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Abstract. The problem of edge detection is viewed as a hierarchy of detection problems where the geometric
objects to be detected (e.g., edge points, curves, regions) have increasing complexity and spatial extent. An earl
stage of the proposed hierarchy consists in detecting the regular portions of the visible edges. The input to this stag
is given by a graph whose vertices are tangent vectors representing local and uncertain information about the edge
A model relating the input vector graph to the curves to be detected is proposed. An algorithm with linear time
complexity is described which solves the corresponding detection problem in a worst-case scenario. The stability of
curve reconstruction in the presence of uncertain information and multiple responses to the same edge is analyze
and addressed explicitly by the proposed algorithm.

1. Introduction by adding an appropriate term to the cost functional.
These formulations are simple and compact but may
1.1. The Role of Global Information lead to computationally intractable problems. More-

over, itis often difficult or impossible to guarantee that
The problem of curve inference from a brightness im- the optimal solution of these cost functionals represents
age is of fundamental importance for image analysis. correctly all the desired features such as junctions and
Curve detection and reconstruction is a difficult task invisible curves (Richardson and Mitter, 1994). Active
since brightness data provides only uncertain and am- contour methods (“snakes”) (Kass et al., 1988; Cohen
biguous information about curve location. A source and Kimmel, 1996; Shah, 1996) are able to use global
of uncertainty is for instance the presence of “invisi- information more efficiently but may require external
ble curves”, namely curves across which there is no initialization. More recent active contour approaches
brightness change (e.g., the sides of the white trian- (Caselles et al., 1995; Kichenassamy et al., 1995) have
gle in Fig. 1). Local information is not sufficient to somewhat overcome the initialization problem but de-
resolve these uncertainties reliably and “global” infor- tect only closed contours. Iterative procedures, such as
mation has to be used somehow. Zucker et al. (1988) relaxation labeling, can produce good results but only
have pointed out the need for a multistage approach at a high computational cost (Parent and Zucker, 1989;
which exploits both local and global computation. Hancock and Kittler, 1990).
Methods based on optimization of a cost functional  To exploit global constraints, interactions between
derived according to Bayesian, minimum description data from distant locations are necessary. Therefore,
length, or energy-based principles (Geman and Geman,one has to use large “contextual neighborhoods”. This
1984; Marroquin et al.,, 1987; Mumford and Shah, typically causesacombinatorial explosion ofthe search
1989; Nitzberg and Mumford, 1990; Nitzberg et al., space since the number of possible configurations in
1993; Zhu et al., 1995) introduce global information each neighborhood grows exponentially with its size.
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Figure 1L Hierarchy of edge representations for image segmentation. At the highest level the data is represented as a white triangle floating or
top of three black disks (Kanizsa, 1979).

A strategy to avoid this combinatorial complexity is tangent vectors where the brightness discontinuity is
to gradually increase the maximum allowed inter- large enough compared to the noise (Canny, 1986; Har-
action distance between descriptors by decomposingalick, 1984; Perona and Malik, 1990). Notice that at
the whole detection process into several stages with this stage the number of edge hypotheses is roughly
increasing scales of interaction. At every stage, the proportional to the size (area) of the image.

process selects a small number of configurations which  The next stages (3, 4 and 5) represent edges by means
describe succinctly all possible data interpretations per- of curves. These curves can be obtained from sequences
mitted by the maximum interaction distance of that of tangent vectors by means of some linking or fitting
stage. This leads to a hierarchy of representations procedure. Due to false negatives, false positives and
where the spatial extent and complexity of descrip- other kinds of uncertainties in the tangent vector repre-
tors increases by moving up in the hierarchy whereas sentation, a very large number of such sequences need
the number of descriptors decreases. The scale in-to be considered as possible curve hypotheses. Clearly,
crease and the difference in expressive power betweenthe number of curve hypotheses depends exponentially
any two adjacent levels of the hierarchy should be on the number of bifurcations (locations with multiple
small enough so that computation is always local and tangents) and on the number of multiple responses to
efficient. the same edge. Also, due to invisible edges, one should
consider curve hypotheses connecting distant tangent
vectors, which causes another combinatorial explosion
of the number of possible hypotheses.

The basic assumption underlying the hierarchical
approach is that therder in which uncertainties are
Figure 1 shows a hierarchy of contour representations resolved is the most important factor affecting compu-
whose highestlevel isa 1D sketchthatis, asetofpla-  tational costs. Thus, in estimating curves, it is impor-
nar regions ordered by depth (Nitzberg and Mumford, tant to determine what uncertainties can be resolved
1990). At the bottom of the hierarchy we have the raw immediately and what should be instead deferred to a
brightness data. At the second level edges are repre-later stage.
sented by tangent vectors whose magnitudes are pro- This paper shows that uncertainties in the orienta-
portional to the likelihood or strength of each edge tion and magnitude of tangent vectors and the problem
hypothesis. Efficient methods exist to estimate these of multiple responses can be tackled effectively at an

1.2. A Hierarchy of Representations
for Image Segmentation



Curve Detection 73

early stage. Curve singularities such as corners anddictionary of primitive elements used in wavelet-like
junctions are left for the next stage of curve estimation multiscale approaches does not change across the lev-
(level 4inFig. 1). This should be contrasted with meth- els, except for a dilation transformation. As a result,
ods which estimate corners and junctions directly from information is lost or simplified and representations
brightness (Deriche and Blaszka, 1993; Rosenthaler become coarser at larger scales. On the contrary, we
et al., 1992; Rohr, 1992; Perona, 1992). Other hierar- are interested in hierarchies where the high levels con-
chical algorithms (Parent and Zucker, 1989) estimate tain moreinformation than the lower levels. Thus the
multiple tangent®eforecurve reconstruction by using  expressive power of the underlying dictionary has to
local curvature information to select a set of tangents increase when moving up in the hierarchy.
at every point. Another approach to deal with multi- Whereas the basic transformation underlying wave-
ple tangents is presented in (Iverson and Zucker, 1995) let and similar multiscale representations is a dilation
where curves with singularities are detected by using applied to the domain of the raw data, the hierarchies
logical/linear operatorsobtained by composing non-  considered here are based omanpositionaltrans-
linearly elementary edge properties. formation (Bienenstock and Geman, 1995). That is,
The reason why we believe that curve singularities the models to be detected are decomposed recursively
should be estimateafterthe recovery of regular curves  into simpler units, leading to hierarchy of models
is that estimation of multiple junctions directly from Computation is mostly a bottom-up process which de-
brightness can be computationally expensive. In fact, tects and reconstructs these models by means of com-
the simplest edge models which yield efficient edge de- position. Top-down feedback, whose laws are derived
tection algorithms (constancy of brightness along the from the model hierarchy, is used to select groupings
edge and sharp variations in the orthogonal direction) of primitive units which are consistent with high level
break down near curve singularities. Onthe other hand, models. Pruning the exponentially large search space
more general edge models lead to nonlinear optimiza- of all possible groupings is necessary to keep com-
tion problems which require computationally expen- putation efficient and can be done by using top-down
sive iterative procedures or convolutions with many feedback. Ahierarchy of descriptionsbtained by re-
filters with large spatial support. (However, Nayaretal. cursive composition of descriptors is generated from
(1996) propose a quite efficient approach for solving the input data as a result of this process.
these nonlinear problems.) Thus, since regular curves To achieve robustness and computational efficiency,
can be estimated reliably and efficiently (as shown in one needs to design a “smooth” hierarchy, thatis a hier-
this paper) they should be used to constrain the searcharchy where consecutive levels are sufficiently “close”
for multiple tangents. Away for doing this is presented to each other so that every level of the hierarchy con-
in (Casadei and Mitter, 1996a). tains all the information necessary to reconstruct ef-
Invisible curves are dealt with at the last stage of ficiently the objects at the following level. Thus, to
curve estimation (level 5). Finally, two dimensional design the next level (in a bottom-up design approach),
descriptors (regions) and occlusion information are in- one has to understand what composite objects can be
troduced at the last stage of image segmentation. Thisformed efficiently and robustly from the parts present
paper is devoted to the computation of regular visi- inthe current level (for instance, regular visible curves
ble curves (level 3) from tangent vectors (level 2). For can be formed efficiently and robustly from tangent
some results on the relationship between levels 1, 2 andvectors according to the model of Section 2.3). This
3 see (Casadei, 1995). Work on the remaining parts of “smoothness” constraint limits the amount of expres-
the hierarchy is in progress. Some experimental results sive power which can be added from one level to the
for level 4 are reported in (Casadei and Mitter, 1996a). next and therefore determines how many levels in the
hierarchy are needed to bridge the gap between the in-
1.3. Compositional vs:Wavelet Hierarchies put data and the desired final representation. For this
reason (as argued in Section 1.2), we believe that in
The hierarchical approach adopted here is similar to edge detection curve singularities as well as invisible
multiscale schemes such as wavelet analysis in that rep-curves should be left out of the lowest level dictionary
resentations at a large scale are constructed efficientlyand included only at a higher level.
from local data by using the appropriate number of By using a hierarchical approach, itis possible to re-
intermediate levels. The main difference is that the solve uncertainties and ambiguities when the necessary
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contextual information is available. Typically, itisim- relationship is proposed in Section 2.3. Equivalently,
possible to eliminate efficiently all uncertainties in a a detection problem can be formulated asosering
single step. Then, one should eliminate part of the un- problem where the goal is to construct a small subset
certainties first and then use the new, more informative of the high level dictionary which approximates ev-
representation to resolve more uncertainties. Those un-ery possible high level object consistent with the low
certainties which can not be resolved should be prop- level data according to the given model (compare with
agated to the higher levels, rather than being resolved Theorem 5).

