one can prove about such a model. Therefore, “subsumption”
of one model in another does not reflect any bias of the more general
model’s being “superior.” Indeed, below, we restrict the class of CGHDS
in forming our “unified model.” That model is still abstract enough to capture
the collected hybrid phenomena and subsume the models referenced here.
However, the restrictions on it will allow us to solve optimal control problems.
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of hybrid systems, which in turn can be modeled in our
framework as previously discussed.

V. THE CONTROL PROBLEM

A. Unified Model

Now, we come to our unified model for hybrid control.
Though a restriction of our CGHDS it still encompasses all
identified phenomena and previously posed models, retains the
structure of switching between dynamical systems, and covers
most situations of interest to control engineers. We also collect
all the technical assumptions used in the sequel.

We consider the following CGHDS:

Specifically, our discrete state space is . The continu-
ous state space for is , where each is a
subset of some Euclidean space , .

For simplicity of notation, though, the “destination sets” are
specifieda priori by sets instead of by the collection
of set-valued maps . Also, with no real loss of generality,
we consider , , to be the sets of
continuous and discrete controls, respectively. However, below
we do generalize to allow the vector field to depend on the
continuous state at the last jump time and add delay operators
to autonomous and controlled jumps.

Note that we have specifieda priori regions
, . These are theautonomous jump sets, controlled

jump sets, and jump destination sets,respectively. For con-
venience, let , , and denote the unions ,

, and , , respectively. The
dynamics are specified as follows, with delay maps added to
allow nonzero jump times:

1) vector fields , ;
2) jump transition maps ;
3) autonomous transition delay ;
4) controlled transition delay .

In shorthand, we may define in the obvious
manner, i.e., , similarly for and

. We now place some assumptions on the foregoing.
Assumption 5.1—Model Assumptions:For each ,

the following hold: is the closure of a connected open
subset of Euclidean space and , with Lipschitz
boundary . are closed. In addition,
is Lipschitz and contains .

The maps , , and are bounded uniformly contin-
uous; the vector fields , are bounded (uniformly
in ), uniformly Lipschitz continuous in the first argument,
and uniformly equi-continuous with respect to the rest.
are compact metric spaces. Below, is a -valued control
process, assumed to be measurable.

Assumption 5.2—Jump Set Separation: and
, being the appropriate Euclidean

distance.
Assumption 5.3— Transversality: For each , is an

oriented -manifold without boundary and at each point
on , is “transversal” to for all choices of

, . By this we require that 1) the flow lines be transversal in
the usual sense5 and 2) the vector field does not vanish on .

Assumption 5.4— Transversality: Same as Assump-
tion 5.3 but with replacing .

Assumptions 5.2–5.4 are technical assumptions. They may
be traded for others as discussed in Section IX. The latter two
are the most restrictive. However, in the sequel we construct
examples pointing out the necessity of such assumptions or
ones like them. Assumptions 5.1 and 5.2 give rise to well-
defined dynamics as follows.

• Existence and uniqueness in each constituent system is
assured (via assumptions on, ).

• Switching times are well defined (since the and
are closed).

• Autonomous switching times do not accumulate (thanks
to Assumption 5.2).

The dynamics of the control system is much the same as for
the CGHDS above, except that the delay maps give rise to
a sequence ofprejump times and another sequence of
post-jump times satisfying

. On each interval with nonempty
interior, evolves according to in
some , and . At the next prejump time (say, ) it
jumps to some according to one of the following
two possibilities.

1) , in which case itmust jump to
at time ,

being a control input. We call this phenomenon
an autonomous jump.

2) and the controllerchoosesto—it does
not have to—move the trajectory discontinuously to

at time . We
call this a controlled (or impulsive) jump.

See Fig. 5. The jumps may be thought of as beginning at time
and ending at time .
For , let . The vector

field of (1) is given by

(5)

where is such that and is a -valued
control process.

