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The Legacy of George Zames

(January 7, 1934–August 10, 1997)

GEORGE ZAMES tragically passed away on August 10,
1997, after a brief illness. Some of George’s friends

have assembled this impressionistic overview of his seminal
contributions to the field of Systems and Control.

George Zames was born on January 7, 1934, in Lodz,
Poland. He was a child living with his parents in Warsaw,
Poland, when the bombing of that city on September 1, 1939,
marked the start of World War II. His family escaped Europe
in an odyssey through Lithuania, whose occupation by Soviet
tanks they witnessed, then through Russia, Siberia, followed
by a triple crossing of the Sea of Japan, eventually reaching
Kobe, Japan, early in 1941. (This episode, which involved
the extraordinary help of the Japanese consul to Lithuania,
Senpo Sugihara, is the subject of the bookThe Fugu Planby
M. Tokayer.) Later that year they moved to the Anglo-French
International Settlement in Shanghai, China, where they were
stranded by the outbreak of the war in the Pacific. Despite
the war, their sojourn in Shanghai was a happy one, and
George was able to attend school without interruption. The
family moved to Canada in 1948. In spite of losing a year
in the move, George entered McGill University at age 15. He
graduated at the top of the Engineering Physics class and won
an Athlone Fellowship for study in England. He gravitated to
the Imperial College of London University, where his advisors
included Colin Cherry, Denis Gabor, and J. H. Westcott. At
the suggestion of Colin Cherry he decided to explore Europe
and its skiing slopes, thereby taking two years to obtain his
Master’s degree.

In 1956, George began his doctoral studies at the Massa-
chusetts Institute of Technology (MIT), Cambridge. He was
briefly associated with Doug Ross at the Servomechanisms
Laboratory, where he was assigned the task of developing
computer graphics for Gordon Brown’s recently developed
computer-controlled milling machine which, at the time, was
the only one in existence. Eventually this program became
the APT programming language. He later switched to the
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Communications Theory Group of Norbert Wiener, Y. W. Lee,
and Amar Bose at MIT’s Research Laboratory of Electronics.
His doctoral thesis entitled, “Nonlinear Operations for System
Analysis” submitted for the Sc.D. degree at MIT forms the
foundation of much of his later work in Systems and Control.

In 1957, Niels Bohr arrived for a lecture tour of North
America and asked for a “typical American” student to guide
him around Cambridge. George was found to be appropriate
for this task, and after being asked by Norbert Wiener for
an introduction to Bohr, witnessed a remarkable argument
between the two men on the merits of research into the natural
sciences, such as Physics versus the sciences which focus on
man-made phenomena, notably Cybernetics.

After receiving the Sc.D. degree, George was appointed
Assistant Professor at MIT. The following summer he set out
for a vacation in Greece. On his way he stopped in Israel
and met Eva. He never got to Greece on that trip. They
were married two years later. They have two sons, Ethan and
Jonathan. Between 1961 and 1965, he moved back and forth
between MIT and Harvard, continuing his work on nonlinear
stability. In 1965, he won a Guggenheim Fellowship, which he
spent at the NASA Electronics Research Center in Cambridge
forming the nucleus of what was to become the Office of
Control Theory and Application (OCTA), with which P. L.
Falb, M. I. Freedman, G. Kovatch, H. J. Kushner, A. S.
Morse, A. E. Pearson, O. H. Schuck, W. A. Wolovich, W.
M. Wonham, and others later became associated.

In December of 1969 it was announced that NASA/ERC
would be closed and that in its place the Department of
Transportation (DOT) would open a new Transportation Re-
search Center. During the ensuing transitional period from
January to June in 1970, OCTA was asked to develop concepts
and a long-range research agenda aimed at dealing with the
growing air traffic problem in the United States. In response,
OCTA’s members, spearheaded by George, conceived the
concept of a reconfigurable runway as a means of reducing
congestion at airports. The idea was to employ a large, disk-
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shaped slab with embedded lights which could be used to
define runways in directions most suitable to existing weather
conditions. Although the idea never got off the ground, the
study of OCTA’s “circular runway” has persisted and grown.
For example, it is said that a report on the subject, prepared
by George, was hand carried by NASA/ERC’s director to
Washington for presentation to Congress with the aim of
defining the role of the new Transportation Research Center.
Actually, there was such a report authored by George which
was used in this manner, but it did not include the circular
runway concept. In any event, the study was certainly one of
George’s favorites.

