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A Unified Framework for Hybrid Control:
Model and Optimal Control Theory
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Abstract—Complex natural and engineered systems typically Symbol, Symboal,
possess a hierarchical structure, characterized by continuous- el Digital 0€0
variable dynamics at the lowest level and logical decision-making | [ Awowatr | f Measurements Controls
at the highest. Virtually all control systems today—from flight oe O] e ier
control to the factory floor—perform computer-coded checks and AD Luterface DA Hybrid
issue logical as well as continuous-variable control commands. --==%=—-----------“=}=—= -- yEY ] Swstem |
The interaction of these different types of dynamics and informa- Plant
tion leads to a challenging set of “hybrid” control problems. We Measurement, Control,
propose a very general framework that systematizes the notion of yey welY
a hybrid system, combining differential equations and automata, @) (b)

governed by a hybrid controller that issues continuous-variable ) )

commands and makes logical decisions. We first identify the Fig- 1. (&) Hybrid system. (b) Hybrid control system.

phenomena that arise in real-world hybrid systems. Then, we ] ) ] ]

introduce a mathematical model of hybrid systems as interacting variable system is operating under at any given moment. As
collections of dynamical systems, evolving on continuous-variable such, these “hybrid control” systems offer a challenging set
state spaces and subject to continuous controls and discrete of problems.

transitions. The model captures the identified phenomena, sub- . . .

sumes previous models, yet retains enough structure on which _Hyb”d Systems.lnvolve b_Oth co_ntm_uoqs-valued and
to pose and solve meaningful control problems. We develop a discrete-valued variables. Their evolution is given by equations
theory for synthesizing hybrid controllers for hybrid plants in ~ of motion that generally depend on both. In turn these
an optimal control framework. In particular, we demonstrate the  equations contain mixtures of logic and discrete-valued or
existence of optimal (relaxed) and near-optimal (precise) controls digital dynamics and continuous-variable amalogdynamics.

and derive “generalized quasi-variational inequalities” that the Th fi d . f h t b fi
associated value function satisfies. We summarize algorithms € continuous dynamics Of such systems may be continuous-

for solving these inequalities based on a generalized Bellman time, discrete-time, or mixed (sampled-data), but is generally
equation, impulse control, and linear programming. given by differential equations. The discrete-variable dynamics
Index Terms—Automata, control systems, differential equa- Of Nybrid systems is generally governed bgigital automaton

tions, dynamic programming, hierarchical systems, hybrid sys- Of input—output transition system with a countable number
tems, optimal control, state-space methods. of states. The continuous and discrete dynamics interact at
“event” or “trigger” times when the continuous state hits
certain prescribed sets in the continuous state space; see
Fig. 1(a).

ANY COMPLICATED control systems today (€.9., Hybrid control systemare control systems that involve both

those for flight control, manufacturing systems, angdyntinyous and discrete dynamics and continuous and discrete
transportation) have vast amounts of computer code at thgiirols. The continuous dynamics of such a system is usually
highest level. More pervasively, programmable l0gic CORy,qqeled by a controlled vector field or difference equation. Its
trollers are widely used in industrial process control. We alsrﬂ/brid nature is expressed by a dependence on some discrete

see that today’s products incorporate logical deCiSion'makiBﬂenomena, corresponding to discrete states, dynamics, and
into even the simplest control loops (e.g., embedded systen&'%)mro'S The result is a system as in Fig. 1(b)

Thus, virtually all control systems today issue continuous- Examples of such systems are given in some depth in

variable controls and perform logical checks that determi f] They include computer disk drives [2], transmissions
the mode—and hence the control algorithms—the continuo 1d stepper motors [3], constrained robotic systems [4], and
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science and engineeringarmal modeling, analysis, and con- Briefly, we build on the structure of dynamical systems for
trol “toolboxes” deal largely—and largely successfully—witiP1) and use an optimal control framework for P2). The details
these “pure” systems. follow.

It is no surprise, then, that there are two current paradigmsin other work, we have looked at real-world examples
for dealing with hybrid systems: aggregation and continuatioand previously posed hybrid systems models and identified
In the aggregation paradigm, one endeavors to treat the entoer phenomena that need to be covered by any useful
system as a finite automaton or discrete-event dynamic systerodel: 1) autonomous switching; 2) autonomous impulses;
(DEDS). This is usually accomplished by partitioning th&) controlled switching; and 4) controlled impulses. In
continuous state space and considering only the aggregdtdd Branicky introducedgeneral hybrid dynamical systems
dynamics from cell to cell in the partition (cf., [7]). In(GHDS’s) as interacting collections of dynamical systems,
the continuation paradigm, one endeavors to treat the whelech evolving on continuous-variable state spaces, with
system as a differential equation. This is accomplished by d)yitching among systems occurring at “autonomous jump
“simulating” or “embedding” the discrete actions in nonlineatimes” when the state variable intersects specified subsets
ordinary differential equations (ODE’s) or 2) treating the@f the constituent state spaces. Controlled GHDS's, or
discrete actions as “disturbances” of some (usually linea®)GHDS’s, first add the possibility of continuous controls
differential equation. for each constituent dynamical system. They also allow

In current applications of interest (mentioned above), botliscrete decisions at autonomous jump times as well the
these paradigms have been found lacking. In a nutshelhility to discontinuously reset state variables at “intervention
they are too conservative. Aggregation often leads to notimes” when the state satisfies certain conditions, given by
deterministic automata and yields the problem of how fts membership in another collection of specified subsets of
pick appropriate partitions. Indeed, Digennagb al. have the state space. In general, the allowed resettings depend on
shown that there are systems consisting of just two constdim¢ state.
rate clocks with reset (evolving on the unit square [0 1] The CGHDS model has three important properties as fol-
and resetting to zero on hitting one) for which no partiows. It covers the identified phenomena, encompasses all
tion exists that yields a deterministic finite automaton [8the studied previous models, and has sufficient mathematical
Continuation’s first route hides the discrete dynamics in tistructure to allow the posing and proving of deeper results
right-hand sides of ODE’s, yielding nonlinear systems fdd]. This satisfies P1).
which there is a dearth of tools and engineering insight. For P2), we use a variant of the CGHDS that possesses
Indeed, Branicky has shown that there are smooth, Lipschitlt its generalization and structural properties and covers most
continuous ODE’s inlR3, which possess the power of uni-situations of interest to both control engineers and computer
versal computation, hence yielding most control questiossientists. It also includes conventional impulse control [10].
in IR® undecidable [9] (one such question is constructdBecause of this, we dubbed it the “unified model.” Finally,
in Section IX-B). Continuation’s second route may treat thee use an optimal control framework to formulate and solve
discrete dynamics as small unmodeled dynamics (and thfen hybrid controllers governing hybrid plants. In particular,
use robust control), slowly-varying (and gain-scheduling), @ur collection is indexed by € Z,, and our dynamical
rare and independent of the continuous state (jump linesystems are given by controlled vector fields IR, for
systems). In hybrid systems of interest, each or all of these asmed; € Z,. Maps representing the costs of continuous
sumptions may be violated, leading to hopelessly conservativ@ntrols and autonomous and controlled jumps are presumed.
designs. The control objective is then to minimize the total accumulated

Herein, we propose a truly hybrid paradigm for hybric¢ost over all available decisions and controls.
systems by developing a new, unified framework that capturesThe paper is organized as follows. In the next section, we
both the important discrete and continuous features of sughickly review previous work on hybrid control. In Section IlI
systems—and their interactions—in such a way that we came 1) identify the phenomena present in real-world systems
build on the considerable engineering insight on both sides awmd must capture and 2) classify previous modeling efforts.
provide natural, nonconservative solutions to hybrid contrth Section IV, we present our CGHDS model and show
problems. In particular, in this paper we address and answat it is sufficiently rich to cover the identified phenomena
the problem of synthesizing hybrid controllers—which issuand reviewed models. In Section V, we define an optimal
continuous controls and make discrete decisions—that achi@amtrol problem on our unified model. The problem, and all
certain prescribed safety and performance goals for hybAdsumptions used in obtaining the remaining results, are ex-

systems. pressly stated. Sections VI and VII contain the main theoretical
Problem 1.1: How do we control a plant as in Fig. 1(b)results, which are as follows.