arbitrarily. Therefore, in general, intermediate repre-  In a hierarchical approach, perceptual organizati-
sentations are quite uncertain and ambiguous and mayon is really ahierarchy of detection problems. Each
contain mutually inconsistent hypotheses. problem consists in computing explicitly all the ob-
jects in the dictionary of that level which are consistent
with the data at the previous levels. Detection can be
achieved by composition: object parts are detected first
and then composed to reconstruct the object. This ag-
gregation method is repeated at every level up to the
. . top level which contains the desired global descrip-
Many authors have suggested that hierarchical algo- tjg.

rithms can be used to infer global structures efficiently 1, guarantee robust performance, the representation
(Dolan and Riseman, 1992). Computation of global computed at each level must bempletewith respect
descriptors from simpler ones is related to the process i the dictionary of that level. In other words, the com-
of perceptual organizatiofSarkar and Boyer, 1993; ,;teq representation must be a covering of the set of
Mohan and Nevatia, 1992; Lowe, 1985). Perceptual opiects in the dictionary which are consistent with the
organization, which can be repeated recursively and hi- yata That is, each consistent object must be approxi-
erarchicall_y, consistsin grou_pir_lg descri_pto_rs ac_co_rding mated by at least one object in the computed represen-
to properties such as proximity, continuity, similar- ati0n. For instance, the set of regular curves computed
ity, closure and symmetry. The role of these proper- py the proposed algorithm contains an approximation
ties in human visual perception is well documented 4 every regular curve which is consistent with the in-
in (Kanizsa, 1979). Ever.y grouping of descriptors is put set of tangent vectors. This completeness property
then composed into a higher level and more global g,arantees that all possible hypotheses will be explored

descriptor. To assess the significance of groupings in 4nq that uncertainties are propagated upwards in the hi-
a task independent fashion, principles such as non- erarchy instead of being resolved arbitrarily.
accidentalness (Lowe, 1985) and minimum description

length (Bienenstock and Geman, 1995) have been pro-

posed. These principles provide a general framework 1.5. Outline

to design all the grouping procedures in the hierarchy.

However, they do not guarantee per se that particu- The problem of detecting regular visible curves from
lar classes of objects are detected and reconstructeda set of tangent vectors is considered. It is assumed
correctly by these procedures. The ultimate goal of that these tangent vectors represent all the possible hy-
perceptual organization is to detect and represent ex-potheses about edges which can be derived by local
plicitly all the relevant structures present in the data. estimates of the brightness variations. Since this paper
Thus, perceptual organization can be viewed dea  deals only with visible contours with sufficiently high
tectionproblem where the dictionary of objects to be brightness change, we can assume that only nearby tan-
detected consists of all the high level descriptors which gent vectors can be consecutive points of a path. Thus,
represent compactly the groupings of low level descrip- all curve hypotheses can be represented as paths in a
tors. A detection algorithm is successful if it makes graph with local connectivity. This graph is called the
explicit all the object in the dictionary which are con- vector graphof the image. In Section 2 a model is
sistent with the set of low level descriptors in the input defined which relates the curves to be detected to the
representation. For instance, the problem of grouping vector graph. The problem of approximating all these
edge-points or tangent vectors into curvilinear struc- curves efficiently is non trivial because the set of all
tures can be cast as a curve detection problem by defin-possible curve hypotheses is exponentially large due to
ing aclass of curvesto be detected and their relationship multiple responses and uncertainties in the magnitude
with their constituent tangent vectors. A model for this and orientation of the tangent vectors.

1.4. Perceptual Organization as a Detection
Problem: Hierarchical Coverings
and Completeness



In Section 3 the concept of stability in edge linking
and the notion of stable graphs are introduced. It will o
be argued that some of the errors incurred by conven-
tional linking algorithms are due to the instability of
the underlying search graph.

The algorithm proposed to detect regular curves is e
composed of two parts (an earlier version of this al- e
gorithm is described in (Casadei and Mitter, 1996b). e
First, a stable graph is computed from the initial vector e
graph (Sections 4 and 5). It is proved that this sta- e
ble graph preserves the relevant information about the e
regular curves to be detected. At the same time, the
uncertainties which may cause instability are removed o
so that an approximation of every curve can be com- e
puted efficiently. The price for eliminating instabili-
ties is that information about multiple tangents at the o
same point is lost. This information can be recovered o
more reliably at a later stage (level 4 of Fig. 1. See
also (Casadei and Mitter, 1996a)). The second part
of the algorithm resolves the remaining ambiguities
by selecting the paths with minimum turn (Section 6).
Section 7 discusses howto deal with cycles inthe graph.

The results of experiments are presented in Section 8.

Section 10 contains the proofs of the theorems.

1.6. Notation List

P c R?: set of given candidate edge-points

V = {vp : p € P}: set of given tangent vectors
representing edge-point hypotheses

e ¢(p) = |vp|: strength of edge hypothesig

0(p) € [0, 2] orientation ofv, (estimate of edge
orientation)

A C P x P: arcs of the vector graph

[M&X(A): maximum arc length irA

7. path in vector grapliP, V, A)

arcqr): the arcs in the path

o (p1, p2): straight line segm. betwegn and p;
o(a): str. line segm. between end-pointsaofé A

o (7): polygonal line associated with path

B, (p): ball centered ap with radiusw

N, (7r) neighborhood o& () with radiusw

d(S;; ) asymmetric Hausdorff distance §f from
S (Eq. (1))

I = {y}: set of curves to be detected

k: maximum curvature of a curve in

®: maximum error on estimated orientation

do: maximum deviation of approximating path in
(P, V, A) from curvey to be detected

8. distance fromy at which¢ (p) decays
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8> max. dist. at whichy affects vector field

DS, D}, D)%: neighborhoods of with radii 8o, 81,
8, (Fig. 5)

o-(p): segment centered @ with length 20 and
perpendicular to tangent vectog

u, (p): unit vector perp. to tangent vectog

U, (7r): attraction basin ofr (Fig. 9(a))

Bw(): boundary olU,, ()

B, (), B (): lateral components &, ()

B, @), B} (a): lateral segments of aec(Fig. 9(b))
A — P’: subgraph ofA obtained by removing the
vertices inP’ from A

E(a;, a): The four end-points of ara, a,

P, (V, A): vertices suppressed by stabilization pro-
cedure (Eq. (11))

S”(V, A): arcs obtained by stabilization proc.

A: graph obtained by sigma-connectiAgFig. 13)

2. \Vector Graphs

This paper addresses the problem of detecting and re-
constructing a set of regular curvEsfrom local and
noisy information about these curves. This informa-
tion is represented by\aector graph namely a triple

(P, V, A) where

e P C R?is afinite set of candidate curve points;

e V = {vp: peP} is a discrete vector field with
verticesP;

e A C P x P represents a set of directed arcs.

A directed arc betweep; and p; is represented by
a pair(pz, p2) € P x P. The pair(P, A) is adirected
graph with arcs A and verticesP. Figure 2 shows
an example of a vector graph and introduces some
notation. The orientation®(p) of the tangent vectors
vp €V represent estimates of the local orientation of

------- > tangent vector v, € V
———=arca € A

Figure2 Example of avector graph. Solid segments representarcs
of the directed graph and dashed segment represent tangent vectors.



76 Casadei and Mitter

the curves il and the magnitudg(p) of these vectors
measures the likelihood that each candidate gosf
belongsto some curve. The vectorgraphV, A) can

be viewed as a noisy local projection of the curveB in
onto small neighborhoods of the image. A model of the
relationship betweeh and the vector graptP, V, A)

is proposed in Section 2.3.

2.1. Computation of the Vector Graph

To guarantee that the proposed algorithm generates
meaningful set of curves, the procedure which com-

putes the vector graph from the brightness image must

ators(vpl, ..

e Letv, be the tangent vector with foqt, orientation
6(p), and magnitude (p).