As with the CGHDS, we can explicitly show that the
above model captures all identified discrete phenomena arising
in hybrid systems and subsumes all reviewed and classified
hybrid systems models.

Note: The autonomous version of this model (including no
controlled jumps) yields unique trajectories in the case of, for
instance, closed and ; see [1].

B. Costs

Let be a discount factor. We add to our previous
model the following known maps.

1) Running cost .
2) Autonomous jump costor transition cost

.

5Transversality implies that@Ai is (di � 1)-dimensional.
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3) Controlled jump costor impulse cost
.

Important Note: As for before, we may use the short-
hand , defined in the obvious way. However,
below we suppress reference to the index state. We do the
same with the other maps: and

if . In such a case,
it is equivalent to think of as a member of theformal
union , that is, a point is implicitly specified by both
its valueand the index of the set to which it belongs.

That this incurs no loss of generality is justified by the
arguments in Section IV-C on viewing switching as a special
case of impulses. Thus, to ease notation we use this shorthand
throughout for the maps , , , , , etc. To alert the
reader, such formal unions are denoted using the symbol.

Thus, autonomous jumps are done at a cost of
paid at time and controlled jumps at a cost of

paid at time . In addition to the costs
associated with the jumps as above, the controller also incurs
a running cost of per unit time during the
intervals , .

Assumption 5.5—Cost Assumptions:The maps and
are bounded uniformly continuous; the are uniformly
bounded and uniformly equi-continuous.

In addition, for all , satisfies

(6)

(7)

Assumption 5.6—No Jumps to Infinity:Each is bounded
and for each, there exists an integer such that for

, , , , where
is defined in the next section.

Note that (6) rules out from consideration infinitely many
controlled jumps in a finite interval, and (7) rules out the
merging of post-jump time of a controlled jump with the pre-
jump time of the next controlled jump. Together, they preclude
accumulation of controlled jumps and are the same as those
made in conventional impulse control [10]. Assumption 5.6
precludes jumping to infinity directly or because there is
an infinite number of systems to which to jump. Again,
these assumptions may be traded for others as discussed in
Section IX. However, in the sequel we construct examples
pointing out the necessity of such assumptions or ones like
them.

The total discounted costis6

(8)

where , (respectively, ) are
the successive prejump times for autonomous (respectively,

6We use a discounted cost for technical reasons, i.e., with an infinite horizon
one needs a discounted or average cost for finiteness. We did not use an
average cost since in hybrid systems one is often keenly interested in the
transitory behavior (especially in the discrete transition sequence).

controlled) jumps and is the post-jump time for theth
controlled jump. Thedecisionor control variables over which
(8) is to be minimized are

• the continuous control ;
• thediscrete controls , exercised at the prejump times

of autonomous jumps;
• the prejump orintervention times of controlled jumps

and the associateddestinations .

As for the periods with nonempty interior, we shall
follow the convention that the system remains frozen during
these intervals.

For illustration, we describe a simple system using our
formalism.

Example 5.7:Consider again the hysteresis system of Ex-
ample 3.1. It can be modeled as follows. The state space
is , with and

. The continuous dynamics is given by

The discrete dynamics is governed by the autonomous jump
sets and and their associated transitions, which are,
respectively

VI. EXISTENCE OF OPTIMAL CONTROLS

Let denote the infimum of (8) over all choices of
when . We have the fol-

lowing theorem.
Theorem 6.1:The optimal cost is finite for any initial

condition.
Proof: Let be bounds of the , , and ,

respectively. Then, choosing to make no controlled jumps and
using arbitrary we have that

Let . Then , so
the second term is bounded by , which
converges.

The following corollary is immediate from the argument
above.

Corollary 6.2: There are only finitely many autonomous
jumps in finite time.

To see why an assumption like Assumption 5.2 is necessary
for the above results, one needs only to consider the following
one-dimensional example.