The DOT Transportation Research Center opened in the
summer of 1970. For a year, George worked on transportation
planning with George Kovatch, authoring the 1971 20-year
Transportation Technology Forecast and the studies of Per-
sonalized Rapid Transit Systems (PPRT’s). George then took
an extended sabbatical at the Technion in Haifa, Israel. Here he
hosted Claude Shannon during Shannon’s visit to receive the
Harvey Prize. George’s interest in metric complexity theory
was stimulated by this event as well as interactions with the
Technion professors Jacob Ziv and Moshe Zakai.

In 1974, George returned to McGill where he was appointed
Professor of Electrical Engineering. He remained at McGill
until his untimely death this year. George was awarded the
Macdonald Chair of Electrical Engineering at McGill in 1983.
He has won several outstanding paper awards of the IEEE
Control Systems Society and won the IEEE Field Award for
Control Science in 1984. He is a Fellow of the Canadian
Institute for Advanced Research and the Royal Society of
Canada. He was awarded the Killam Prize, the most important
scientific award in Canada, in 1995 and the Rufus Oldenburger
Medal of the ASME in 1996.

The late 1950’s and 1960’s were a period of great creativity
and ferment for the systems and control field. With the seminal
contributions of Kolmogoroff and Wiener on Filtering and
Prediction and of Shannon through his creation of the new
science of Information Theory, the creative coupling between
abstract mathematics and electrical engineering was firmly
established. The influence of this research in the Systems
and Control field was beginning to be visible, perhaps most
significantly in the book by Newtonet al. [1].

Thomas Kuhn [2] in writing about the distinction between
normal science and scientific revolutions draws a parallel
between political revolution and scientific revolutions and goes
on to say “In much the same way, scientific revolutions are
inaugurated by a growing sense, again often restricted to a nar-
row subdivision of the scientific community, that an existing
paradigm has ceased to function adequately in the exploration
of an aspect of nature to which the paradigm itself had previ-
ously led the way. In both political and scientific development
the sense of malfunction that can lead to crisis is prerequisite
to revolution.” For the Systems and Control field the latter
half of the 1950’s was indeed a period of crisis in the sense
of Kuhn. Attempts to extend the theory of single-input/single-
output control systems to the multivariable situation were quite
unsuccessful. Internal instability in feedback control systems
was something that existing theories dealt with inadequately.

The extension of Wiener–Kolmogoroff theory to nonstationary
and multivariable contexts proved to be extremely difficult and
did not lead to computable solutions. The natural setting for
the solution of problems of guidance and control of aerospace
vehicles was certainly not the existing theory of control. It
is in this historical context that the state-space theory of
systems was born and dominated the field for many years. But
there was another half of the revolution, less visible perhaps
in those initial years, but equally creative, more enduring,
and whose influence we see even today. The roots of this
revolution go back to the work of Black, Nyquist, and Bode. It
originated in their work on Feedback Amplifier Design where
the concerns were the design of systems which are robust
against uncertainty, and feedback of appropriate signals was
shown to be most effective in guaranteeing such robustness.
Indeed, uncertainty and feedback have become inseparable
in viable control applications. The carrier of this tradition in
sharpened and highly original forms was undoubtedly George
Zames. His lifelong work was concerned with understanding
and quantifying the fundamental limitations and capabilities to
controlling systems in the presence of uncertainty by means
of feedback.

For Zames, there existed two kinds of systems: systems that
could be modeled precisely and those for which only imprecise
models were available. It was the second kind on which he
focused his attention. In his view, the external input–output
or black-box view was the preferred framework for modeling
systems where the models were necessarily uncertain because
there was no choice but to make approximations. The distinc-
tion between model uncertainty and measurement uncertainty
and the need for nonparametric nonprobabilistic models for
system uncertainty is one of Zames’s lasting contributions.