with a controller as in Fig. 1(b)? « We prove the existence of optimal (relaxed or chatter-
In order to turn this profound, abstract problem into a ing) controls and near-optimal (precise or nonchattering)

tractable one, we require two prerequisites: controls.
P1) a mathematical model for a box like Fig. 1(b); * We derive “generalized quasi-variational inequalities”

P2) a mathematical control problem which leads to a hybrid (GQVI's) that the associated value function is expected
controller. to satisfy.
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Further, the necessity of our assumptions—or ones like H
them—is demonstrated. Section VIII gives some quick .
examples, and in Section IX are conclusions and a discussion, .
including open issues and a summary of our work to date on !
control synthesis algorithms. The latter is based on solving A
:
1
1

our GQVI's and will appear in full as a future paper.
The optimal control theory of this paper grew out of [11].
Early references are [12]-[14].
Below, IR, R4, Z, andZ, denote the reals, nonnegative 1
reals, integers, and nonnegative integers, respectivelyl/
represents the complementiéfin X; U represents the closurerig. 2. Hysteresis function.
of U, U° its interior, U its boundary;C(X, Y') denotes the
space of continuous functions with domakh and rangey’;
v? denotes the transpose of vectar and ||z|| denotes an
arbitrary norm of vectorz. More special notation is defined
as it is introduced.

-A

realizable implementation (i.e., a sufficient approximation) of
some continuous controller. Finally, viable control of hybrid
systems has been considered by researchers subsequent to our
initial findings [25], [26].

Il. PREVIOUS WORK
lll. A T AXONOMY FOR HYBRID SYSTEMS

Hybrid systems are certainly pervasive today, but they
have be_en WiFh us at least since the da_ys of the_ relgy. Hybrid Phenomena
The earliest direct reference we know of is the visionary
work of Witsenhausen from MIT, who formulated a class of A hybrid system has continuous dynamics modeled by a
hybrid-state continuous-time dynamic systems and examingifferential equation
an optimal control problem [15]. Another early gem is the
modeling paper of Tavernini [16]. (t) = &(b), t>0 (1)
Hybrid systems is now a rapidly expanding field that has just
started to be addressed more wholeheartedly by the control #imat depends on some discrete phenomena. Hétg,is the
computer science communities. Explicit reference to genewntinuous componendf the state taking values in some
papers is beyond our scope here (see [1] for review, referencahset of a Euclidean spacgi) is a controlled vector field
and other results). However, our modeling work has be#mat generally depends om(¢), the continuous component
influenced by [2]-[4], [12], and [15]-[17]. u(t) of the control policy, and the aforementioned discrete
Our work was largely inspired by the well-known theophenomena.
ries of impulse control and piecewise deterministic processesAn examination of real-world examples and a review of
[18]-[21]. Close to our results are those of [22], discoverasther hybrid systems models has led us to an identification
after this work was completed. That paper considers switchiof these phenomena. The discrete phenomena generally con-
and “impulse obstacle” operators akin to those in (13) argidered are as follows. The real-world examples we examined
(12) for autonomous and (controlled) impulsive jumps, ranay be found in [1] and [12].
spectively. Yongestricts the switching and impulse operators 1) Autonomous SwitchingHere the vector field &(-)
to be uniform in the whole spacayhich is unrealistic in changes discontinuously, or “switches,” when the statg
hybrid systems. However, he derives viscosity solutions bfts certain “boundaries” [16], [17]. The simplest example of
his corresponding Hamilton—Jacobi—Bellman system. His wotkis is when it changes depending on a “clock” that may be
may be useful in deriving viscosity solutions to our GQVI's.modeled as a supplementary state variable [3].
Also after this work was completed, we became aware Example 3.1—HysteresisConsider a control system with
of the model and work of [15], mentioned above. In thatysteresis
paper, Witsenhausen considers an optimal terminal constraint

problem on his hybrid systems model. His model contains t=flz,uw)=H(x)+u
no autonomous impulses, no controlled switching, and no
controlled impulses. where the multivalued functio®/ is shown in Fig. 2.

Optimal control of hybrid systems has also been consideredNote: This system is not just a differential equation whose
in [23] (for the discrete-time case) and [17]. Kohn is theight-hand side is piecewise continuous. There is “memory” in
first we know of to speak of using relaxed controls anthe system, which affects the value of the vector field. Indeed,
their e-optimal approximations in a hybrid systems settinguch a system naturally has a finite automaton associated with
(see the discussion and references of [17, Appendix 1]). Thee hysteresis functio#, as pictured in Fig. 3.
algorithmic importance of these was further described in [24]. 2) Autonomous Impulsestere the continuous state(-)

A different approach to the control of hybrid systems has beehanges impulsively on hitting prescribed regions of the state
pursued by Kohn and Nerode [17, Appendix 1], in whictspace [4], [27]. The simplest examples possessing this phe-
the discrete portion of the dynamics is itself designed asnamenon are those involving collisions.
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[z>A]

[z <A] [z >—A]

[z<-A]

Fig. 3. Finite automaton associated with hysteresis function.

Example 3.2—CollisionsConsider the case of the verticalB. Classification of Hybrid Systems Models

and horizontal motion of a ball of masa in a room under |, this section, we give explicit representations of the broad
gravity with constany. In this case, the dynamics are given byjasses of hybrid systems for which our theory and algorithms
are applicable.

af:%’ U’” =0 A (continuous-time)autonomous-switching hybrid system
Y =y, Uy = —mg. may be defined as follows:

Further, upon hitting the boundari¢ée, y)|y = 0 ory = C}, #(t) = f(x(t), q(t))

we instantly set, to —pv,, wherep ¢ [0, 1] is the coefficient gt (1) = v(z(t), q(t) )

of restitution. Likewise, upon hitting(z, y)|x =0 orx = R}

vy IS set to—pu,. where z(t) € R", ¢(t) € @ ~ {1,---, N}. Here,

3) Controlled Switching:Here £(-) switches in response f(-, ¢): R" — R", ¢ € ), each globally Lipschitz continuous
to a control command with an associated cost. This c#n the continuous dynamicef (2); andv: R" x Q@ — Q
be interpreted as switching between different vector fieldspresents itdinite dynamics
[21]. Controlled switching arises, for instance, when one is Note: The notations~ may be used to indicate that the
allowed to pick among a number of vector fields= f;(z), finite state is piecewise continuous from the rightt) =

te{1,2,---, N} v(z(t), q(t™)). Likewise, q(tt) = v(z(t), q(t)) denotes it is
Example 3.3—Satellite ControlAs a simple example of piecewise-continuous from the left. To avoid making the dis-
satellite control consider tinction here, we have used Sontag’s more evocative discrete-
. time transition notation, where*(¢) is used to denote the
0 = Tev “successor” ofg(¢). Its “predecessor” is denoteg (¢). This

. notation makes sense since no matter which convention is used
wheref is angular positiong angular velocity of the satellite, for ¢(¢)'s piecewise continuity, we still have" (t) = ¢(¢t).
andv € {-1, 0, 1}, depending on whether the reaction jets Thus, starting at[xz,, 7], the continuous-state trajectory
are full reverse, off, or full on. x(-) evolves according to; = f(z, ). If z(-) hits some