Let P be the set of all the estimated poimsnd let
V be the set of all the tangent vectarg p € P. V is
adiscrete vector fieldThe set of arca\ is then given
by the set of all pairgép:, p2) € P x P estimated from
adjacent regions and aligned with, (namely such
that (p; — py) - vp, = 0). A pathin this graph is a
sequencer = (py, ..., pn) such that(p;, piz1) € A,
i =1,...,n—1. The corresponding sequence of vec-
., vp,) Will also be called a path.

satisfy the three assumptions described in Section 2.3.2 2. Relationship Between the Vector Graph

These assumptions can be reformulated in terms of
a noisy brightness model of the edge, as explained

in (Casadei, 1995). By means of this model, it is
possible to write all the parameters in the three as-
sumptions of Section 2.3 as a function of the contrast

and scale of the edge and the noise amplitude in the

image.
In our implementation, a fitting method similar to

(P, V, A) and the CurveF

I’ denotes the set of regular curves to be detected
from the vector graphP, V, A). What assumptions
are appropriate to model the relationship betw&en
and (P, V, A)? In the ideal case, when no noise is
present, the following assumptions are quite natural:

(Haralick, 1984) has been used to compute the vector(Cl) The vector graph contains a connected sampling

graph. This method assumes that brightness changes

significantly across the curves to be detected. Fur-
thermore, it is assumed that the scale at which this
change occurs is known. To compute a set of tan-
gent vectors, the image is tiled with a set of overlap-
ping regions. One tangent vectey is computed from
each regionR by means of the following steps (see
Fig. 3):

e Estimate the gradient of the brightness dat&iby
fitting a linear polynomial. Lef (R) be the direction
orthogonal to the estimated gradient.

e Fit a third order polynomial constant aloAgR) to
the brightness data iR.

e By using the fitted third order polynomial, locate
to sub-pixel accuracy the point where the estimated
brightness gradient is locally maximum in the direc-
tion of the gradient. Lep be this point.

e Letd(p) = 6(R). This is an estimate of the orien-
tation of the curve passing through

e Let ¢(p) be the gradient magnitude at In gen-
eral, ¢ (p) is some positive quantity depending on
the gradient magnitude (and maybe also on the fit-
ting error) which represents some sort of feedback

of the tangent bundle of each curyes T'.
(C2) The vector field/ is locally maximum on every
curvey €T.

Recall that the tangent bundle of a curve is the set of all
its tangents. Thus, the first condition requires that for
every curvey € I', the vector graphP, V, A) contains

a path whose vertices are tangenty torhis is called
the approximating path of.

The second condition (C2) is necessary because
the graph may contain tangent vectors other than tho-
se belonging to curve-approximating paths. Ideally, the
magnitude of these spurious vectors is always smaller
than nearby vectors belonging to a true curve.

When noise is present, the following distortions may
be present:

e The vertices of the approximating paths are not ex-
actly on the curver € I'. Letdp be an upper bound
on the distance of these vertices frgm

¢ The tangent vectons, of the approximating path are
not perfectly aligned with the curve tangents of the
approximated curver. Let ®; be an upper bound
on this deviation.

from the brightness image. This feedback evaluates ¢ The magnitude of the vector field may achieve the

the likelihood that there exists indeed a curve with
orientationd (p) passing througip.

local maximum at some distance away frgmLet
31 be an upper bound on this distance.
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Figure 3 The vector graphP, V, A) computed from the brightness image in (a) by using the method described in Section 2.1. (b) The
estimated curve pointB. (c) The tangent vectolé. The magnitude of the tangent vectors is coded by the gray level of the segments. (d) The
set of arcsA (the direction of the arcs is not shown).

2.2. Formal Assumptions brightness model of the edge (sampling rate, con-
trast/noise ratio and scale) as explained in (Casadei,

We now proceed to state the three assumptions which 1995).

define the curve model in terms of the vector graph  For simplicity, the term “curve,” which usually

(P,V, A). These assumptions define rigorously the means a continuous mapping from an intervaRfQ

distortion parameters,, §; and ®;. These three  will be used to denote the image of the curve, which is

parameters can be related to the parameters of a noisya subset oR?. Thus, ify is a curve, thery C R?.
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Figure4. The asymmetric Hausdorff distancediromy’, denoted
d(y; y’), is the maximum distance of a point jnfrom the sety’.
Notice thatd(y; ) # d(y'; ).

The polygonal curve defined by the patis denoted
o (). Itis given by the union of all the straight line
segments (a) on the path. Here (a), a = (p1, p2),
denotes the set of points lying on the straight line seg-
ment with end-point$, and p.

Let S|, S be subsets ofR?2. The asymmetric
Hausdorff distancef S, from S is defined as

d(S; ) = d(p1; &) = [ -
(S &) L?Eagl( (P1; &) g‘eas)l( pTelgz I P1— pall
)

whered(py; &) is the distance of the poi from the
setS. See Fig. 4.

The first assumption requires that every cupve
' has an approximating path P, A) with error
bounded by some constat

R?\ D2

Covering Condition. The graph(P, A) coverd with
distance’y. Thatis foreveryy e I there exists a path
7 in (P, A) such thatdy; o (7)) < 8.

Notice that since the asymmetric Hausdorff distance
is used, the approximating path may be longer than
the path itself. Had we used the symmetric Hausdorff
distance instead, we would have assumed that the graph
(P, A) contains information about curve end-points,
which is too strong an assumption.

The othertwo conditions involve only the vector field
V and the curve§. For simplicity, these constraints
are formulated only for unbounded curves with zero
curvature (namely infinite straight lines).

Lety be a curve il". The decay condition requires
that the vector field/ decays at a distandg from y .
More precisely (see Fig. 5),

Decay Condition.
pre DY; pz e DI\D} = ¢(p1) > (p)  (2)

WhereDiy, i =0,1, 2, are the neighborhoods piwith
radiussi, 0 < 89 < 81 < 85:

D, ={peR?:d(p;y) <&} i=012;

andég is the parameter used in the covering condition.
The parametes; is the distance up to which con-
strains the vector field/. Notice that the magnitude

Figure 5 Constraints on the vector field in the vicinity of a curve. The magnitud® of the tangent vectors (length of arrows) is larger in
D? than inD2\D}.. The magnitude (p) is arbitrary inD}\DY. The angle formed by a tangent vectoit} with respect to the orientation of

the curve is less tha®1.
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of Vin D;\Ds is arbitrary. This is to model the fact I'. Attaining robust performance in the presence of
that, due to noise, the local maxima@fp) may be the uncertainties implicit in the model described in

displaced from the inner neighborhom]‘f_ Section 2.3 is potentially an intractable problem. In
Finally, the alignment condition requires that the ori- fact, interference due to nearby curves and uncertainty
entation of the vector fielt¥ at a distance frony less in curve location and orientation generate ambiguities
thans, does not deviate by more th@t from the ori- as to how candidate points should be linked together to
entation ofy. That is, if6, denotes the orientation form a curve. These ambiguities result in bifurcations
ofy, in the vector graph. The number of possible paths can

be exponentially large and it might be impossible to

Alignment Condition. explore efficiently all of them. On the other hand, to
obtain a complete representation every plausible path

pe D; = 16(p) — 6, < ©1 (3) must be somehow taken into account.

Definition 1. Let I be a set of curve. The vector o

graph(P, V, A) is said to be grojectionof I' with 3.1. Inadequacy of Greedy Linking Methods

admissible deviation&, 81, 8> and®; if it satisfies the ) ) ) )

covering, decay and alignment conditionsion Flggre 6 |IIustrat§s the inadequacy of stra!ghtforward
linking methods in the presence of uncertainties. Let's
assume that there is just one cusvdo be detected,

3. Stability namelyl’ = {y}, and thaty satisfies the decay condi-
tion. Also, let's assume thdp = oco. Thus the vector

The goal of the algorithm is to compute a set of field in the inner neighborhodd?® (dark shaded area) is

disjoint curvesI” which approximate every curve in  |arger than the vector field in the outer regiRA\ D]%
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Figure 6 Noise can cause instability and wiggly curves in greedy tracking algorithms. (a) The model assumes that the vector field in the inner
neighborhood)‘y) (dark area) is larger than in the outer regigf\ D)} (white area). Instability in curve tracking occurs because the maxima

of ¢(p) leak fromDY into D1\ DY (light gray areas). (b) Notice that noise can cause greedy linking to follow a wiggling path rather than the
smoother path on the right.
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(a) Brightness image (b) Edge-points (c) Greedy linking

Figure 7. Result of Canny’s edge detection with greedy linking on the image shown in (a). The set of points found by Canny’s algorithm is
shown in (b). The polygonal curves obtained by linking each point to one of its neighbors are shown in (c). When ambiguities are present, a
“best” neighbor is determined by minimizing a cost function which depends on the brightness gradient and on the orientation similarity between
the linked points. Notice that these ambiguities, which are usually caused by multiple responses to the same edge, can disrupt the trackin
process and lead to instability. That is, the reconstructed path can diverge significantly from the true edge. This is particularly evident for the
two parallel edges of the bright thin long line on the right of the image.