Zames understood that the idea of a state-space (inter-
nal) model was a highly model-sensitive concept and was
only appropriate as initial models of systems when they
were knowna priori to be precise, for example, those that
could be based on the availability of physical laws such
as Newton’s laws. On the other hand, for systems such as
feedback amplifiers consisting of many stages and built from
components which were imperfect, the input–output (external)
view was necessarily the correct one. In such systems, models
were approximate with possibly a coarse description of the
input–output approximation error available. Such errors are
difficult to reflect on a particular state-space description of the
system, since the order of the state-space model is a function of
these errors. State-space models come into the picture at the
level of computation and at the level of hardware–software
implementation of control systems. As George often said, the
processes of approximation in model building and obtaining
state-space models do not commute.

The idea that the deleterious effects of disturbances on
imprecisely modeled systems can be successfully overcome by
means of feedback led Zames to the question of understanding
the fundamental limitations of system performance. He real-
ized that the reduction of the deleterious effects of uncertainty
in systems by means of feedback was a special case of a more
general principle of complexity reduction via organization,
of which feedback was only a special case. Moreover, this
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complexity could be measured in terms of metric entropy
as defined by Kolmogoroff and the process of complexity
reduction led to organizing the system in the form of a
hierarchy with multiple feedback loops. This circle of ideas
was first articulated in George’s plenary lecture “Feedback,
Hierarchies and Complexity” at the 1976 IEEE Conference
on Decision and Control and was to be a recurrent theme in
his many subsequent lectures. Indeed, the founding of-
control theory was an expression of the intrinsic limitations to
linear system performance under feedback, as well as a sharp,
quantitative statement about the reduction of complexity by
means of feedback.

The seeds of George’s lifelong work were planted in his
doctoral dissertation [3]. It is a remarkable document for
several reasons. First, it is one of the most creative examples
of the use of mathematics, in this case functional analysis,
to the study of engineering systems, notably feedback control
systems. George got the idea of using functional analysis (in
particular the contraction mapping principle) from a graduate
course in Analysis at MIT taught inspirationally by Isadore
Singer. The use of this mathematics for the study of intercon-
nection of systems, definition of the gain of a system, existence
and uniqueness of solutions of feedback systems, and giving
a precise definition of the physical realizability of systems
is startlingly original. The ideas of Chapter VI of this thesis
were completed in a later paper [4]. In this paper, he posed
the following question: “What is a good enough mathematical
model of a physical system—a model that does not lead to
impossible results in feedback problems?” In this work he
defined the concepts of “generalized delay” and “generalized
attenuation,” and showed that such properties are at the heart of
“system realizability,” and moreover, “that they are necessary
in order to avoid paradoxical and perplexing behavior of
models in feedback.” This was the first fundamental treatise on
the subject of what we now call well-posedness of feedback
systems.

George’s thesis contains other highly original material, such
as the idea of global linearization of nonlinear systems, a
theorem about the invertibility of an operator , where
is a bandlimiter and is a memoryless nonlinear operator with
bounded slope, and the realization of this inverse by means of a
feedback system. Part II of his thesis, “Statistically Orthogonal
Operators Applied to Optimum Filtering,” does not form part
of the technical report cited above. A Bayes procedure for
obtaining optimum nonlinear filters for processes admitting a
Wiener expansion is presented here. This research, apparently
not well known, was published in part as “Bayes Optimum
Filters Derived Using Wiener Canonical Forms” [5]. This is
apparently one of the earliest papers to embrace the Bayesian
viewpoint in nonlinear filtering.

Zames’ fundamental work on the stability of nonlinear
time-varying feedback systems was first published in “On the
Stability of Nonlinear Feedback Systems” [6] and in a more
complete form in the two part-paper “The Input-Output Sta-
bility of Time-Varying Nonlinear Feedback Systems” [7]. The
theory of input–output stability receives almost a definitive
treatment in these two papers. The introduction of extended
Normed Linear Spaces, the Small Gain Theorem, the Passivity

Theorem, the Circle Criterion in input–output form, and the
use of multipliers can all be found in these two papers. At the
end of Part I of this paper, Zames writes “One of the broader
implications of the theory developed here concerns the use of
functional analysis for the study of poorly defined systems. It
seems possible, from onlycoarse information about a system,
and perhapseven without knowing details of internal structure,
to make assessments of qualitative behavior,” a refrain which
was to creatively obsess George throughout his scientific life.
George was to continue his work on stability theory for the
next few years, some of it in collaboration with P. L. Falb
and M. Freedman, but the principal ideas were laid out in the
above two papers [6], [7].