An example that includes controlled switching and conting, (., ;))~1(;) at time ¢;, then the state becomés(t,), j],
uous controls is the following. from which the process continues. Clearly, this is an
Example 3.4—TransmissiorConsider a simplified manualjhstantiation of autonomous switching. Switchings that are
transmission model, modified from one in [3] a fixed function of time may be taken care of by adding
another state dimension, as usual. Examples are the Tavernini
model [16] and the autonomous version of Witsenhausen’s
&g =[—a(z2/v) +u]/(1+v) model [15].
By a continuous-controlled autonomous-switching hybrid
wherez; is the ground speed;, is the engine RPMy € [0, 1]  systemwe have in mind a system of the form
is the throttle position, and € {1, 2, 3, 4 is the gear shift
position. The functioru is positive for positive argument. #(t) = fx(t), ¢(t), w(t))
4) Controlled Impulses:Here z(-) jumps in response to a gt (t) =v(z(t), q(t), u(t)) (3)
control command with an associated cost [10].
Example 3.5—Inventory Management a simple inven- Where everything is as above except that) € R™, with f
tory management model [10], there is a “discrete” set &ndr modified appropriately. An example is Witsenhausen’s
restocking timesd; < 6, < --- as well as associated ordefmodel [15]. Anautonomous-impulse hybrid systéa system
moun -+-. Th ion verning th k
ZnyOLéi\iﬁl]jnc();?r;ent aree equations governing the stock at () = Fa(t)), w6 & M
et () =J(=(t), at)eM (4)

jﬁl =T2

y(t) = =i )+zi: (t—6)a wherez(t) € R", J: R® — R", and M C RR". Examples

include autonomous systems with impulse effect [27].
where . represents degradation or utilization dynamics and Finally, a hybrid system with autonomous switching and
is the Dirac delta function. autonomous impulses is just a combination of (2) and (4).
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NaeCyl/ v € Fyz)

NezeMyy]/x:=Gpx)

Fig. 4. Automaton associated with CGHDS.

Examples include the model of Baeh al. [4] and hence all state). This jumping occurs whenever the state satisfies certain
the autonomous models in [3], [15]-[17], and [28] (see [1] antbnditions, given by its membership in a specified subset
[12]). Likewise, we can define discrete-time autonomous ad the state space. Hence, the entire system can be thought
controlled hybrid systems by replacing the ODE’s above withf as a sequential patching together of dynamical systems
difference equations. In this case, (2) represents a simplifieith initial and final states, the jumps performing a reset to
view of some of the models in [3]. Also, adding controls—both (generally different) initial state of a (generally different)
discrete and continuous—is straightforward. Finally, nonundynamical system whenever a final state is reached.

form continuous state spaces, i€(t) € X,), may be added Formally, a controlled general hybrid dynamical system

with little change. (CGHDS) [1] is a system
The thesis [1] offers an in-depth review of previous hybrid
systems models, including comparisons, and a more complete H.=[Q, % A, G,V,C F]

taxonomy for hybrid systems that is inclusive of the foregoing.
with constituent parts as follows.
e () is the set ofindex statesr discrete states
* ¥ = {¥;}4co is the collection ofcontrolled dynamical
systems, where each, = [X,, [y, fq, U] (or X, =
A. Mathematical Model [X,, Ty, ¢4, U,)) is a controlled dynamical system. Here,
The notion of a “dynamical system” has a long history the X, are thecontinuous state spaceand ¢, (or f,)
as an important conceptual tool in science and engineering are thecontinuous dynamicd’, is the set ofcontinuous
[29]-[34]. It is the foundation of our formulation of hybrid controls

IV. HYBRID DYNAMICAL SYSTEMS

dynamical systems. * A={A,},cq Ay C X, foreachy € Q, is the collection
Briefly, a dynamical systenis a system® = [X, I, ¢], of autonomous jump sets

where X is an arbitrary topological space, tltate space * G = {Gglscq. Where G2 A, x V, — S is the

of . The transition semigroud” is a topological semigroup ~ autonomous jump transition maparameterized by the

with identity. The éxtendejitransition mapg: X x I' — X transition control setl;, a subset of the collectioN =

is a continuous function satisfying the identity and semigroup {V4}eq; they are said to represent ttiscrete dynamics

properties [34]. and controls

Examples of dynamical systems abound, including au-* € = {Cy}4eq, C; C X, is the collection ofcontrolled
tonomous ODE’s, autonomous difference equations, finite Jump sets.
automata, pushdown automata, Turing machines (TM's), Petrit F = {F,}4cq, where Fy: C; — 2° is the collection of
nets, etc. As seen from these examples, both digital and analog controlled jump destination maps
systems can be viewed in this formalism. The utility of this has Thus, S = quQ X, x {q} is thehybrid state spacef H.
been noted since the earliest days of control theory [32], [33]he case where the sdi§ andV throughF above are empty
We will also denote by dynamical system the systére= is simply aGHDS H = [@, X, A, G].
[X, I', f], whereX andl are as above, but thensition func- A CGHDS can be pictured as an automaton as in Fig. 4.
tion f is thegeneratorof the extended transition functiah  There, each node is a constituent dynamical system, with
Briefly, a hybrid dynamical system is an indexed collectiothe index the name of the node. Each edge represents a
of dynamical systems along with some map for “jumpingpossible transition between constituent systems, labeled by the
among them (switching dynamical system and/or resetting tappropriate condition for the transition’s being “enabled” and
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Fig. 5. Example dynamics of a CGHDS.

the update of the continuous state (cf., [35]). The notati@oupling of finite automata and differential equations [9], [12],
I[condition] denotes that the transitiomustbe taken when [36]. Herein, ahybrid systemis a GHDS with@ countable
enabled. The notation &ndition] denotes an enabled transi-and withI'; = IR (or R4) and X, C R%, dy € Z4, for all
tion thatmaybe taken on command;¢” means reassignmentg € @Q: [Q, [{X,}scq, R+, {fe}qcq, A, G], where f, is a

to some value in the given set. vector field onX, ¢ R% 2
Roughly, the dynamics off. are as follows. The system  3) Changing State Spacefhe state space may change.
is assumed to start in some hybrid stateSiRA4, saysp = This is useful in modeling component failures or changes

(zo, go)- It evolves according tapg, (-, -, ») until the state in dynamical description based on autonomous or controlled
enters—if ever—either,, or Cy, at the points; = (27, g0). events which change it. Examples include the collision of two
If it enters A, then it must be transferred according toinelastic particles or an aircraft mode transition that changes
transition mapG,, (z;, v) for some chosens € V,,. If it variables to be controlled [38]. We also allow th€, to
entersCy,, then wemay choose to jump and, if so, we mayoverlap and the inclusion of multiple copies of the same
choose the destination to be any pointfip (x; ). Either way, space. This may be used, for example, to take into account
we arrive at a points; = (x1, ¢;) from which the process overlapping local coordinate systems on a manifold [4].
continues; see Fig. 5. 4) RefinementsWe may refine the concept of a CGHDS
B. Notes by adding . . .
) ] ¢ outputs, includingstate-outpufor each constituent system
The foIIovvmg are some |mportqnt notes about CGHDS's. as for dynamical systems [1], [34] amdige-outputO =
1) Dynamical SystemsGHDS with |Q| =1 and A empty {O}ecr 1 = {ng}qcq, Wheren,: A, — O, produces

recover all these. _ o an output at each jump time.
2) Hybrid Systems:The case of a GHDS withQ)| finite,

. n -

where eachY, is a subset OIR and eachl“q =R larg_ely 2Here, we may take the view that the system evolves on the state space

corresponds to theisual notion of a hybrid system, viz, a IR* x @, whereIR* denotes the set of finite, but variable-length real-valued
vectors. For exampl&) may be the set of labels of a computer program and

x € IR* the values of all currently allocated variables. This then includes
LPrecise statements appear in [1, Sec. 4.3]. Smale’s tame machines [37].
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* A: A; — Ry, thejump delay mapwhich can be used to  3) Digital Automata: A variety of automata interacting
account for the time which abstracted-away lower-levelith continuous dynamics are automatically subsumed by the
transition dynamics actually take. discrete dynamics of our model. The automata structure may

* We may add dransition time mapor timing mapr: X x be captured by examining them; see Fig. 4. For example, if
I' = R (or IR,) for some or all dynamical systems. Ofthat picture had a finite number of nodes, each with a single
particular interest are maps wherés constant onX and nonempty edge emanating from it, the resulting automaton
those that, in addition, are homomorphisms with subset®uld be a deterministic finite automaton.
of IR (IR4). In the generator case, the timing map can be 4) Other Hybrid Models: Our model subsumes all those
defined onX x I',. classified and referenced in Section I1I-B. For example, mod-

Timing maps provide a mechanism for reconcilingls of the form of (2) can be accommodated merely by taking
different “time scales” by giving a uniform meaning toQ} = ¢ and f,(-) = f(-, ¢). The other classified models follow
different transition semigroups in a hybrid system [1, Seceadily [12].