(white area) but it is not necessarily larger than the Forp € R?, w > 0, letB,,(p) be the ball centered
vector field in the intermediate are@%\DS (the light at p with radiusw:
shaded areas).

Now suppose that a polygonal curzés constructed Bu(p) ={p €eR*:|p—p| <w}
from the pointpg by a greedy linking procedure. That
is, the current point is linked to its strongest neigh-
bor and then the procedure is restarted from the new
point. Notice that the tracked path exits first the in-
ner neighborhood, then the outer neighborhood and
then it diverges arbitrarily fromy. Thus, this simple
“greedy” procedure isinstablebecause a small devi- Letw = (py,..., pn) andn’ = (py, ..., p,) be two
ation of the tracked path from the path closest to the paths and lefj € o(n’). Let oq(x’) be the largest
curve can lead to an arbitrarily large deviation between connected subcurve of(z’) which containgy and is
the two paths. This type of error occurs frequently in separated by at least from the end-points ofr (see
real images if greedy linking is used. Several instances Fig. 8):
of this error are shown in Fig. 7. Another problem with
greedy linking is that it might generate wiggly curves 0q(') N By (p1) = oq(’) N By, (pn) = 9.
(see Fig. 6(b)).

Thew-neighborhood of a path is the set of points in
R? with distance fromv () less tharw. Itis given by:

Nu(m) = [ Bu(p).

peo ()

In Fig. 8,04(n’) is the curve betweeq™ andqg*.

3.2. Definition of Stability Definition 2. A pathm in Ais aw-attractor if there

is a neighborhootl of o (r), U C N, (), such that
An important definition in this paper is that of a stable oq(7’) C U for every pathr’ in A and everyq €
graph. Roughly speaking, a graph is stable if every o(z’) N U. The setU is called anattraction basin
path in the graph “attracts” nearby paths. A weak def- for . A graph(P, A) is w-stableif every path in it is
inition of stability is given below and a stronger one aw-attractor.
will be given in Section 5. Both definitions depend
on a positive constanb, which is the scale param- A different way to construct attraction basins from
eter used by the stabilization algorithm described in tangent vectors is described in (Parent and Zucker,
Section 4. 1989; David and Zucker, 1990). Their method is
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on the sharpness of the brightness discontinuity across
edges. In the current implementation of the algorithm
w has to be provided externally.

To obtain a stable graph, the algorithm ensures that
everypathr = (pg, ..., pn)in S¥(V, A) hasan attrac-
tion basinU,, () contained inN,, (). The boundary
of U, (), denoteds,, (), is a polygonal curve con-
structed as follows. For every € P let pt and p~
be the points lyingw away from p in the direction
orthogonal to the vector field @ That is,

p" = p+wur(p) 4)
P~ =p—wur(p) (5)
whereu, (p) is the unit vector perpendicular to the

direction of the vector field ap, u, (p) = (sinf(p),
—co0sf(p)). The boundary dfJ,, () is then the polyg-

(a) (b) onal curve with vertices:
Figure8 The pathr in (a) is an attractor because the cusyérn’), " R N
namely the curve betweem andq™, lies in some neighborhodd Prs--s PnsPrseees Py Pr
of o (r) contained inN,, (r). The pathr in (b) is not an attractor
because there is no such neighborhabdf 7. In fact, og(") (see Fig. 9(a)). The algorithm can be described as

diverges (laterally) fromr, that is, the subcurvg — q* exits the

- +
neighborhoodN,, () without intersectingB,, (pn). follows. Letpg, (a), 8, (a) be thelateral segmentsf

the arca = (p1, p2) € Adefined by (see Fig. 9(b)):

based on a potential function obtained by summing B=(@) = o (pT, Py) (6)
the weighted contributions of several tangent vectors. Y 1
The desired curves are then defined as the valleys of B@ =o(pf,p3) (7)

this potential. Each estimated curve is represented by

a covering consisting of many smooth curve pieces. Let aj, a, be arcs inA. If a; intersects one of the
Each piece is computed by using a “snake” evolving two lateral segments @&, or vice-versa then we say
according to the potential function and initialized near that (a;, ay) is anincompatiblepair. Let's define a
a tangent vector. Instead, the algorithm proposed hereboolean functiony,,: A x A — {false ,true } such
constructs attraction basins in a more geometric fash- thatyr, (a;, a)) = true if (as, a,) is incompatible and
ion (see Fig. 9) and reconstructs each curve as a wholey,, (a1, a,) = false  otherwise. Thus we have

entity by means of a linear-time dynamic programming

procedure. Y (a, &) = o(@) N B, (@) # 0
Vo) N B, (a) # 1
4. Stabilization of a Vector Graph Vo(@)Np, () #9

m +
This section describes an algorithm which computes a V@ Np, @) #9 ®

stable graph from an arbitrary vector gragh V, A).
Moreover, if (P, V, A) is a projection ofl" then the
result is also a projection df. The set of arcs in
the computed graph is denot& (V, A) wherew is

the scale parameter. This parameter is related to the
constants of the curve model by means of the boundsin® E(a1, &) be the four end-points @ anday:
Theorem 2 (see below). Ultimatehy, should depend

on the amount of noise in the brightness image and E(a1, a2) = {p1(a1), p2(a1), p1(a2), p2(az)}

whereV denotes the logical “or” operator. Lé}, be
the set of incompatible pairs of arcs & For every
(ala aZ) € Iw let
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P 0{,& (pl) Nw (7‘_)

+

(a) Lateral boundaries of path 7

Figure 9 (a): The attraction basld,, () is the polygon with verticepf

.....

(b) Lateral segments of arc a

[ W [T pf. Its perimete,, (r) is composed of four

parts: B, () = B, (1) Uog (Pn) U B () U ok (p1) whereo,h (p1) = o (B, BD); B (1) = Uacarcar) B (); arcgr) are the arcs of ; and
BE(a) are the lateral segmentsathown in (b). Notice that each pointlih, () has distance from () less thanw, that is,U,, (7) C Ny, (7).

e Pnin(a1, a2) be the set of points minimizing in
E(ay, a):

do= min ¢(p) 9)
peE(ay,az)
Pmin(a1, @) ={p € E(a1, &) :¢(p) = ¢o}  (10)

If ¢ takes different values on the element&@a,, a,),
then Pmin(a1, @) is a singleton. LeP, (V, A) be the
union of all these minimum-achieving points over all
pairs of incompatible arcs:

P,(V,A)= | Pmn@,a)  (11)

(al,az)elu,
The set of vertices of the computed graph is
P\P,(V, A) and

S”(V, A) = {(p1, P2) € A: p1, p2 & Pu(V, A)}.
(12)

By using the following notation

A—P = {(pLp)eAip,pgP} (13

for any PPc P, Eq. (12) can be rewritten as
S*(V,A) = A— P,(V, A). The proofs of the fol-
lowing theorems are in Section 10. The result of the
stabilization algorithm on the graph of Fig. 10(a) is
shown in Fig. 10(d). LeU, (;r) be as in Fig. 9.

Theorem 1. For any vector graph(P,V, A) and

w > 0, the graph with arcs 3(V, A) generated by
the stabilization algorithm igv-stable with attraction
basins U, (7).

LetI™®(A) be the maximum arc length of the graph
(P, A),

IM(A) = maxX{||p1 — Pzl : (P1, P2) € A}
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X J

=

(a) ArcsA (b) (o (P}

\ \

= &

© (B @)} (d)S”(V. A

Figure 10  Stabilization of the graph in (a). (b) The segmenfs(p), p € P. (c) The lateral boundaries. (d) The result of the stabilization
algorithm.