In the mid-1970’s, George wrote two important papers
with his doctoral student N. A. Schneydor on the subject
of augmenting stability and quenching of jump phenomena
by introducing dither (high frequency signal) into a nonlinear
system where the nonlinearity satisfies a Lipshitz condition [8],
[9]. In many ways, these two papers represent a culmination
of George’s work on input–output stability and well-posedness
of nonlinear systems initiated in his thesis. In these papers, a
notion of structural stability is introduced, and the feedback
system is studied via an approximately equivalent nonlinear
system with a smoothed nonlinearity. Zames gives a creative
physical interpretation of the idea of mollifiers used in analysis
and partial differential equations. He shows that the effect
of stability augmentation and quenching can be quantitatively
captured in terms of a narrowing of the nonlinear incremental
sector. These ideas should be better known than they appear
to be. The self-linearizing effect of introducing dither in a
nonlinear system deserves further study.

With the publication of these papers on stability and qual-
itative behavior of nonlinear systems, a line of research that
began in his thesis came to an end. It was characteristic of
Zames’s work that problems that he worked on were deep;
they required long periods of gestation, after which almost
definitive solutions to the problems were obtained. Publica-
tions for lengthening one’s publication list was definitely not
a priority for George.

How much information about a system’s input–output be-
havior is needed to control it to a specified accuracy? How
much identification is required if only rough bounds on
time and frequency responses are availablea priori? How
does one model plant uncertainty? What are the limitations
to controlling a system to arbitrary accuracy by means of
feedback? How does one make precise the statement that
feedback reduces complexity? These were the questions that
were to dominate George’s research from the mid-1970’s to at
least the mid-1980’s. An early glimpse of George’s thinking
can be found in his paper “Feedback and Complexity” [10].
The concept of complexity of systems was made precise in the
paper “On the Metric Complexity of Causal Linear Systems:-
Entropy and -Dimension for Continuous Time” [11] by using
Kolmogoroff’s notion of metric entropy and obtaining bounds
for metric entropy for linear systems satisfying an exponential
bound. It is interesting to note that this paper is in the same
spirit as that of work by Valiant, Vapnik, and others on the
learnability of concept classes.
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If Zames were to be known for one paper which established
him as one of the most original and influential thinkers
in the Systems and Control field, it would have to be his
paper “Feedback and Optimal Sensitivity: Model Reference
Transformations, Multiplicative Seminorms and Approximate
Inverses” [12]. It introduced for the first time what was to
be called -control theory, by restricting attention to causal
linear time-invariant bounded maps from to , which,
by the Foures–Segal theorem, is in one-to-one correspondence
with operators which are multiplications by functions.
This paper was many years in the making and was a result
of George’s dissatisfaction with existing indicators of perfor-
mance of feedback systems, especially as it relates to attributes
of systems which impose fundamental limitations to feedback
control performance. He chose to illuminate this by consider-
ing input–output stable systems and adopting sensitivity as an
appropriate performance measure. As a matter of fact, George
liked to separate the issue of stability from performance. He
viewed stabilizing the system as a preproblem, almost an issue
of well-posedness. He believed that no satisfactory theory
of synthesis of control systems could be developed without
better performance indicators. The deeper clarification of the
concept “feedback reduces complexity” had to be substantiated
in limited contexts first.

Besides the problem formation, this paper contains highly
original results. Inspired by earlier work of Bode on the
limitations to sensitivity reduction by feedback in the presence
of R. H. P. zeros, Zames proved that for minimum phase
plants the sensitivity could be reduced to zero over any finite
bandwidth. Finally, there is the implicit statement in this
paper that feedback compensation is essentially the issue of
constructing an approximate inverse by feedback in a suitable
topology. It seems that Zames was returning to a theme which
he first articulated in his doctoral thesis. The origins of his
later work on learning and adaptation were also to be found
in this paper. If accurate information about R. H. P. zeros is
not availablea priori, how does one obtain this information
through identification and learning? Is this a situation where
adaptation is required?