Example 6.3:Let [0, 2], 0, 2 , and
for each . Also for each , define ,

, and . Finally, let
and . Starting in at ,

we see that
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Since the sum of inverse squares converges, we will accu-
mulate an infinite number of jumps and infinite cost by time

.
It is well known that there are examples in where

an optimal control fails to exist when the control space is
not convex (e.g., when it is finite). The hybrid case not
only inherits these, but adding switching among continuous
spaces may only exacerbate the situation. Next, however, we
show that is attained for all if we extend the class
of admissible to “relaxed” controls. Therelaxed control
framework [41] is as follows: We suppose that ,
defined as the space of probability measures on a compact
space with the topology of weak convergence [47]. Also

for suitable , satisfying the appropriate continu-
ity/Lipschitz continuity requirements. The relaxed control
framework and its implications in control theory are well
known, and the reader is referred to [41] for details.

Theorem 6.4:An optimal trajectory exists for any initial
condition.

Proof: See the Appendix.
It is easy to see why Theorem 6.4 may fail in absence of

Assumption 5.6.
Example 6.5:Suppose, for example, and

when , when ,
, with , , strictly decreasing with . It is

easy to conceive of a situation where the optimal choice would
be to “jump to infinity” as fast as you can.

The theorem may also fail in the absence of Assumption 5.3
as the following two-dimensional system shows.

Example 6.6:

with [0, 1] and cost

with the provision that the trajectory jumps to [1010, 1010] on
hitting a certain curve . For , consider two possibilities:

1) the line segment , a -
manifold with boundary;

2) the circle , a -
manifold without boundary, but the vector field (1,)
with is not transversal to it at (1, 0).

It is easy to see that the optimal cost is not attained in either
case.

Also, it is not enough that the flow lines for each control be
transversal in the usual sense as the following one-dimensional
example shows.

Example 6.7:Let for arbitrary

with running cost and , where
. Choosing, for example, , one sees

that the optimal cost cannot be attained for any .
Coming back to the relaxed control framework, say that

is a precisecontrol if for a measurable
0 where denotes the Dirac measure at .

Let denote the set of measures on0 of the form
, where is a relaxed control and its subset,

corresponding to precise controls. It is known that is dense
in with respect to the topology of weak convergence [41]. In
conjunction with the Assumption 5.4, this allows us to deduce
the existence of-optimal control policies using precise ,
for every .

Theorem 6.8:Under Assumptions 5.4–5.6, for every
an -optimal control policy exists wherein is precise.

Proof: See the Appendix.
Remarks: If are convex for each

and a standard selection theorem [41] allows us to replace
in the proof by a precise control which is optimal.

Otherwise, using Caratheodory’s theorem (which states that
each point in a compact subset of is expressible as a
convex combination of at most of its extreme points)
and the aforementioned selection theorem, one may suppose
that for , the support of consists of at most

points when .

VII. T HE VALUE FUNCTION

In the foregoing, we had set and thus
. More generally, for , we may

consider for some , making a negligible
difference in the foregoing analysis. Let denote the
optimal cost corresponding to this initial data. Then in dynamic
programming parlance, defines the “value
function” for our control problem.

In view of Assumption 5.3, we can speak of theright side
of as the side on which is directed toward ,

. A similar definition is possible for the right side of
(in light of Assumption 5.4).

Definition 7.1: Say that from the
right in if and either

or from the right
side. is said to becontinuous from the rightif

from the right implies .
Theorem 7.2: is continuous from the right.

Proof: See the Appendix.
Corollary 7.3: is continuous on

.
Again, Example 6.7 shows the necessity of the vector

field’s not vanishing on . Unfortunately, need not be
continuous in the data of the hybrid system.

Example 7.4:Let , , ,
and . Further, let , , and
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. Then we have

It is clear that the optimal cost-to-go is not continuous atin
the autonomous jump set data .