Theorem 2. LetTI be a set of curves with bounded then the graph 3(V, A) coversI” with distancedy.

curvature and le{P, V, A) be a projection ofl" with Namely for everyy € T", S¥(V, A) contains a pathr
admissible deviation&, 81, 6, and ®. If such that dy; o (7)) < do.
26, In Theorem 2« denotes the maximum curvature
cos®, (1 = e()), (14) of the curves i ande; («), e2(x) are positive func-

tions such that;(0) = €2(0) = 0. As a corollary of
Theorems 1 and 2, notice that the vector graph with
8 — 81 > maX{w, IM*(A)} - (1+ ex(x)) (15) arcsS¥(V, A) is a stable projection df.
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Since the asymmetric Hausdorff distancky;

o (7)) is used, the estimated curw€r) may be longer Up

than the curver. This is a reasonable result since also

the covering condition was based on the asymmetric - v
Hausdorff distance. 1) (p)

5. Invalid End-Points and Strong Stability

In a stable graph, the tracked path is guaranteed to re- (@ (b)
main close to the true curve if this path contains a point
those in Fig. 6(a) can not occurin a stable graph. How- po'”ts Py is connected ( andp to p; whenevers (p, pe) nter-

L
ever, itis not guaranteed that all the paths near the curve™ i (P-
are long enough to cover the curve completely. There- i _
fore, the tracked path might terminate before reaching o, (P) (P ={p} (17)
the end of the curve (see Fig. 11). Buw (@) NP = {p1, pn} (18)
To avoid this problem, invalid end-points such as
ps in Fig. 11 are connected to some collateral path by wherer = (py, ..., pn). Also, without loss of gener-

adding an arc (e.g(ps, ps)) to the graph. To describe  jlity, letus assume thaP, A) does not contaiisolated
how this is done, a few definitions are needed. First vertices. Namely, every vertex in the gragh, A) is

of all, let us assume for simplicity that the relationship connected to at least one other vertex. AEtandAOUt
between the points iR and the other geometric entities  pe the set of in-arcs and out-arcs frgmthat iSAN =

Is “generic”, that is, (aeA:p@ =pl, A% =(acA:p@) = pl.
A pathm = (p1,..., pn) |s said to banaximal in Aif

o(p1, P2) N P = {p1, p2} (16)  AD = AN=0. Let (see Fig. 12(a))

Table1 The stabilization algorithm. Steps 2 and 4 need 5$(p) — gwl(p)\{ p}

not be carried out over all pairs of arcs. In fact, for
each arc, it is enough to consider all the arcs in a fixed

out
neighborhood around its midpoint. If we further assume Definition 3. A pomt peP is anend- pOImlf A

thatthe density of arcs inthe image is upper bounded, then @ or A'n = . An end-pointp isinvalid if o (pa, p2) N
the complexity of the algorithm is linear in the number J—(p) +0 for some(p1, p2) € A
of arcs.
1 Foreveryas, &) e Ax A Notice that ifr is a path terminating at an invalid
5 . Comp“te‘/’w(aL:Z)' aﬁ ghlven by Eq. (8) end-pointp, then there might be a collateral pathrof
L eone B2 & Ao thaty, (a1, &) = true which “prolongs” it. This longer path contains the arc
computePmin(a1, @) as given by Eq. (10) L
5 = . (p1, p2) such that (pa, p2) N6, (P) # 0.
5 Pu(V. A =g aper, Prin(as. a) , w
6 ReturnA— P, (V. A) To ensure that tracking does not get stuck at an

invalid-end point, a new graph with arés > Ais
, constructed as follows. Initially, leA = A. Then, for
Pa Ps q any p such that (py, p2) NoL(p) # B, (p1, P2) € A,

W add the arcspy, p) and(p, p2)to Al The new graph
A obtained from the graph in Fig. 13(a) is shown in
._>./ﬁ. v Fig. 13(d). By stabilizing the graph with ards one
m s D3 obtains a graph which possesses the following strong
stability property. LetA, A be sets of arcs.

Figure 11 The path (p1, p2, P4, - - -, q) covers y whereas

(PL. P2, P3) does not (both paths are maximalps is said to be — pefinition 4. A pathz in Ais astrong attractor with

an “invalid” end-point. If during curve trackings is chosen instead . . .
of ps at the bifurcation pointp, (this occurs if the most collinear respect to Alf there is a nelghborhoow of o (7),

arc with (py, p2) is chosen), then the resulting path does not cover L_J C N, (), such thatTA(Tf/)ﬁUA?é @implieso (1) C
y completely. U for every pathz’ in AN A. Alis stronglyw-stable
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(a) ArcsA (b) New arcs
O <

= %

_—

A (d)s®(v, A

Figure 13 Computation and stabilization @. (a) Initial graph. (b) The arcs needed to connect invalid end-points to a collateral path. (c)
The graphA with the new arcs shown in bold. (d) The graph obtained by stabili2inghis graph is strongly stable.

with respect to Af every maximal path inisa strong _ Aresult similar to Theorem 2 holds also &8¢ (V,
attractor with respect té. A). The only difference is that the lower bound on
- . 8, — 81 is now proportional tow +IM®(A) rather
Here,U denotes the topological closuredf thanw

Theorem 3. For any vector graph(P, V, A) and
w >0, the graph with arcs 3(V, A) is strongly w- Theorem 4. LetT be a set of curves with bounded
stable with respectto A with attraction basing (). curvature and (P, V, A) a projection of ' with
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admissible deviation&, 31, §, and®. If

281
C0osS®q

82— 381> (w+1"(A) - L+ ex) (20)

< w-(1—e1(x)), (19)

then the graph S’(V,_A) N A coversl". Namely for
everyy € I', S¥(V, A) N A contains a pathr such

Table2 The algorithm to compute
regular curves fronS*(V, A). A
sourcein A;j is a vertex with no in-
arcs. In line 6, varAj) denotes the
set of vertices of the graph;. The
proceduremaximalPatltsj, Aj) re-
turns a maximal path inA; with
starting points; (see Section 6.1).

1 A =S¥V, A

that d(y; o ()) < do. ; jD:ulntiIA @
| =

Notice that, as a corollary of Theorems 3 and 4, 4 pick a source; in A;
~ . . L 5 j =maximalPatlis;, Aj)
S”(V, A) N Alis a strongly stable projection &f. 6 Q) = ver(A) N Uy, ()
7 Ajr1=Aj - Qj
. h Coveri 8 j=j+1
6. Computing a Path Covering 9 enddo

In the previous sections a strongly stable projection
of I with arcsS* (V, A) was constructed. This section
addresses the problem of computing a family of disjoint
paths{ry, ..., 7n} in S*(V, A) which covers™. Itis
assumed for now tha8”(V, A) does not contain any
cycles. The more general case where cycle can be.
present is treated in the next section.

Recall that the length of an arc Ais less or equal to
Imax(A) whereas arcs i8*(V, A) have lengths less or
equal td™>(A) + w. Thus, elementsig”(V, A)N A
will be called short arcsand the other elements of
S*(V, A) will be calledlong arcs Notice that the sub-
graph of short arcs is sufficient to covér Long arcs

havg _been added to ensure that all maximal paths are_rheorem 5 Letl be a set of curves with bounded
sufficiently extended to cover the tracked curve.

The pathsry, ..., 7y are computed one at a time by curvature and let(P, V, A) be projection ofl" with

an iterative procedure. This procedure extracts a maxi- admissible deviation, 6,. 5, and®,. If
mal pathrrj from the current search gragh) and then 28,

defines the new search gragh,; C A; by remov-
ing from A; all arcs with a vertex in the neighborhood
U, (j). This is continued until the search graph is
empty. Existence of a maximal path kis guaran-
teed by the assumption that the graph does not containthen for everyy e T there existsp € ' such that
cycles. The algorithm is shown in Table 2. d(y;7) < w+ do.

SinceU,, (r}) is a neighborhood o# (), all the
vertices ofr; belong toU,, (), except for the two
end-points (which belong to the boundarybf (rrj)).
Thus, if; has at least three vertices, then no arg pf
belongs toAj, because every arc of; has at least 51
one vertex inU, (;) (see lines 6 and 7 of Table 2). 8o + 2003@ .
That is, we have !

slightly the algorithm shown in Table 2 so that (21) is
still true. We omit these details for the sake of sim-
plicity. From (21) (and ardsr;) C Aj) we have that
Aj;1is a proper subset o&;. SinceA, is finite, this
implies that the algorithm terminates after a finite num-
ber of steps. Moreover, it implies that the pathsare
arc-disjoint, that is,

arcgmj) Narcgm) =9, j#KkK (22)

Letl = {o(rj):1<j < N}.

050, <w-(1—e1(x)), (23)

§2 =81 > (w+I"™(A) - L+ ek). (24)

Notice that, in the zero curvature case, andvif
is set to the lower bound given by Eq. (23), then the
localization error is

1) The parameter& ands; represent two different types
of localization uncertainty in the local data wheréas

where arcérj) denotes the arcs belonging the the path is an upper bound on orientation uncertainty. It is not

7j. If Ty has justtwo vertices, then one needs to modify clear how tight this bound is. Probably, the factor 2

arcgrj) NAj1 =9
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Figure 14 Computation of regular curves from the strongly stable gréptV, A) in (a). (b) The lateral boundaries formed by the lateral
segment$p(a)}. (c) The regular curves computed by the algorithm. (d) The neighborHbabdsr;j)}.

can be reduced but it is unlikely that it can be made complexity. As for the other term,§3, we do not
smaller than 1. know how tight it is.

The parametes,, which represents the minimum
separation distance between two curves, has to be at6.1. Computing the Optimal Path
least 3; + I™®(A) (by lettingx = ©; = 0). The
| M¥(A) part can be made arbitrarily small by breaking The algorithm in Table 2 uses the procedoraximal-
down the arcs of the vector graph into smaller pieces. Path(s;, A;) which returns a path; € Mj(s;), where
This entails a linear increase of the computational M (s;j) denotes the set of maximal pathspwith first
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elemens;. Notice that Theorem 5 holds for any choice
of a path inM; (sj). Thus, this path can be determined
according to an arbitrarily chosen cost functigr).