The introduction by Zames of -control theory opened a
new field of study and has put robust control onto center stage
for the past decade and a half. There are hundreds of papers
on the subject, workshops, sessions at conferences, MATLAB
toolboxes, and numerous books. The original problem posed
by Zames was to minimize the sensitivity function with respect
to the norm. He realized that this was an interpolation
problem, and this led to the introduction of powerful operator-
theoretic methods into control based on interpolation theory
of analytic functions on the unit disc. He collaborated with B.
Francis, C. Foias, W. Helton, S. K. Mitter, and A. Tannenbaum
in developing the subject further. The fact that prominent
operator theorists and functional analysts became interested in
systems and control has led to a wonderful cross-fertilization
between mathematicians and control theorists, a process still
very much in progress today. Since George’s initial insight,
a number of solutions and extensions of have been
proposed and worked out. The whole question of the use of
various norms in control problems came to the forefront from

this work, and because of this, today the systems engineer can
choose to employ analysis and synthesis techniques with a va-
riety of norms including , (classical LQG optimization),
and of course .

The enterprise had another important consequence,
which was quite unexpected—the solution to the problem of
the computation of the gap metric on the space of systems.
In his quest to understand systems, Zames viewed the graph
as the primary object, with state-space realizations, integral
representations, and transfer functions being but convenient
tools. This was particularly important for unstable systems
where many of the standard input–output concepts resulted
in restrictive analysis and synthesis methods. The graph is
the collection of all possible input–output pairs that can be
generated at the system ports. Model uncertainty can then be
understood via set-theoretic containment of the graph. From
this vantage point George asked the questions “What types of
uncertainty can be tolerated without destroying closed-loop
stability” and “In which sense should plant uncertainty be
small in order to achieve a small uncertainty in the closed
loop?” These questions turned the dominant viewpoint around,
for until that time the prevalent view was to postulate a precise
model for uncertainty and ask, e.g., for the maximal interval
of parameter variation that can be tolerated. Instead, George
asked for a suitable topology based on which robustness and
well-posedness questions can be formulated.

At the Allerton Conference in October 1980, Zames, with
his student Ahmed El-Sakkary, put forward a deeply original
approach to uncertainty in feedback systems based on these
ideas [13]. They identified the natural topology for studying
questions of robustness in feedback systems. They went on
to characterize the tolerable open-loop errors in terms of a
metric defined as the “gap” or “aperture” between the graphs
of operators in Hilbert space and use it to quantify distances
between systems and to show that all metrics which are “con-
tinuously robust” in the above sense are equivalent to the gap
metric. The introduction of a topology for robustness questions
provided a unifying framework within which other approaches
to robustness could be considered, and where questions of
well-posedness and continuity of design techniques can be
addressed. In fact, their approach solved a major puzzle of
how to deal with possible instability of the open loop while
avoiding an overly structured model for uncertainty.

It is striking that Zames was developing theory and
ideas using the gap metric independently at roughly the same
time, since the two theories became inextricably linked in
a profound manner that still has major ramifications for the
whole subject of system uncertainty and feedback. Indeed,
it turned out that the so-called two-block problem was
exactly what was needed to compute the gap, and that the proof
was based on the operator theoretic tools that George loved,
in this case the Sz.–Nagy–Foias Commutant Lifting theorem.
The circle was closed, the two theories were united, and a
completely general but computable theory for robust feedback
control was at hand at last! The richness of this approach is
now being extended to nonlinear systems, and the vision of
George is still far from being completely worked out. This
work of George’s has all of the hallmarks which defined his
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career: incredible intuition and insight, a deep understanding
of feedback, and the unfailing ability to perceive the correct
mathematical tools necessary for the solution to the problem
at hand.

One should note that the popular four-block formulation
was not the solution of the optimal robustness problem in the

framework, but only a compromise solution. In fact, one
of George’s last main projects was to obtain a mathematical
solution to this previously unsolved problem with his student
James Owen [14].