We shall now formally derive the GQVI’s is ex-
pected to satisfy. Let and the set
on which

(9)

where is such that . For , if
and , an optimal decision (not necessarily

the only one) would be to jump to a where the minimum
on the right-hand side of (9) is obtained. On the other hand,
for

with as above, and it is not optimal to execute a controlled
jump. For , however, an autonomous jump is mandatory
and thus

Suppose is a closed subset of . Let
, with . Let

, with (say). Let be a bounded
open neighborhood of in with a smooth boundary

and , where satisfies

(10)

Note that is a fixed parameter here. By standard dynamic
programming arguments, , , , as above, is
also the value function for the “classical” control problem of
controlling (10) on 0 with cost

where on . It follows that ,
is the viscosity solution of the Hamilton–Jacobi

equation for this problem [42], i.e., it must satisfy (in the sense
of viscosity solutions) the partial differential equation

(11)

in and, hence, on . (Here denotes the gradient in
the variable.) Elsewhere, standard dynamic programming
heuristics suggest that (11) holds with “” replaced by “ .”

Based on the foregoing discussion, we propose the following
system ofGQVI’s for : For

on

(12)

on (13)

(14)

on (15)

Equation (15) states that at least one of (12) or (14) must be an
equality on . Equations (12)–(15) generalize the traditional
quasi-variational inequalitiesencountered in impulse control
[10]. We do not address the issue of well-posedness of
(12)–(15).

The following “verification theorem,” however, can be
proved by routine arguments.

Theorem 7.5:Suppose (12)–(15) has a “classical” solution
which is continuously differentiable “from the right” in the

first argument and continuous in the second. Supposeis
an admissible trajectory of our control system with initial data

and , , , , , the associated
controls and jump times, such that the following hold:

1) for a.e. , such that

2) for all

3) for all

Then is an optimal trajectory.

VIII. E XAMPLE PROBLEMS

Here, we consider some example problems in our frame-
work.

Example 8.1:Consider Example 6.7 except with the con-
trols restricted in , . Then, the flows are
transversal and do not vanish on 0 for any . In this
case, the optimal control exists. For example, if , one
can show that is optimal for small enough .

More interestingly, consider the system of Example 3.1. As
a control problem, consider minimizing

(16)

We first solve for and then . By symmetry,
we expect . From the GQVI’s, we
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expect to satisfy

(17)

where can take on the values1 and represents the cost
associated with the autonomous switchings.

We have solved these equations numerically using the
algorithms summarized in Section IX-B. As the state is in-
creasingly penalized, the control action increases in such a
way to “invert” the hysteresis function . See [1] for more
details and other examples.

IX. CONCLUSIONS AND DISCUSSION

We examined the phenomena that arise in hybrid sys-
tems and classified several hybrid systems models from the
literature. We then proposed a very general mathematical
model for hybrid control problems that encompasses these
hybrid phenomena and all reviewed models. An optimal
control problem was then formulated, studied, and solved in
this framework, leading to an existence result for optimal
controls. The “value function” associated with this problem is
expected to satisfy a set of “GQVI’s.” Therefore, the foregoing
represents initial steps toward developing a unified “state-
space” paradigm for hybrid control.

A. Open Issues

Several open issues suggest themselves. Below is a brief list
of some of the more striking ones.

1) A daunting problem is to characterize the value function
as the unique viscosity solution of the GQVI’s (12)–(15).
As mentioned in Section II, following [22], it appears
promising.

2) Many of our assumptions can possibly be relaxed at
the expense of additional technicalities or traded for
alternative sets of assumptions that have the same effect.
For example, the condition could be
dropped by having penalize highly the controlled
jumps that take place too close to . (In this case,
Assumption 5.4 has to be appropriately reformulated.)

3) Example 6.6 show that Assumption 5.3 cannot be
dropped. In the autonomous case, however, the set
of initial conditions that hit a manifold are of
measure zero [16]. Thus, one might hope that an optimal
control would exist for almost all initial conditions in the
absence of Assumption 5.3. The system of Example 6.7
showed this to be false. Likewise, in the systems of
Example 6.6 we have, respectively, no optimal control
for the sets

where and denotes the ball of
radius about the point .