If this cost is additive,

n

cm) =y cp), 7=(py...

i=1

’ pn)

then the minimizing path can be computed by using an
efficient dynamic programming algorithm which runs
in linear time in the number of arcs in the graph. Infact,
letc*(p), p € ver(A;j), be the optimal cost of a max-
imal path starting ap. Then, the following Bellman
equation holds

c'(p) =c(p) + min c*(p)), peverA))
p'eF(p)

where F(p) denotes the set of verticgs such that
(p, p') € Aj. Therecursive algorithmin Table 3 can be
used to compute*(p) for all p € ver(A;) (assuming
the graph does not contain cycles). The optimal path
starting fromp is then

maximalPatls;, A;)

= (Sj,v(sj),v(v(sj)),...,v”(Sj)) (25)
wherev(p) is the minimizer ofc*(p’), p’ € F(p).

Notice that this method can be generalized to cost
functions of the form

n—k
() =Y c(pi, Pisas -

i=1

s pi+k)~

This approach can be used to compute paths with
minimum total turn. In fact, the total turn of a path
7 = (pP1, ..., Pn) iS given by

n—1

c(m) =Y c(Ppi-1, P> Pira)

i=2

wherec(pi_1, pi, pi+1) is the absolute value of the ori-
entation differences between the algs_1, p;) and
(pi, pi+1).- Similarly one could use this method to
incorporate other types of constraints (e.g., energy-
based) depending also on brightness.

Adynamic programming approach for optimal curve
detection was also proposed in (Subirana-Vilanova
and Sung, 1992; Sha'ashua and Ullman, 1988). Their
method minimizes a cost function which penalizes cur-
vature and favors the total length of the curve. Our
approach is simpler in that only curvature appears in
the cost function. This simplification is possible be-
cause all the curves which can be constructed from a
given point cover each other, i.e., they have the same
“length”. This is a consequence of the strong stability
of the graph.

Due to the above simplification, the dynamic pro-
gramming algorithm needs to pass through each point
only once and therefore has linear time complexity.
Also, since the stabilization algorithm runs in linear
time (see comments in Table 1) and since the procedure
which computesA from A runs also in linear time, it
follows that the whole algorithm has linear time com-

plexity.

7. Classification and Detection of Cycles

To do this, one needs to construct a graph whose The curve extraction procedure of Section 6 needs

nodes are all possiblé&k + 1)-paths(qy, ..., gk) in
the original graph and whose arcs are all the pairs

(O, -, O, (O, - .-, G)) Whereq) = Giyg, | =
2,...,k—1 (see Casadei, 1995).

Table 3 The recursive algorithm to compute optimal
maximal paths.

optimizé p)
if F(p) =0
c(p) =c(p)
else
for everyp’ € F(p)
optimize& p’)
c*(p) = c(p) + min{c*(p"): p’ € F(p)}

1
2
3
4
5
6
7
8 return

some adjustment to deal with cycles in the vector
graph. Recall that a cycle is a path= (p1, ..., pn)
such thatp; = pn. The structure of the stabilized
graph S*(V, A) makes it possible to classify cycles
into two classesregular cycles andrregular cycles

(or looplet9. To do this, notice first of all that the two
lateral boundarie@; (w) and g, (w) of a cycle are
closed curves (see Fig. 15). Sin8(V, A) is the
output of the stabilization algorithm, the closed poly-
gonal curveo () is disjoint from g (r) and B, ()
(see Proposition 2 in Section 10). Thus, two cases are
possible. In the first case () encloses eithes;! ()

or B8, (w). Then, the other lateral boundary encloses
the other two closed curves (see Fig. 15(a)). A cycle
of this type is said to beegular. In the second case,
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(a) Regular cycle

(b) Irregular cycle (looplet)

Figure 15 (a) The cycler is regular becausB(8; (7)) C R(x) C R(B, (7)). Here,R(:) denotes the region enclosed by a closed curve.

(b) Alooplet = satisfiesR(8; (7)) N R() = R(B,, (7)) N R(x) = 0.

neitherg;’ (=) nor B, () enclosesr () and the inte-
riors of the three cycles are all disjoint (Fig. 15(b)). A
cycle of this kind will be called dooplet, or irregular
cycle.

The procedureptimizé p) in Table 3 can be modi-

used to compute the cubic polynomial fit and the
tangent vectors. Some thresholds were used to elim-
inate some of these tangent vectors. The parameter
was set to (5 for all the experiments.

The results are compared to Canny’s algorithm with

fied slightly so that cycles are detected and handled ap-sub-pixel accuracy followed by greedy edge linking

propriately. The modified proceduogptimizeé works

as follows. Every poinp is assigned a state variable
which can take one of three possible values: “new”
(which is the initial state), “active” and “done”. When
a point is opened for the first time, nameiptimizé

is called with argumentp, then the state ofp is
changed from “new” to “active”. When the procedure
optimizé(p) returns, the state op is changed from
“active” to “done”. A cycle occurs wheneveptimizé
opens a point which is already “active”.

To check whether the cycle is regular it is suffi-
cient to pick one of its vertices and verify whether it
is enclosed by eitheg () or B, (7). If the cycle
is regular then the patmaximalPatlis;, A;) in (25)

(Figs. 16(b) and 17(b)). The performance of the two
algorithms is comparable on edges which are iso-
lated, with low curvature and with significant bright-
ness change. However, when the topology of the edges
is more complex, the advantages of a more robust
approach become evident. In fact, greedy linking con-
nects points with very little knowledge about the semi-
local curvilinear structure. If an unstable bifurcation
is present, then greedy linking makes a blind choice
which may lead to a curve diverging from the true
edge. Forinstance, the two parallel edges on the left of
telephone keyboard are disconnected and merged to-
getherin Fig. 16(b). The contour of the telephone keys
and of the flower petals (Fig. 17(b)) are often confused

is set equal to this cycle and lines 7, 8 of the proce- with nearby edges. One could decrease the chances of

dure in Table 2 are applied to it. If the cycle is a looplet

greedy linking getting confused by raising the thresh-

then all its nodes are coalesced into a “super-node” andolds in Canny’s edge detector, so that fewer multiple re-

the procedureptimizé continues from this new super-
node.

8. Experiments

sponses are generated. However this would cause many
edges to be missed (see the two parallel edges on the
right of the telephone keyboard in Fig. 16(b)). Instead,
the contours obtained by the proposed algorithm are
more complete (even though sometimes disconnected)
and do not diverge from the true edges (however, notice

The results of the proposed algorithm on two images are the errors near the top keys).

shown in Figs. 16 and 17. The vector graph was com-
puted by using the method described in Section 2.1.

Rectangular regions with width 4 and height 3 were

The limits of the proposed algorithm lie in the
assumptions which are necessary for a curve to be
recovered without disconnections. If a curve in the
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(a) Brightness image (b) Canny'’s algorithm (for comparison)

(c) Vector graph (d) Regular curves

Figure 16 Telephone image. The final result is shown in (d).

image violates one of these assumptions, then the curvegaps in the curves due to high curvature and T-junctions
might be disconnected at the point where the violation (see Fig. 18).
occurs. For instance, notice that edges are broken at Finally, Fig. 19 shows the results of the algorithm
points of high curvature and at curve singularities such (including the edge continuation step) on two MRI im-
as T-junctions. Also, since the asymmetric Hausdorff ages (courtesy of A. Tannenbaum). Since the brightness
distance is used to evaluate the match between the truediscontinuities occur at a higher scale in these images,
curve and the reconstructed one, curve end-points maythe tangent vector¥ have been generated by using
not be recovered correctly. Sometimes, curves are ex-rectangular regions 6 pixel wide and 7 pixel tall (the
tended a little beyond the ideal end-point. parameteiv was kept the same as beforef).

These limitations can be dealt with at higher levels
of the edge detection hierarchy by using more general
edge models. The regular curves extracted at the cur-9. Conclusions
rent level can be used to construct hypotheses about the
missing portions of the edges. More globalinformation To estimate contours in an image reliably it is neces-
can then be applied to prune the set of these hypothe-sary to apply different types of local and global infor-
ses so that the process can be repeated recursively andnation. For the sake of computational efficiency, this
efficiently. For instance, Casadei and Mitter (1996a) information should be introduced in several stages so
showed how this method can be used to bridge small that uncertainties are resolved in the right context. The
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(a) Brightness image

N\

e

(c) Vector graph (d) Regular curves

Figure 17. Flower image. The final result is shown in (d).

state of the computational process is given by a set of  First, atheoretical framework is needed to prove that,

curve hypotheses represented by geometric descriptorsat every stage, the computed representation approxi-
whose complexity and spatial support increase as com-matesall the possible curve hypotheses which can be

putation proceeds. When building a new layer in the expressed by the dictionary ofthat stage. Indeed, in this
hierarchy, care has to be taken so that deriving the new paper it has been proved that the proposed algorithm
representation from the previous ones can be done effi-approximates efficiently all the regular curve hypothe-

ciently without resolving uncertainties arbitrarily. This ses which are consistent with the given set of tangent
remark has two consequences. vectors.
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-~

Cr

Figure 18 Result after selecting locally-best edge continuations in Figs. 16(d) and 17(d).