In the last few years before his untimely death, George’s
main research preoccupation was to give a sharp definition
of learning and adaptation in the nonparametric input–output
(external) setting. Indeed, this constitutes a major open prob-
lem in the systems and control field. The question George
asked himself was: when is feedback insufficient for robust
reduction of uncertainty leading to satisfactory performance
of the closed-loop control system? It is precisely in this
situation that one has to “adapt” the controller by appropriate
identification of the systems for which only an uncertain model
is available. Is it possible to decidea priori when feedback
is insufficient and one has to resort to adaptation? In light
of his earlier work, one knows that for arbitrary sensitivity
reduction in linear time-invariant systems if one does not
have precise information about the right half-plane zeros, then
these zeros have to be robustly identified on line in order to
exercise effective control. This is a situation where adaptation
is required. George wanted to quantify this by evaluating the
best performance that can be achieved using feedback on
the basis ofa priori knowledge and then demonstrating that
by learning about the plant through appropriate identification
and using control based on thisa posteriori knowledge the
performance could be improved. This performance gain was
a result of adaptation. In effect, adaptation is called for in
reducing model uncertainty through proper identification. An
important concept in this work is the principle that optimal
(adaptive) feedback performance is an increasing function
of information where information is represented by sets of
uncertainty.

In the 1960’s, a theory of stochastic adaptive control with
parametric uncertainty was developed by Bellman, Feldbaum,
Florentin, and others by using Bayesian analysis and dynamic
programming. This approach leads to so-called “dual control”
problems. For additive cost functions, one can show under
reasonable hypotheses that the control is a nonlinear function
of the conditional distribution of the states and parameters
given the past observations and control. Updating the con-
ditional distribution leads to a nonlinear filtering problem
which in general is infinite dimensional. Even when the joint
state-parameter process is Gaussian, not much can be said
qualitatively about the behaviors of the optimally controlled
system. Much subsequent work has been done in the para-
metric situation, and a well-developed asymptotic theory of
stochastic adaptive control exists today [15]. George was,
however, concerned with representations of model uncertainty
which usually will have a parametric part and will also contain
a residual unmodeled nonparametric part. This nonparamet-
ric part will not be naturally modeled probabilistically, and

George was interested in the question of robust identifica-
tion of the parametric part in the presence of unmodeled
nonparametric uncertainty. In his view, a resolution of this
problem was a prerequisite for a satisfactory theory of adaptive
control. George, together with some of his graduate students,
did important preliminary work on this subject. Some of his
ideas are outlined in “Toward a General Complexity-based
Theory of Identification and Adaptive Control,” [16] and in his
forthcoming paper in a special issue ofSystems and Control
Letters. Sadly, he is not here to complete this line of research.

Besides his family, the search for fundamental knowledge
and understanding, a passion for research, and a love for
intellectual debate be it on feedback control, Chomskyan
linguistics, or the Vietnam War, are the things that George
cared for most in life. He lived a simple life, trying to shield
himself from the unnecessary distractions and complexities of
the modern world so that he could remain faithful to his beliefs
and convictions. At a time when intellectual values are being
systematically eroded in universities, we hope George Zames
will be remembered as much for the values by which he lived
his life as for his research contributions.

On a more personal note, for those of us who were fortunate
enough to know George for a long time, certain memories
often come to mind: his electrifying presentation of the Circle
Criterion at the 1964 National Electronics Conference in
Chicago, IL, and the astonishing gracefulness he demonstrated
while dancing native style at a workshop in Lake Ochrid,
Yugoslavia, and while skiing down the slopes of Mt. Mansfield
in Stowe, VT. We will remember the spark-flying debates
we had with him, his verbalized struggle in the early 1970’s
to crystallize his ideas about feedback, and his devilish use
of a laser which he would point from his Back Bay apart-
ment window to the street below to confound unsuspecting
passersby.

We also know of his love for his family: his two sons Ethan
and Jonathan, and of course his wife Eva. Eva Zames was truly
George’s best friend and intellectual partner who shared and
delighted in their mutual life’s adventure together. George was
fond of saying that he lived a charmed life, and the foundation
of that life was his family. Those of us who visited George
during his last days in the hospital could only be deeply moved
by the love and support shown to him by his family. George
himself did not show any fear of death. Indeed, when he
learned about his condition, his main concern was providing
for Eva and his two sons. About himself, he said that he had
lived a full life and could ask for nothing more.

Our dear friend and mentor, George Zames, Zichrono Lev-
racha (of Blessed Memory), will be sorely missed.

SANJOY MITTER, Fellow, IEEE
Massachusetts Institute of Technology
Cambridge, MA, USA
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Minneapolis, MN, USA
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