IV]. Example 4.2—Brockett's Type-Hybrid System:In  [3],
« Marked states (including initial, final, or accepting statesBrockett introduces #ype D hybrid systenas follows:
s #(t) = F(a(0), u(t). 2(p))
) Nondeterminisnin transitions may be taken care of by .
partitioning fondition] into those which are controlled p(t) =r(a(?), ult), z|p])
and uncontrolled (cf., DEDSPDisturbances(and other zlpl =v(z[t], z[p], vlp])

nondeterminism) may be modeled by partitionitigV’, " m
and C into portions that are under the influence of th?herexz(t) Elgnc ]lgm’ “(? < ][é"c F%IR’"p (tI)R’G" ]R’ZUL”J]RE
controller or nature, respectively. Systems with state-’ Z€Z [ X X4 I X X 4= hy

output, edge-output, and autonomous and controll& (Ile; IRdIT%’g xV _>t'Z. IHere,Cf/( an(;iZU are open Sz_bsfts
jump delay maps A&, and A,, respectively) may be 0 an , respectively, and” and Z are isomorphic to

added as above subsets ofZ. Finally, |z| denotes the greatest integer less
2) The model includes the “unified” model posed by Brant—han or equal tar, e}nd, in an abuse of common notatigum;|
cilenotes the least integgreater than:z.

icky et al.[12] that is used below. It thus includes several Brockett's D model may be captured by ours by choosing
other previously posed hybrid systems models [3], [4 _ 7. and for each: € O, definingU. = U, V. — V.,

[15]-[17], [28]. It also includes systems with impulse? — o : .
effect [27] and hybrid automata [39)]. X. = X x [0, 1] (with dimensions representingandp— | p|)

_ f( PIREY Z)
C. Inclusion of Discrete Phenomena and Previous Models Jo= {7’(', Y Z)

We now show how CGHDS encompasses the discrete — x x {1}, andG.((z, 1), v) = (&, 0), Uz, 2, v)).
phenomenon of Section I1l-A, and how it subsumes the hybrid |t js clear that this can be extended to include the other
systems models classified above. models in [3]. Subsumption of the other referenced models

First, we have a simplification. If a set of parameters gp|iow readily [12]4
controls is countable and discrete, such as a set of strings, W8) Setting Parameters and Timer#s system which, upon
may take it to be isomorphic with a subset&f. On the other hjtting boundaries, sets parameters from an arbitrary compact
hand, consider a set of parameters or conttglsvherel/ isa set P  IR? can be modeled in our framework by redefining
compact, connected, locally connected metric sgacBy the X! = X; xRP, andV’ = V x P, and definingf!: X! x U —
Hahn—Mazurkiewicz theorem [40)/ is the continuous image R%: % R? as
of [0, 1] under some map, and thus we may &et= [0, 1]
without any loss of generality. Thus, we may assume below Fil(z, p), w) = [fi(z, u), 0]F
without any loss of generality that parameters and controls =
take values in a subsgt c R™. andG: AX P xV x P — X;x P as

1) Autonomous Switching and ImpulseBhese are clearly Gz, p, v, p) =[Gz, v), PIF
taken care of with the setd;.

2) Controlled Switching and Impulsesthese are clearly each for all possible arguments. A system which sets timers
taken care of with the sets;. upon hitting boundaries can be modeled by a vector of the

Remark 4.1: Autonomous (respectively, controlled) switchtate equations as in the vector form of BrocketPsmodel

ing can be viewed as a special case of autonomous (respeg-
9 P ( P f‘:Herein,A subsume® means that every system described by the equations

t'Velyv controlled) jumps. of model B can be described by the equations of madeFrom the original
Proof: See the Appendix. O papers, it is clear that the referenced models were developed for a variety
of purposes. Moreover, there is a direct tradeoff between the generality of a
model and what one can prove about such a model. Therefore, “subsumption”
of one model in another does not reflect any bias of the more general
3Think of modeling the closure time of a discretely controlled hydraulicnodel’s being “superior.” Indeed, below, we restrict the class of CGHDS
valve or trading imperfections in economic markets. This mechanism shoimsforming our “unified model.” That model is still abstract enough to capture
how hybrid systems naturally arise in hierarchical systems as one movestlp collected hybrid phenomena and subsume the models referenced here.
different levels of abstraction. However, the restrictions on it will allow us to solve optimal control problems.
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of hybrid systems, which in turn can be modeled in out, . By this we require that 1) the flow lines be transversal in

framework as previously discussed. the usual senSend 2) the vector field does not vanish@a; .
Assumption 5.4-& Transversality: Same as  Assump-
V. THE CONTROL PROBLEM tion 5.3 but withC; replacing A;.
Assumptions 5.2-5.4 are technical assumptions. They may
A. Unified Model be traded for others as discussed in Section IX. The latter two

are the most restrictive. However, in the sequel we construct
exampl intin he n ity of h mptions or
Though  resticton of our CGHDS it stil encompasses lf ed e flom "Asaumptions 5.1 and 5.2 give rse o well
identified phenpme_na and previously posed models, retains Sined dynamics as follows.
structure of switching between dynamical systems, and covers ) . . . .
most situations of interest to control engineers. We also collect’ Existence _and uniqueness n each constituent system is
all the technical assumptions used in the sequel. ass_ure_d (wg assumptions (fn. u). .
We consider the following CGHDS: ¢ Switching times are well defined (since thg and C;
are closed).
2y, {RY}20, Ry, {fi}20, U], A, G, V, C, DJ. « Autonomous switching times do not accumulate (thanks
to Assumption 5.2).
. oo . The dynamics of the control system is much the same as for
ous state space far(-) is X = {X;};Zo, where each¥; is a CéHDS above, except th)E/it the delay maps give rise to

subset of some Euclidean spal", d; € Z,. a sequence oprejump times{r;} and another sequence of
For simplicity of notation, though, the “destination sets” are q jump T d

specifieda priori by setsD; € D instead of by the collection postjump times1';} satisfying0 = I'p < 7y < T'y <73 <

of set-valued map&. Also, with no real loss of generality, i1;12teﬁo'r”a: (% Oe?/.olc\igseaag:og?ﬁrvﬁgzg)_ b ;fzx‘?g)th nc:;%';‘ F|>rt]y
we considerl; = U, V; = V, i € Z4 to be the sets of ’ 9 = Jilz(t), ¥,

continuous and discrete controls, respectively. However, belgvc\)/meX“ andi € Zy. At the next prejump time (say) '.t
. ; umps to someD;. € X; according to one of the following
we do generalize to allow the vector field to depend on the oo
. . : WO possibilities.
continuous state at the last jump time and add delay operators ] ) ) )
) z(7;) € A;, in which case itmustjump to z(I';) =

to autonomous and controlled jumps. )
Note that we have specifieal priori regionsA;, C;, D; C Gi(x(7)), vj) € D attimel; = 7; + Aq i(x(75), v5),
v; € V being a control input. We call this phenomenon

X, © € Z4. These are thautonomous jump sets, controlled ,
jump sets and jump destination setsiespectively. For con- an autonomous jump. .
venience, letd, C, and D denote the uniongJ; A; x {i}, 2) (1) € C; and the controllerchoosesto—it does
U, C; x {i}, and U, D; x {i}, i € Z, respectively. The not have to—move the trajectory discontinuously to
dynamics are specified as follows, with delay maps added to  ¢(;) € D attimel; = 7; + Ac i(x(7)), 2(I';)). We
allow nonzero jump times: call this a controlled (or impulsive) jump.

1) vector fieldsf;: X; x X; x U — R, i e . See Fig. 5..Thejurlnps may be thought of as beginning at time

2) jump transition mapss;: A; x V — D; 7 and ending at timd’; > 7;.