Second, constraints exist on theler in which un- can be labeled with this scale estimate. Then, the pa-
certainties should be resolved. In fact, only certain rameterw, which is now constant throughout the im-
types of hypotheses can be formulated efficiently from age, becomes a function of the local scale and noise
the information available at the current stage. For the estimates.
problem of edge detection, this led us to believe that The information about multiple tangents (corners
curve singularities (corners and junctions) and invisi- and junctions) present in the given set of tangent vec-
ble contours should be recovered only after represent-torsV and removed during the stabilization procedure
ing the regular portions of the contours by means of needs to be reintegrated into the representation at the
maximally long curves. nextstage. Thiswas partly done in (Casadeiand Mitter,

A model for these regular curves has been pro- 1996a) but needs to be done in a more rigorous way.
posed. The most important assumption of this model Also, some corners and junctions in the image might
is that the local edge-strength decays away from the not be represented at allih, especially ifV was com-
edge. The precise formulation of this assumption al- puted by an algorithm which assumes a single tangent
lows for the presence of noise in the model and makes at every point. Thus one perhaps needs to create new
the algorithm robust to noise. Correct detection of the edge hypotheses by extrapolating the computed regular
regular curves described by this model entails the res- curves.
olution of ambiguities due to multiple responses to  The problem of detecting large gaps between vis-
the same edge and uncertainties in the orientation andible curves requires different steps. First of all, one
strength of the point-like edge estimates. These issuesnheeds to generate all possible invisible-curve hypothe-
are closely related to the problem of stability in edge ses connecting visible curves. Some diffusion process
tracking. emanating from the existing curves can be used for this

purpose (see for instance Williams and Jacobs, 1995;

Geiger and Kumaran, 1996). Alternatively, one could
9.1. Future Work use some localized versions of the Hough transform to

cluster curves in parameter space.
Animportant generalization of the algorithm presented  The set of all invisible-curve hypotheses together
here is to include automatic adaptation to the scale of with the visible curves generates a graph where paths
brightness discontinuities. If this scale can be esti- corresponds to partially invisible curves. This graph
mated directly from local brightness data (Elder and might contain many bifurcations (nodes with many
Zucker, 1996a) then each tangent vector in the input arcs) so that finding “optimal” paths is in general
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Figure 19 Left: Two MRI of an heart. Right: Result of proposed algorithm (followed by edge continuation processing).

computationally hard. As noted by Geiger etal. (1996), curves. This is necessary to generate feedback sig-
the major problem is not hypothesizing possible curve nals to curve hypotheses which are not yet completely
continuations or their shape but selecting the globally- formed into a closed contour.
best arrangements of continuations. At some stage, information about relative depth of
To do this efficiently, one needs to identify top-down the curves has to be included to facilitate continua-
feedback mechanisms to guide the search in the curvetion behind occluding contours, which should be the
graph. Closure (Elder and Zucker, 1996b) can provide first ones to be detected and “lifted” from the image
an important clue. However, for closure information (Geiger et al., 1996). Eventually, at the highest level, a
to be useful one needs a continuous measure of “being2.1 sketch of the whole image should emerge from the
closed” which applies to both closed and non-closed computational process.



94 Casadei and Mitter

10. Proofs of the Results

10.1. Proof of Theorem 1
The proofs of the main results will be preceded by some
useful propositions.

Definition 5. A vector graph(P, V, A) is said to be
arc-compatiblef ¢, (a1, a;) = false for every pair
of arcs(ap, ap) € A x A. The setA will also be said
to be arc-compatible.

Proposition 1. For any vector graph(P, V, A) and
w > 0, S¥(V, A) is arc-compatible.

Proof: Letvy,(a;,a) =true forsomea, a; € A.
Then, P, (V, A) contains at least one of the points in
E(as, a2). Hence eithes; ¢ A — P, (V, A)ora, ¢
A— P,(V, A) so thatS”(V, A) can not contain both
a; anda,. O

Proposition 2. Let A be arc-compatible. Then for
any pathsr, 7’ in A:

o) NP, () =0@@ NP () =10 (26)
Proof: Notice that
om = J o@
acarcgr)
s = s@
a’carcgn’)
o= |J 8@
a’earcqn’)
The result follows then from Proposition 1. O

Proposition 3. Let (P, V, A) be a vector graph and
w > 0. Then U,(r) c N, () for any pathrz in the
graph (P, A).

Proof: The result follows directly from the construc-
tion of the boundary o, (r) (see Fig. 9(a)). O

Proofof Theorem1: Letmr = (py,..., pn) beapath
in S*(V, A). From Proposition 3 we hawd,, () C

N, (7). We have to prove thaf,, (;) is an attraction
basin forr (see Definition 2). Recall that the boundary
of U, () is

U, () = Bu ()
= B, (m) Ut (pn) U B () Ua(pr)

Letq € U, () and letnr’ be a path such that(z")
containgg. From Proposition 2 it follows that

o(@)NB, (1) =o(@)NB, (1) =1

sothat (7r’) canintersecs,, (;r) only atits extremities,
oL (p1) ando;-(pn), which are contained iB,, (py) U
By (pn):

(0 (@) N Bu()) C (05 (P1) Uy (Pn))
- (Bw(pl) U Bw(pﬂ))

Therefore,o (z’) can intersectbU, (r) only inside
B. (p1) U B, (pn). Henceoy(r')—namely the largest
connected subcurve of(x") disjoint fromB,,(py) U
B, (pn)—is contained inU, (;r). Thus,U, () is an
attraction basin forr. O

10.2. Proof of Theorem 2

Lemma 1. Lety be an unbounded straight line and
let(P, V, A) be avector graph satisfying the alignment
condition ony. Letae A. Ifo(a) C D} and

251
<
cos®;

w, (27)

82 — 31 > w (28)

theng,f (a) c D7\D; andp, (a) C DZ\D;.

Proof: Let us assume without loss of generality that
y coincides with they-axis. For anyp € R? let x(p)

be thex-coordinate ofp so thatd(p; y) = |x(p)| (see
Fig. 20). Letp;, p, be the end-points g8, (a) and
Py, ps the end-points oB;f (a). Recall that

pE=p wu (p), i=12

whereu  (p;) is the unit vector perpendicular tg, .
Then,

X(pF) =x(p) £weosh, i=172
whereg; is the angle betweer), andy. The alignment
condition require®;, < ©; so that

IX(pF) — x(pi)| > wcosOy, 1,2



Figure 20 Proof of Lemma 1.
Therefore, sincéx(p;)| < §; and by using (27),
IX(P)| > wcosO1 — [x(p)| > wcosO1 — 81 > &1
Also, by using (28),

IX(PO)] < IX(P)| +w < 81+ w < &,

Thus pii € D2\D}E and the result follows from the

convexity ofD%\D)%. O

Proposition 4. Lety be an unbounded straight line.

Let (P, V, A) satisfy the decay and alignment con-

ditions ony. Suppose Eqg27) and (28) hold and
82 — 81 > |M*(A). Let pe P. Then

peD)= pgP,(V.A
Proof: Let A, be the set of all arcs il which have
p as one of its two end-points. Lat= (p, p) € Ap
anda’ = (qi, 02) € A. From Egs. (8)—-(11), we must

prove that eithea anda’ are compatible op (p) > ¢o,
where

¢0 = mln{ p, p7 a1, CIZ}

Since||p— p|| < IM(A) < 8, — 8, andd(p; ) < 81
we have

d(p;y) <d(p;¥) +1Ip— Pll <81+ (62— 9d1) < 2,

thatisp € D2. If p € D2\D} theng(p) > ¢y,
becausep € D(y) and¢(p) > ¢(p) from the decay
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condition (2). Let us assume then thak Di. This
implies thato (a) ¢ D}, and, from Lemma 1,

Bi@ U B, (@ c D>\D; (29)

The geometric relationship betweet = (qi, G2)
and y can fall into one of three possible cases (see
Fig. 21):

(i) Atleastone ofy., gy belongs toD2\D?.
(i) 1,0 € D;.
(i) o102 € R?\D2.

The case where one f, g isin Di and the otherisin
R?\D? cannot occur becaugiey — 2|l < I™(A) <
82 — 81.

Case (i) Fromthe decay condition it follows(p) >
#(du) or¢(p) > ¢(g) and thereforep (p) > ¢o.