It remains open how to relax Assumptions 5.3 and
5.4. This might be accomplished through additional
continuity assumptions on , , and .

4) Another possible extension is in the direction of replac-
ing by smooth manifolds with boundary embedded
in a Euclidean space; see [43] for some related work.

5) In light of Definition 7.1, all the proofs seem to hold
if Assumption 5.2 is relaxed to only consider distances
“from the right,” that is, if > , with

where denotes the solutions under with
initial condition and control in . Here, time
can be used as a “distance” in light of the uniform bound
on ; we consider by adding the caveat that
if we jump directly onto , we do not make another
jump until we hit it again. Presumably one must also
make some transversality or continuity assumptions for
well-posedness. This would allow the results to extend
to many more phenomena, including those examples in
[43].

6) Another interesting avenue is to study the case where
there is an output map, and control actions must be
chosen based only on this indirect observation of the
full state.

B. Algorithms

An important issue is to develop good computational
schemes to compute near-optimal controls. This is a daunting
problem in general as the aforementioned results of [9] show
that even smooth Lipschitz differential equations can simulate
arbitrary Turing machines, with state dimension as small as
three. Thus, it is not hard to conceive of (low-dimensional)
control problems where the cost is less than one if the
corresponding TM does not halt, but is greater than three
if it does. Allowing the possibility of a controlled jump at
the initial condition that would result in a cost of two, one
sees that finding the optimal control is equivalent to solving
the halting problem.

However, in other work, Branicky and Mitter have outlined
four approaches to solving the GQVI’s associated with optimal
hybrid control problems; see [1] and [44] for details, which
will be published in full as a companion to this paper.

The first approach solves the GQVI’s directly as a boundary-
value problem; iterations that build on traditional solution
techniques in each of the constituent dynamical systems can be
devised. More generally, such successive iterative techniques
may be used to break complexity by solving hybrid control
problems hierarchically; i.e., solve the constituent problems
separately, update boundary values due to autonomous- and
controlled-switching sets, then repeat.

A stronger algorithmic basis for solving these GQVI’s is
the following generalized Bellman equation:

where is a generalized set of actions,measures incremental
cost of action from state , and is the resulting state when
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is applied from . The three classes of actions available in
our hybrid systems framework at eachare as follows:

• Continuous Controls: ;
• Controlled Jumps:choosing source and destination (if

);
• Autonomous Jumps:possibly modulated by discrete con-

trols (if ).

From this viewpoint, generalized policy and value iteration
become solution tools.

One key toefficientalgorithms for solving optimal hybrid
control problems lies in noticing their strong connection to
the models of impulse control and piecewise-deterministic
processes [18], [19]. Making this explicit, we have developed
algorithms similar to those for impulse control and one based
on linear programming. The latter seems more promising.
While the resulting linear programs are large—due to the
curse of dimensionality—they are sparse. Further, they have
a special structure both as linear programs and due to the
hierarchical nature of discrete versus continuous states of
hybrid systems. Exploiting this structure is a topic of current
research; see [45] for work relating to the hierarchical structure
of discrete and hybrid systems.

Finally, although solving these inequalities has high com-
putational complexity, in general—if they are solvable at
all—they are no more complex than synthesis methods for
general nonlinear systems. Thus, a current research goal is
to isolate those problems (such as linear constituent dynamics,
polyhedral jump sets, and quadratic costs) that lead to tractable
solutions (such as small quadratic or even linear programs).

APPENDIX

Proof of Remark 4.1:First, we show that autonomous
switching can be viewed as a special case of autonomous
impulses by embedding the discrete states into a larger
continuous-state space. Consider the differential equation with
parameters where , closed,
and continuous. Let be
the function governing autonomous switching. (For example,
in the Tavernini model, is the “discrete dynamics.”)