3) autonomous transition delagk, i: A; x V — R,; Fort € [0, o), let [t] = max; {I';[I'; < t}. The vector

4) controlled transition delay\. ;: C; x D — R, field £(¢) of (1) is given by
In shorthgnd, we may defin@: A x V - D in the obvious () = filz(t), z[t], w(t) (5)
manner, i.e.G((z, i), v) = Gi(z, v), similarly for A, and
A.. We now place some assumptions on the foregoing. Wherei is such thats(t), z[t] € X;, andw(-) is a U-valued

Assumption 5.1—Model AssumptiorBor eachi € Z,, control process.
the following hold: X; is the closure of a connected open As with the CGHDS, we can explicitly show that the
subset of Euclidean spaﬁdf andd; € Z,, with Lipschitz above model captures all identified discrete phenomena arising
boundarydX;. A;, C;, D; C X; are closed. In additiorjA4; in hybrid systems and subsumes all reviewed and classified
is Lipschitz and contain®X;. hybrid systems models.

The mapsG, A,, and A, are bounded uniformly contin- Note: The autonomous version of this model (including no
uous; the vector fields;, i € Z, are bounded (uniformly controlled jumps) yields unique trajectories in the case of, for
in £), uniformly Lipschitz continuous in the first argumentjnstance,4; closed and4; N D; = §; see [1].
and uniformly equi-continuous with respect to the rést}
are compact metric spaces. Belaw(;) is a U-valued control B. Costs
process, assumed to be measurable.

Assumption 5.2—Jump Set Separatial{4;, C;) > 0 and
inficz, d(A;, D;) > 0, d being the appropriate Euclidean
distance.

Now, we come to our unified model for hybrid control

Specifically, our discrete state spacejs= 7. The continu-

Let ¢ > 0 be adiscount factor We add to our previous
model the following known maps.

1) Running cost;: X; x X; x U — R4.
Assumption 5.3-4 Transversality: For eachi, d4; is an 2) Autonomous jump Cosf transition Coste, ;: Ai XV —

oriented C*-manifold without boundary and at each point Ry
on dA;, fi(x, z, u) is “transversal” tod A, for all choices of  STransversality implies tha#A; is (d; — 1)-dimensional.
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3) Controlled jump cosbr impulse costc. ;: C; x D —  controlled) jumps an%" is the post-jump time for theth
R.. controlled jump. Thelecisionor control variables over which

Important Note: As for A, before, we may use the short-(8) is to be minimized are
hande.: C'x D — R4, defined in the obvious way. However, < the continuous controh(-);
below we suppress reference to the index statde do the < thediscrete controlv; }, exercised at the prejump times
same with the other maps;,(z(t), v) = ¢, :(x(¢), v) and of autonomous jumps;
k(z(t), y, u) = ki(z(t), y, w) if x(t) € X;. In such a case, -« the prejump ointervention timeg¢; } of controlled jumps
it is equivalent to think ofz(¢) as a member of théormal and the associatedestinations{x(¢})}.
union {.X;}7<,, that is, a point is implicitly specified by both As for the periodgr;, I';) with nonempty interior, we shall
its valueand the index: of the set to which it belongs. follow the convention that the system remains frozen during
That this incurs no loss of generality is justified by thghese intervals.

arguments in Section IV-C on viewing switching as a special For illustration, we describe a simple system using our

case of impulses. Thus, to ease notation we use this shorthggiehalism.

throughout for the mapé&:, A,, A, c,, ¢, etc. To alert the  Example 5.7: Consider again the hysteresis system of Ex-

reader, such formal unions are denoted using the symbol ample 3.1. It can be modeled as follows. The state space
Thus, autonomous jumps are done at a cost,0f(7;), v;) is X = {X_;, X1}, with X_; = [-A, o) and X; =

paid at time 7; and controlled jumps at a cost of(_so, A]. The continuous dynamics is given by

co(z(r;), z(I';)) paid at timer;. In addition to the costs

associated with the jumps as above, the controller also incurs faa=u-1, fi=u+1

a running cost of(x(t), «[t], u(t)) per unit time during the The giscrete dynamics is governed by the autonomous jump

intervals [I'; 1, 7;), J € Z4. _ setsA_; and A; and their associated transitions, which are,
Assumption 5.5—Cost AssumptioriBhe mapsc, and c. respectively

are bounded uniformly continuous; the, are uniformly
bounded and uniformly equi-continuous. (=4, =1) = (=4, +1), (+A, +1) = (+4A, =1).
In addition, for all¢, j € Z4, ¢, ;: C; x D — IRy satisfies
VI. EXISTENCE OF OPTIMAL CONTROLS

ce(x, y) 2 co >0, Ve C,yeD, 6 e )
(2 9) 2o —aA.(z, 2) Y ©) Let J(z) denote the infimum of (8) over all choices of
ce(®, y) <celw, z) +e ce(# y) (), {vi}, {6}, {2(¢)} when z(0) = 2. We have the fol-
Veel;,ze DNCj,ye D. (7)  lowing theorem.
Assumption 5.6—No Jumps to InfinitEachD; is bounded co-rl;gi?[gr?m 6.1:The optimal cost is finite for any inital

and for each, there exists an intege¥ (i) < oo such that for

v € Ciyy € Dy, j > N(i), celw, y) > sup, J(z), whereJ respectively. Then, choosing to make no controlled jumps and

is defined in the next section. . .
. . using arbitrar we have that
Note that (6) rules out from consideration infinitely many 9 yu, v

controlled jumps in a finite interval, and (7) rules out the J(z) <K /Oo o—at dt+z e
< ; i

Proof: Let F, K, @@ be bounds of thef;, k;, and c,,

merging of post-jump time of a controlled jump with the pre-
jump time of the next controlled jump. Together, they preclude o
accumulation of controlled jumps and are the same as those <K/a+@ Z e
made in conventional impulse control [10]. Assumption 5.6 ¢
precludes jumping to infinity directly or because there iset 3 = inf;cz, d(A;, D;). Thenoiyy — 0y > B/F, so
an infinite number of systems to which to jump. Againthe second term is bounded 93> 57 (e=*#/F)¢, which
these assumptions may be traded for others as discussedoinverges. O
Section IX. However, in the sequel we construct examplesThe following corollary is immediate from the argument
pointing out the necessity of such assumptions or ones ligbove.
them. Corollary 6.2: There are only finitely many autonomous
The total discounted cosis® jumps in finite time.
_ To see why an assumption like Assumption 5.2 is necessary
/ e k(x(t), =[t], u(t)) dt + Z e eq(2(0i), vi) for the above results, one needs only to consider the following
7 @ one-dimensional example.
+Y e ee(w(G), 1(¢) (8)  Example 6.3:Let X; = [0, 2], 4; = {0, 2}, and fi(-, -, -)
i = -1 for each: € Z,. Also for eachi, defineC; = 0,
D; = 1/i2, andG(A;, -) = (1/(i + 1)%, i + 1). Finally, let

where 7 = B\(Uilr, o)), {o) (respectively,{¢:}) are eésf('v ) = 0 and¢,(-, -) = 1. Starting inX; at z(0) = 1,

the successive prejump times for autonomous (respectiv

e see that
6We use a discounted cost for technical reasons, i.e., with an infinite horizon N
one needs a discounted or average cost for finiteness. We did not use an l - 1
average cost since in hybrid systems one is often keenly interested in the z Z 2] (N 4 1)2
transitory behavior (especially in the discrete transition sequence). i=1
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Since the sum of inverse squares converges, we will accuExample 6.7:Let X; = X, = [0, R], for arbitrary R > 0
mulate an infinite number of jumps and infinite cost by time
t = 7%/6.