Case (i) Noticethaw () = o (1, gz) C D}. From
this and from Eqg. (29) we have

o @) N (B, @ UL, @) =0

Similarly, fromo (a) C D; and from Lemma 1 ap-
plied toa’,

o(@) N (B, @)U @) =0
Hencey, (a,a’) = false and(a, &) is a compat-

ible pair.
Case (iii) Sinced, — 81 > w, it follows that

D; N((B, @) UBS @) =0
and therefore, frorr(a) c D1,
o@nN (B, @) UL @) =0.

Sinceo (@) = o (g1, ) C RZ\D}%, from (29) we
have

o@)N (B, @ UpB, @) =19

and therefore),, (a, @) = false . O

Proof of Theorem 2: Lety € I" and let us assume
thaty is an unbounded straight line (The proofis given
for this case only¥.Since(P, V, A) is a projection of

I, y € I satisfies the covering, decay and alignment
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Case (iii

Figure 21 Proof of Proposition 21. The three possible casesfor



conditions. From the covering condition, there exists a prgof:

pathsr in Asuchthat(y; o (;r)) < 8p. Notice that the
vertices ofr belong toD? so that, from Proposition 4,
they do not belong t®, (V, A). Therefores is also
apathinS*(V, A) = A— P,(V, A). O

10.3. Proofs of Theorems 3 and 4
Definition 6. Let A, A be sets of arcs and & be

the set of vertices oA. The setA is said to beo; -
connected with respect toiA

o(pL P2) NP #0 = (p.p) € A(p, p2) € A
(30)

for every(py, p2) € AN Aand everyp € P

Proposition 5. The setA constructed in Sectidhis
o,--connected with respect to A.

Proof: The result follows directly from the definition
of A. U
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Notice thatS*(V,A) = A — P,(V, A).
Therefore, sinceéA is o;--connected w.r.tA, the re-
sult follows from Lemma 2. U

Proposition 7. Let A beo;-connected with respect
to A and letr = (p, ..., pn) be a maximal path in
A. Then for every(di, o) € AN A,

o (01, ) N6y (P1) = 0 (G, Gp) N6 (Pn) =

Proof:  For the purpose of contradiction, le, o)
€ AN Abe such that

o (th, ) NG, (Q) # 9 (32)

whereq is eitherp; or p,. SinceA is o;--connected,
we have thatq, g.) and(qs, ) belong toA and there-
fore q has at least one out-arc and one in-arc. This
contradicts the fact that is maximal inA. s

Proposition 8. Let A bea, -connected with respect
to A and arc-compatible.

e For every maximal pattr = (ps, ..., pn) in Aand

The following Lemma ensures that a graph remains ~ €very pathr’in An A,

o-connected if an arbitrary set of vertices is sup-

pressed. (33)

Buw(m) No (') C {p1, pn}

Lemma 2. Let A, A be sets of arcs whose vertices ® A is stronglyw-stable with respect to A with attrac-

belong to P. Let PC P. If A iso;--connected with
respect to A thertA — P’ is also% -connected with
respect to A.

Proof: Let p be a vertex inA — P’ and(pz, p2) an
arcin(A— P’) N Asuch that (py. p2) N 6L (p) # 0.
We have to prove thdp,, p) € A—p and(p, pz) €
A — P’. Notice  that sincep is a vertex |nA P’itis
also a vertex inA. Also, from(ps, p2) € (A—P’ )ﬂA
we have(ps, p2) € A. Therefore, sincéA is o -
connected w.r.tA,
(PP eA  (p.p)eA (31)
Sincep is a vertex inA — P’ we havep ¢ P’. Also,
from (p1, p2) € (A— P’) N Awe havepy, p, ¢ P'.
Hence, from (31) it follows thatps, p) € A— P’ and
(p,p2) € A= P". 0

Proposition 6. For any vector graph(P,V, A),
S¥(V, A) is oL-connected with respect to A.

tion basins U, ().

Proof: Letw = (p1,..., pn) be a maximal path in
Aandrn’ a path inANn A. SinceA is arc-compatible
we have from Proposition 2,

o(@)NB, (M) =o(@)NB, (1) =1

Since A is o,--connected and is maximal in A we
have from Proposition 7

o(m )N 6y (P1) =o(m) N6y (Pn) =9

Thus, sincer: (p) = 6.5 (p) U {p},

w

o(@)NBy(r) =0c(@)N (B, (T)U awl(pn)
UBS (™) Uoy(p1) C {P1. Pn)
(34)

which proves the first part. Let now’ be a path
in AN A such thato (') N U, () # @. To prove
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that A is strongly w-stable, one has to show that
o(n') c U, (). From the assumptions (16)—(18) and
from Aigl = A% = ¢ we have that (') can not exit
U, (r) through the point$;, p,. This, together with
(34), yields the result. O

Proof of Theorem 3: From Proposition 1,S"(V,

A) is arc-compatible because it is the output of the
stabilization algorithm on the vector grapR, V, A).
Moreover, S*(V, A) is o --connected from Proposi-

w

tion 6. The result then follows from Proposition 82

Proof of Theorem 4: The proof is similar the that
of Theorem 2. Lety € T and, as in the proof of
Theorem 2, let us assume thatis an unbounded
straight line. Sincg P, V, A) is a projection ofT,

y satisfies the covering, decay and alignment condi-
tions. From the covering condition, there exists a path
7 in A such thatd(y; o (7)) < 8. Notice that the
length of the segments addedAdo constructA is at
mostw +1M(A). Therefore]™(A) < w +MX(A).
Since the vertices of belong toD?, by using Propo-
sition 4 with A replaced byA, we have that none of
the vertices ofr belongs toP, (V, A). Hence, since
S*(V,A) = A— P,(V,A) andA C A risalso a
path inS*(V, A) N A. O

10.4. Proof of Theorem 5

Proposition 9. A; is stronglyw-stable with attrac-
tion basins U, ().

Proof: Notice that

Aj =S"(V, A — (

Uo)

k<]j

Thus, from Lemma 2 and Proposition 6, we have

that A; is o;--connected. AlsoA; is arc-compatible

because it is a subset @&*(V, A) which is arc-

compatible. The result then follows from Proposition 8.
O

Proposition 10. Letz be a path in 3(V, A) N A.
Then there exists &; such that do (); o (7)) < w.

Proof: _As afirst step we construct a partitionAf =
S¥(V, A) into N setsB;, j = 1,..., N. These sets
are given by:

Bj = {(p1, p2) € Aj:preUj v ppeUj}  (35)

whereU; = U, (j). Notice thatB; C A;. The fol-
lowing must be proven:

(36)
(37)

From the recursive definition d&; (lines 6 and 7 of
Table 2) we have

Ajs1=Aj - Qj
= Aj\(P1, p2) € AjiprelUj Vv pzeUj)
and therefore
Aj+1 = Aj\B; (38)

Fromthis it follows thaB; N Aj 1 = @. Thus, ifk > |
we haveB;j N By = ¥ becauseBy C Ax C Ajy1. This
proves (37). Notice that by iterating (38) one obtains:

Aj = Al\

Let N be the number of steps done by the procedure
before terminating. That is, from line 3 of Table 2,

Us:

k<j

(39)

Any1 =0

By using (39) one gets

Avii=A1\ | JBc=0
k<N

fromwhich (36) follows. Notice that from (39) and (36)

we have
A = Al\

Now letk be the smallesj such thatB; contains at
least one arc of the path:

Us=Us

k<j k>j

(40)

arcgm) N Bj =9,
arcgm) N By # 0.

i<k (41)

(42)



From (36), (41) and (40) we have

U (arcgm) N Bj)

arcygm)

1=)<N
= Ja@rcgm)nB) c | J B = A
i=k j=k

Thus, sincer is path in Ay N A by assumption;z
is a path inAx N A. From arcér) N By # @ and
from (35) we haveo (7)) N Uy # @. Then, since
(from Proposition 9)A is stronglyw-stable, we have
o(r) € Ug C Ny(m). From this it follows that
d(o(); o (k) < w. U

Proof of Theorem 5: Lety € I'. From Theorem 4
we have that there exists a patlin S*(V, A)n Asuch
thatd(y; o (7)) < 8p. From Proposition 10 there exists
a pathsj such thatd(o (7); o (;)) < w. Then, by
the triangular inequality of the asymmetric Hausdorff
distance one geti(y; o (})) < w + do. O
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Notes

1. This has to be done fa@il the pointsp, not just the end-points
of A. In fact, new end-points can be created by the stabilization
procedure, which will be applied ta.

2. The proof for finite curves requires a somewhat complicated gen-
eralization of the decay and alignment conditions to constrain the
vector field in the vicinity of the curve end-points. The gener-
alization to curves with bounded curvature is trivial, given the
arbitrariness of the functiong (x) andez(x).
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