Then, since has the universal extension property [46],
we can extend to a continuous function .
Now, consider the ODE on

where , , and
continuous. Let the transition function be

with .
Now, we show that continuous switching can be viewed as a

special case of continuous impulses. A system with controlled
switching is described by

where is a piecewise constant function taking values in
and is a map with sufficient

regularity. There is a strictly positive cost associated with the
switchings of . In our framework, let

be the new state process with dynamics

taking values in where each is a copy of
. Set , , for .

Switchings of now correspond to controlled jumps with
the associated costs.

Proof of Theorem 6.4:Fix , .
Consider a sequence

associated with our control system, with the obvious interpre-
tation, such that for all and the corresponding
costs decrease to . Let denote the solution of

(18)
Then and agree on 0 . Since
are bounded, are equi-continuous bounded in

, hence relatively sequentially compact by the
Arzela–Ascoli theorem. The finite nonnegative measures

on 0 are relatively
sequentially compact in the topology of weak convergence by
Prohorov’s theorem [47]. are trivially relatively compact
in 0 . Thus dropping to a subsequence if necessary, we
may suppose that , ,

in the respective spaces. Clearly disintegrates
as . Rewrite (18) as

for . By the uniform Lipschitz continuity of , the term
in parentheses tends to zero as . Since , the
last term, in view of the relaxed control framework, converges
to

for 0 . Since was arbitrary, a standard argument
allows us to extend this claim to 0 . (We use [47,
Th. 2.1(v), p. 12] and the fact that 0.)
Hence, and satisfy (18) with . Since

either for sufficiently large
, or for sufficiently large . Suppose the first

possibility holds. Then . Let
in along a subsequence. Then

, ,
. Set on

0 and . Then

(19)
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If the second possibility holds instead, one similarly has
. Then Assumption 5.6 ensures that is

a bounded sequence in and hence converges along a subse-
quence to some . Then, on dropping to a further subse-
quence if necessary, ,

. Set
on 0 , and

. Again (19) holds. Note that in both cases,
defined on 0 is an admissible segment of a

controlled trajectory for our system. The only way it would
fail to be so is if it hit in 0 . If so, would
have to hit in 0 for sufficiently large by virtue of
Assumption 5.3, a contradiction.

Now repeat this argument for in place of
. The only difference is a varying but convergent initial

condition instead of a fixed one, which causes only minor
alterations in the proof. Iterating, one obtains an admissible
trajectory with cost .

Proof of Theorem 6.8:Recall the setup of Theorem 6.4.
Consider the time interval0 . Let and
be precise controls such that

in the topology of weak convergence. Let
and denote the corresponding solutions to (18).
Now equals either or . Suppose the former holds.
As in the proof of Theorem 6.4, we have in

. Using Assumption 5.3 as in the proof of
Theorem 6.4, one verifies that

Thus for any , we can take large enough such that

Set on 0 and
(corresponding to control action ).

The latter may be taken to lie in the open-neighborhood
of by further increasing if necessary. In case

, one uses Assumption 5.4 instead to conclude that
for some in the -neighborhood of for

sufficiently large. Set , on 0 . By
further increasing if necessary, we may also ensure that

Set

It is clear how to repeat the above procedure on each interval
between successive jump times to construct an admissible
trajectory with cost within of for a given
> .

Proof of Theorem 7.2:Let from
the right in and let , denote
optimal trajectories for initial data , respectively. By
dropping to a subsequence of if necessary, obtain
as in Theorem 6.4 a limiting admissible trajectory for
initial data with cost (say) such that

. Suppose for some
> . Starting from , argue as in Theorem 6.8 to

construct a trajectory with initial data for
sufficiently large so that the corresponding cost does not

exceed . At the same time,
for sufficiently large, which

contradicts the fact that is the optimal cost for
initial data . The claim follows.
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