It is well known that there are examples R"* where
an optimal control fails to exist when the control space is ]
not convex (e.g., when it is finite). The hybrid case ndtith running costmin{K, ||} andG,(0, -) = (K, 2), where
only inherits these, but adding switching among continuo@s< 4 < R. Choosing, for exampleR > K > 1, one sees
spaces may only exacerbate the situation. Next, however, gt the optimal cost cannot be attained for any x(0) > 0.
show that.J(z) is attained for allz if we extend the class ©0ming back to the relaxed control framework, say that
of admissibleu(.) to “relaxed” controls. Theelaxed control () IS aprecisecontrol if u(-) = é,(.)(dy) for a measurable
framework [41] is as follows: We suppose that= P(U"), ¢ [0, 00) — U’ whereé. denotes the Dirac measureat U
defined as the space of probability measures on a compk@t M denote the set of measures [@n 7] x U’ of the form

spacel/’ with the topology of weak convergence [47]. Also dtu(t, dy), whereu(-) is a relaxed control and/, its subset,
corresponding to precise controls. It is known th& is dense

fl(xv Y, U’) =—z+u, f2($7 Y, U’) =0, ue [_17 0]

, ) in M with respect to the topology of weak convergence [41]. In
filz, 2, u) = / filw, 2z, wyu(dy), i€y conjunction with the Assumption 5.4, this allows us to deduce
the existence oé-optimal control policies using precisg-),
ki, 2z, u) = / ki(z, z, wu(dy), — i€1y for every ¢ > 0.

Theorem 6.8:Under Assumptions 5.4-5.6, for every> 0

for suitable {f/}, {k!} satisfying the appropriate continu-an e-optimal control policy exists wherein(-) is precise.

ity/Lipschitz continuity requirements. The relaxed control R Proolf(: .Slfee_the Appendix. U ; E
framework and its implications in control theory are well emarks:If {f;(, z, y)Iy € U'} are convex for eac
known, and the reader is referred to [41] for details. andz, a standard selection theprem [41] alloyvs us to rgplace
Theorem 6.4:An optimal trajectory exists for any initial () n the proof by a preus,e control Wh'ch 's optimal.
condition. Otherwise, using Caratheodory’s theorem (which states that
Proof: See the Appendix each point in a compact subset B¥" is expressible as a

It is easy to see why Theorem 6.4 may fail in absence gpnvex combination of at most + 1 of its extreme points)
Assumption 5.6 and the aforementioned selection theorem, one may suppose

Example 6.5: Suppose, for examplés (z, z, u) = a; and that fort > 0, the support ofu>(¢) consists of at most, +
coz, v) = f3; whenz € X;, c.(z, y) = v;,; whenz € X, 1 points whenz(t) € X;.
y € X;, with o, 3;, v, ; strictly decreasing with, j. It is
easy to conceive of a situation where the optimal choice would

be to “jump to infinity” as fast as you can. VII. THE VALUE FUNCTION
The theorem may also fail in the absence of Assumption 5.3In the foregoing, we had s€gb] = 0 and thusz[0] =
as the following two-dimensional system shows. x(0) = x9. More generally, forz(0) = z9 € X;,, we may
Example 6.6: considerz[0] = y for somey € X;,, making a negligible

difference in the foregoing analysis. L&t(x, y) denote the
0 optimal cost corresponding to this initial data. Then in dynamic
ia(t) =, 22(0) = 0 progr_amming parlancdz, i) — V(z, y) defines the “value
function” for our control problem.
In view of Assumption 5.3, we can speak of ttight side
of 9A; as the side on whiclf;(-, -, -) is directed toward 4,,
00 t € Z4. A similar definition is possible for the right side of
/ e min{|zy (t) + ()], 102} dt dC; (in light of Assumption 5.4).
0 Definition 7.1: Say that(z,, ¥n) — (T, ¥so) from the
) o ) ) right in | |,(X; x X;) if y» — yoo and eitherz,, — zo ¢
with the provision that the trajectory jumps to [‘530.10_1.0]_ on |} (a4 L'jla(ci) or xn)—> 2oo € LI ,(3A; UAC;) from the right
hitting a certain curved. For A, consider two possibilities: side.V is said to becontinuous from the righif (z,, ¥,) —

1) the line segmen{z; = 1, -1 < xp < 0}, @ C'~ (2., y..) from the right impliesV (z,., yn) — V(Zoo, Yso)-

with » € [0, 1] and cost

manifold with boundary; Theorem 7.2:V is continuous from the right.
2) the circle{(x1, z2)|(x1 — 1)* + (22 + 1)* = 1}, aC*- Proof: See the Appendix. O
manifold without boundary, but the vector field (d) Corollary 7.3: V is continuous or |,(X; x X;)\[(94; U
with « = 0 is not transversal to it at (1, 0). aC;) x X;).
It is easy to see that the optimal cost is not attained in eitherAgain, Example 6.7 shows the necessity of the vector
case. field’s not vanishing o A;. Unfortunately,V need not be

Also, it is not enough that the flow lines for each control beontinuous in the data of the hybrid system.
transversal in the usual sense as the following one-dimensionaExample 7.4:Let X; = Xo = R, fi = fo =1, k1 = 1,
example shows. and k; = 0. Further, let4; = {p}, Gi(p) = (p, 2), and
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¢(p, p) = 0. Then we have min{(V.V(z, y), fi(z, y, v)) —aV(z, y)
0, z € Xo + ki(z, y, w)} <0 (14)
Vig,y) =4 (1-e®@=)/9,  zeX;,z<p
1/9, rze X, z>p.
It is clear that the optimal cost-to-go is not continuougp at <V($7 y) — win {cc(z, 2) + e AV (7, Z)]’)
the autonomous jump set dath .
We shall now formally derive the GQVI'd (-, -) is ex- : (mjn{wxv(% y), filz, y, w) —aV(z, y)
pected_ to satisfy. Le€ = | |,(C; x X;) and E C C the set ki, y, u)}) = 0 on C. (15)
on which

V(z, y) = min{co(z, 2) + e @AV (2 )} (9) Equation (15) states that at least one of (12) or (14) must be an
=€D equality onC. Equations (12)—(15) generalize the traditional
wherei € 7, is such thatz, y € X;. For (z,y) € E, if quasi-variational inequalitiencountered in impulse control
z(t) = z andz[t] = y, an optimal decision (not necessarily{10]. We do not address the issue of well-posedness of
the only one) would be to jump to a where the minimum (12)—(15).
on the right-hand side of (9) is obtained. On the other hand,The following “verification theorem,” however, can be
for (z,y) € C\E proved by routine arguments.
Theorem 7.5:Suppose (12)—(15) has a “classical” solution
V which is continuously differentiable “from the right” in the

with i as above, and it is not optimal to execute a controlldliSt argument and continuous in the second. Suppgseis

; : - dmissible trajectory of our control system with initial data
jump. Forz € A;, however, an autonomous jump is mandator?n a .
and thus Zo, yO) andu(')! {Ui}v {O’i}, {CZ}! {Ti}r {FZ} the associated

V(e, y) < minfee, 2) + V(2 )

_ A lon controls and jump times, such that the following hold:
Viz, y) = min{eq(z, v)+e™ "IV (G, v), Gla, v)}- 1) for a.e.t € 7, ¢ such thatz(t) € X;

B e et A o el e (V). ol fate), o], o)) + FiCa), i), u(t)
(z,y) c MZO, with a':, v € X;, (say). LetO be a bounded = min {(Vo V(2 (®), z[t]), fiz(t), 2[t], u))
open neighborhood dofz, ) in A° with a smooth boundary + ki(z(t), z[t], w)};

90 andv =inf {t > 0|(x(¢), y) € O}, wherez(-) satisfies
2(t) = fi, (x(t), v, u(t)), z(0)==z,t€[0,v]. (10)
Note thaty is a fixed parameter here. By standard dynamic V(2(0:), z[0:]) = ca(@(03), vi) + exp{—al,(z(0:), vi)}

2) for all ¢

programming arguments/ (z, ), = € O, y, as above, is -V(G(z(0;), vi), G(z(ay), v;));
also the value function for the “classical” control problem of
controlling (10) on[0, v] with cost 3) for all ¢
/ e hiy (x(t), y, w(t)) dt + e Mz (v), y) V(@(Go), 2[Gl) =ce(z(G), 2(G)) + exp{—ale(z, 2(¢))}
0

! !
where (-, ) = V(,:) on 0. It follows that V(z, y), Viele), #(6)
(z,y) € O is the viscosity solution of the Hamilton—Jacob'rrhenx(.) is an optimal trajectory.
equation for this problem [42], i.e., it must satisfy (in the sense
of viscosity solutions) the partial differential equation

mL}n{(V,;V(a:, v) Jio (@, y, ) Here, we consider some example problems in our frame-
—aV(z, y) +ki(z,y, w)}=0 (11) work.
Example 8.1: Consider Example 6.7 except with the con-

VIIl. EXAMPLE PROBLEMS

in O and, hence, onl/®. (Here V., denotes the gradient "M trols restricted in[—1, —¢], 0 <e < 0. Then, the flows are

the x variable.) Elsewhere, standard dynamic programming, - <~ and do not vanish on = {0} for anyu. In this

heuristics suggest tha’F (11). holds_ with-" replaced by <. .case, the optimal control exists. For exampleif> 1 /¢, one
Based on the foregoing discussion, we propose the foIIowmg o . .
can show that(-) = —e is optimal for small enough:.

system ofGQVI's for V'(:, -): For (z, y) € X; x X More interestingly, consider the system of Example 3.1. As
V(z, y) < min {ee(z, 2) + e @AY (5 2)} onC a control problem, consider minimizing

(12) = 1 2 2y —at = —at
V(z, y) < min{ca(z, v) + ¢4V /= /0 2 (g7 Fu)e = /0 Ha we ™ db. (16)
-V(G(z, v), G(z, v))} on |_|(Ai x X;) (13) We first solve forV(z, s = H(x)) and thenu. By symmetry,
i we expectV(—A, 1) = V(A, —1). From the GQVI's, we
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expectV to satisfy It remains open how to relax Assumptions 5.3 and

muin{—aV(a:, )+ Vilx, s) - flz, u) + k(z, w)} =0,

5.4. This might be accomplished through additional

continuity assumptions of¥, A,, andc,.

V(A 1) =c+V(A, -1) 4) Another possible extension is in the direction of replac-

V(=A, —1) = c+ V(=A, 1) 17) ing X;, by smooth manifolds with boundary embedded
in a Euclidean space; see [43] for some related work.

where s can take on the valuesl andc represents the cost 5) In light of Definition 7.1, all the proofs seem to hold

associated with the autonomous switchings. if Assumption 5.2 is relaxed to only consider distances

We have solved these equations numerically using the “from the right,” that is, ifinf; d1(A;, D;) > 0, with
algorithms summarized in Section IX-B. As the state is in- d (A, D;) = inf Ef e, u(-)) € A;
creasingly penalized, the control action increases in such a >0, u(-), z€D;

way to “invert” the hysteresis functio/. See [1] for more
details and other examples.

where E!(z, u(-)) denotes the solutions undgr with
initial conditionz and controk(-) in U%*). Here, time
can be used as a “distance” in light of the uniform bound
IX. CONCLUSIONS AND DISCUSSION on f;; we considert > 0 by adding the caveat that

We examined the phenomena that arise in hybrid sys- if we jump directly ontoA;, we do not make another
tems and classified several hybrid systems models from the Jjump until we hit it again. Presumably one must also
literature. We then proposed a very general mathematical Make some transversality or continuity assumptions for
model for hybrid control problems that encompasses these Well-posedness. This would allow the results to extend
hybrid phenomena and all reviewed models. An optimal  to many more phenomena, including those examples in
control problem was then formulated, studied, and solved in  [43].
this framework, leading to an existence result for optimal 6) Another interesting avenue is to study the case where
controls. The “value function” associated with this problem is  there is an output map, and control actions must be
expected to satisfy a set of “GQVI's.” Therefore, the foregoing ~ chosen based only on this indirect observation of the
represents initial steps toward developing a unified “state- full state.
space” paradigm for hybrid control.

B. Algorithms

A. Open Issues An important issue is to develop good computational

Several open issues suggest themselves. Below is a brief$gfémes to compute near-optimal controls. This is a daunting
of some of the more striking ones. problem in general as the aforementioned results of [9] show

1)

2)

3)

A daunting problem is to characterize the value functiot'q?teven_rsmooth L'pﬁ.Ch'tZ dlfiﬁre?t[[al zquatlops can S|mu”Iate
as the unique viscosity solution of the GQVI's (12)_(15):?“ Itrary furing machines, with state dimension as smalfl as

As mentioned in Section II, following [22], it appearsthree. Thus, it is not hard to conceive of (low-dimensional)

promising. control problems where the cost is less than one if the

Many of our assumptions can possibly be relaxed ([)_rresponding TM does not_h_a_llt, but is_greater t_han three
the expense of additional technicalities or traded id it does. Allowing the possibility of a controlled jump at

alternative sets of assumptions that have the same effdf initial c_onqmon that WOUId result_m a (?OSt of two, one
For example, the condition(C;, 4;) > 0 could be sees that finding the optimal control is equivalent to solving
H T T

; : . the halting problem.
dropped by havinge. penalize highly the controlled . . . .
jumps that take place too close to;. (In this case, However, in other work, Branicky and Mitter have outlined

: . our approaches to solving the GQV/I's associated with optimal
Assumption 5.4 has to be appropriately reformulateddybrid control problems; see [1] and [44] for details, which

Example €.6 show that Assumption .3 cannot ijl be published in full as a companion to this paper.

dropped. In the autonomous case, however, the i v

of initial conditions that hit aC> manifold are of Ihe f'rStb?ppr_OiCh ?_olvest';]het GbQ_\I:jlsdlrfctLytgs alboulnc:_ary-
measure zero [16]. Thus, one might hope that an optimtvaef ﬂe_ problem; 'ﬁra} Lﬁns at't wtdon ra |||onat solu |onb
control would exist for almost all initial conditions in the ©¢"TN1AUES In €ach ot the constituent dynamical Systems can be

absence of Assumption 5.3. The system of Example 6dx;*vised. More generally, such successive iterative techniques
showed this to be false. Likewise, in the systems ay be used to break complexity by solving hybrid control

Example 6.6 we have, respectively, no optimal contr&mblems hierarchically; i.e., solve the constituent problems
for the sets separately, update boundary values due to autonomous- and

controlled-switching sets, then repeat.

{(z1, )22 €0, 21 <1, 22+ 1> 21} A stronger algorithmic basis for solving these GQVI's is
{(z1, 22)|22 <0, 71 < a, 2+ a > 21} the following generalized Bellman equation:
~U([0, 1] x [=a/2, 0] = B([L, =1]*, 1)) V() = minig(z, p) + V*(a'(z, 1))}

wherea = 2 — /2 and B(z, r) denotes the ball of wherell is a generalized set of actionsmeasures incremental
radius» about the pointc. cost of actiorp from stater, andz’ is the resulting state when
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p is applied fromz. The three classes of actions available ibe the new state process with dynamics
our hybrid systems framework at eachare as follows: ¥ (1) = f'(a' (1), 7O =10, oF

: ggg?rgﬁggs\lﬁr%n?cl:igoiinU; source and destination (i aking values in¥’ = {.X;};2, where each¥; is a copy of
ps: g 4% U.SetC; = X;, F; = {X;}, A4; = 0 for i € 7.

z € O), T | ,
« Autonomous Jumpspossibly modulated by discrete Con_Swnchmg_s ofu(-) now correspond to controlled jumps with
; the associated costs. O
trolsv € V (if z € A).

T ) ) ) ] ) Proof of Theorem 6.4Fix z(0) = zp € X;,, t0 € Z4.
From this viewpoint, generalized policy and value iteratiop,cider a sequence

become solution tools. N . N N . . .
One key toefficientalgorithms for solving optimal hybrid (" (), w (), {oi' b {oi' b, {G ) {7 ATF D),
control problems lies in noticing their strong connection to nely

the models of impulse control and piecewise-deterministissociated with our control system, with the obvious interpre-
processes [18], [19]. Making this explicit, we have developegdiion, such that:™(0) = =, for all » and the corresponding
algorithms similar to those for impulse control and one basgdsts decrease td(z). Let 4(+) denote the solution of
on linear programming. The latter seems more promising. ., n n
While the resulting linear programs are large—due to the¥ (&) = fia (y"(8), o, w"(2)), (18)
curse of dimensionality—they are sparse. Further, they haye " n n .
a special structure both as linear programs and due to {Héen " (") andny () agree on [O’_ ). Since {fi} .
hierarchical nature of discrete versus continuous states bounded, {y"()} are equi-continuous bounded in
hybrid systems. Exploiting this structure is a topic of curre
research; see [45] for work relating to the hierarchical structu@% . , .
of discrete and hybrid systems. 0" (dt, d‘y) = diu (t’. dy) on [0, T] x U” are relatively
Finally, although solving these inequalities has high Corﬁ_equenna}lly compact in thf topolo_g)_/ of Weak_ convergence by
putational complexity, in general—if they are solvable éErohorovstheorem [47Kr*} are trivially relatively compact

all—they are no more complex than synthesis methods 10 [0, oc]- Thushdrgpping tgoa sugssqu;nce if Orlecclesiary, we
general nonlinear systems. Thus, a current research goal"&/ SUECE’C,)Seht () = y=(), n"( t’l y) _>é7_ (dt, dy),
to isolate those problems (such as linear constituent dynami :; i n t_e resejctlve sp;ces._ c e1a8r19° Isintegrates
polyhedral jump sets, and quadratic costs) that lead to tractaBf’ (dt, dy) = dt u (tt’ dy). Rewrite (18) as
solutions (such as small quadratic or even linear programs). n n n
( d PrOORAMS) e st ([ Fulu (o) am. " (5)
0

y(0) = zg,n € Z4.

zela—Ascoli theorem. The finite nonnegative measures

APPENDIX — i (y™(s), o, u"(s)) ds)

Proof of Remark 4.1:First, we show that autonomous \
switching can be viewed as a special case of autonomous s n
impulses by embedding the discrete states into a larger +/0 Jio(y™(5), o, u"(s)) ds
continuous-state space. Consider the differential equation Wigh + > 0. By the uniform Lipschitz continuity of,, the term
parameters = f(z, p), wherex € IR",p € P C R™ closed, in parentheses tends to zeroras— co. Sincen™ — 1°°, the

and f: R" x P — IR" continuous. Let/ : R" x P — P be |ast term, in view of the relaxed control framework, converges
the function governing autonomous switching. (For examplg,

in the Tavernini modely is the “discrete dynamics.”)

t
Then, sincelR™ has the universal extension property [46], / Jio (W™ (s), xo, u™(s)) ds
we can extend to a continuous functiod’: R" x R™ — R". 0
Now, consider the ODE ofR"+" for ¢t € [0, T]. SinceT was arbitrary, a standard argument
) . allows us to extend this claim to € [0, o). (We use [47,
E=F¢), §£=0 Th. 2.1(v), p. 12] and the fact thag=({t} x U’) = 0.

Hence, y>°(-) and »>°(-) satisfy (18) withn = oo. Since
d(Cy,, Ai,) > 0, either 77* = oF for sufficiently large
n, or 77* = (" for sufficiently largen. Suppose the first
5pé)ssibility holds. Thery>(7{°) = lim z™(r{*) € A;,. Let
— v7°in V along a subsequence. Thef(z™ ("), v7) —
(U= (%), o0 Aala™ (1), vf) — Ba(y>(117), v1%),
I — I = 77° + Aa (y™(11°), v5°). Setz™(-) = y>(-) on

wherez ¢ R", £ ¢ R™, andF : R" x R™ — R"
continuous. Let the transition function b&:IR" x P —
R™ x P with G(z, p) = (z, v(z, p)).

Now, we show that continuous switching can be viewed a
special case of continuous impulses. A system with controll&d
switching is described by Ca

i(t) = flz(), u(t)),  z(0) =z € R [0, 77°] and z°(I'f?) = G(z>*(71°), vf°). Then
wherew(:) is a piecewise constant function taking values in / ¢ kg (a7 (t), wo, u"(2)) dt —
UcR™andf: R x U — R is a map with sufficient L
regularity. There is a strictly positive cost associated with the / ' ek, (3°°(), mo, u(t)) dt. (19)
switchings ofu(-). In our framework, let:’(-) = [z(-), u(:)]¥ 0
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If the second possibility holds instead, one similarly has Proof of Theorem 7.2:Let (x,, yn) — (Zoo, Yoo) from
y1(7£°) € Cj,. Then Assumption 5.6 ensures tHaf*(I'?)} is  the right in| |,(X; x X;) and letz"(-), n € Z; U{oo} denote
a bounded sequence In and hence converges along a subseptimal trajectories for initial datéz,,, v,,), respectively. By
quence to somg € D. Then, on dropping to a further subsedropping to a subsequence of ¢ Z, if necessary, obtain
quence if necessary.(z"(r1"), " (I'?)) — c.(y=(r1"), ¥/'), as in Theorem 6.4 a limiting admissible trajecta}(-) for
Ac(z™(r]), () — Ac(y™ (1), ¥/'). Setx™(-) = y*(-) initial data(ze., Yoo ) With cost (say)yx such that/ (x,,, y,,) —
on [0, 7{], I* = 7¢° + Ay (17), ¢/) = Im T} and > V(2u, yoo). SUPPOSEY > V(Teo: o) + 3¢ for sOMe
z=(I'f?) = v'. Again (19) holds. Note that in both casess > 0. Starting from z>°(), argue as in Theorem 6.8 to
x>°(-) defined on[0, 7t°] is an admissible segment of aconstruct a trajectoryi”(-) with initial data (x,,, 4,) for
controlled trajectory for our system. The only way it would, sufficiently large so that the corresponding cost does not

fail to be so is if it hit 4;, in [0, 7{°). If so, z™(-) would
have to hit4,, in [0, 7{*) for sufficiently largen by virtue of
Assumption 5.3, a contradiction.

Now repeat this argument fofz™(I'?° 4+ -)} in place of

exceedV (zoo, Yoo) + €. At the same timeV (z,, y,) >
a—c¢ > V(Te, Yso) + 2¢ for n sufficiently large, which
contradicts the fact thaV(z,, v,) is the optimal cost for
initial data (x,,, ¥, ). The claim follows. O

{z"(-)}. The only difference is a varying but convergent initial
condition instead of a fixed one, which causes only minor
alterations in the proof. Iterating, one obtains an admissible
trajectoryz™°(-) with cost.J(x¢).

Proof of Theorem 6.8:Recall the setup of Theorem 6.4. [1]
Consider the time interval0, 77°]. Let w*(-) andn € Z4
be precise controls such thadtw"(t, dy) — n>°(dt, dy) = [
dtu>(t, dy) in the topology of weak convergence. L#t(-) 3
and n € Z, denote the corresponding solutions to (18).
Now 71° equals either$® or ($°. Suppose the former holds.
As in the proof of Theorem 6.4, we hayg — y*°(-) in
([0, o), X;,). Using Assumption 5.3 as in the proof of
Theorem 6.4, one verifies that

(4]

(5]

ot =inf {t > 07" (¢) € A;,} — oF°. 6]

Thus for anys > 0, we can taker large enough such that (7
(8]

loT° =37 <6
sup{|[7"(¢) — y=(@)||st.0 <t < o VTT} <6

7 + Au(¥"(01), o7°) — IT°| <.

(9]

[10]
Setz"() = 7(-) on [0, 77] andz"(5" + Au(z"(37), v°))
G(z"(a}), v{°) (corresponding to control actiom{®).
The latter may be taken to lie in the opémeighborhood
of z>°(I't°) by further increasingn if necessary. In case
7$° = ({°, one uses Assumption 5.4 instead to conclude that
g (t,) € C;, for somet’, in the §-neighborhood of for n
sufficiently large. Set} = ¢, (-) = 3™(-) on [0, {"). By
further increasing if necessary, we may also ensure that

[11]

[13]

{Zrmlte [0, ")k n A, =0 [14]

sup{[[7" (1) — =)0 < ¢ < T ATT} <6
G+ A@"(E), 2(IF)) ~ TT] <6

[15]

[16]

Set [17]

(T + Ac(@(CT), 2(I99))) = 2™ (TF).
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