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Sampling of Images for Efficient
Model-Based Vision

Mohamad Akra, Louay Bazzi, and Sanjoy Mitter, Fellow, IEEE

Abstract—The problem of matching two planar sets of points in the presence of geometric uncertainty has important applications in
pattern recognition, image understanding, and robotics. The first set of points corresponds to the “template.” The other set
corresponds to the “image” that—possibly—contains one or more deformed versions of the “template” embedded in a cluttered
image. Significant progress has been made on this problem and various polynomial-time algorithms have been proposed. In this
article, we show how to sample the “image” in linear time, reducing the number of foreground points n by a factor of two-six (for
commonly occurring images) without degrading the quality of the matching results. The direct consequence is a time-saving by a
factor of 2

p
-6

p
 for an O(n

p
) matching algorithm. Our result applies to a fairly large class of available matching algorithms.

Index Terms—Sampling, model-based vision, matching under uncertainty, approximate matching, image understanding.
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1 INTRODUCTION

HE problem of approximate matching of two sets of
points T and S has been addressed by researchers from

various fields including Pattern recognition, Image Under-
standing, Computational Geometry, and Robotics. T may
represent an ideal 2D or 3D model (template) of an object
which one is trying to detect in a 2D image S. Due to sen-
sory errors, T is never exactly replicated in S. Instead,
points of T are disturbed by some local perturbation. Fur-
thermore, T may be subject to some kind of deformation
such as scaling, rotation, translation, or affine transforma-
tion. In general, we denote by $* the space of such allow-
able transformations. Two related approaches of the ap-
proximate matching problem have been reported in the
literature. The first is to characterize the mappings from T
to (subsets of) S that are close to elements in $*, also called
the correspondence space approach. The other approach is
to characterize the transformations in $* that are close to
mappings from T to (subsets of) S, also called the transfor-
mation space approach.

Several polynomial-time algorithms have been proposed,
handling various cases of $*. In what follows, we briefly
survey the prior work denoting the size of the template T � m
and the size of the image S � n. We present some of the re-
search efforts that we feel are related to our work. In par-
ticular, we will be concerned with articles that do not pose
the restriction that m = n (e.g., Baird [1]), and that use the
locations of the foreground points as features, rather than
using line segments lengths or orientations (e.g., Yi [10]). For
every research work we cite, we specify whether the models

used are 2D or 3D, whether the correspondence space ver-
sion or the transformation space version is considered, the
nature of the bounded error model, the space of allowable
transformations, and the reported running time complexity.

Cass [2] considered the correspondence space version in
the case of 2D models, where $* includes translation and
rotation. He showed that approximate matching can be done
with a crude upper-bound complexity of O(m6n6), thereby
refuting a long pending claim that this problem is exponen-
tial. Basing his analysis on a circular error model, Cass enu-
merated all the maximal geometrically consistent match sets.

Huttenlocher [7] (see also [9]) addressed the transforma-
tion space version for 2D models when $* includes only
translation and when the error model is square. He was
able to do matching in O(m2n2a(mn)) time.

Breuel [6] enlarged the space of allowable transformations
considered in [2] to include scaling. Looking at a convex po-
lygonal error model (of which the square error model is a
special case), Breuel provided an O(m4n4) average case algo-
rithm for approximate matching. Breuel’s approach belongs
to the transformation-space class of algorithms.

Later, Cass [4] considered a transformation-version ap-
proach to match 3D templates in the case of a square error
model and $* consisting of rigid motion and scaled ortho-
graphic projection. He managed to do matching in
O(m4n4log n) time. Notably, his algorithm generates some
nonfeasible solutions in addition to all the feasible ones.

But matching is really recognition in the geometric sense,
where the features are the locations of the foreground
points. In recognition problems, it is customary to reduce
the complexity by reducing the number of features. Conse-
quently, it is natural to ask whether or not it is possible to
disregard some foreground points (thereby reducing n)
from an image S without affecting the matching results.

This paper answers this question in the affirmative. It is
possible to replace an image by a subset of it, whose union
of error regions is the same as that of the original image,
without disqualifying the matching results. This replace-
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ment can be done in time linear in the number of pixels in
the image, thereby throwing a considerable fraction of the
foreground points. Experimentally, a reduction in n be-
tween two and six was recorded, with an implied time
savings between 2p and 6p for an O(np) matching algorithm.
We provide in the Appendix a list of figures showing edge-
detected images that typically arise in model-based vision.
We illustrate how sampling those images results in a no-
ticeable reduction of foreground points.

In the rest of the article, we formulate the recognition
problem in a framework generic enough to include all of
the above cited work. We then identify the conditions that a
sampling process has to satisfy in order to be of use in the
above framework. Based on these conditions, we design a
sampling algorithm. We finally conclude by reporting a set
of illustrative experiments.

2 RECOGNITION PRELIMINARIES

Let ; be the space whose subsets are the templates, typi-
cally R

2 for 2D models or R
3 for 3D models. Let < be the

space whose subsets are the images, usually Z
2 when the

image is a raster image, or—less commonly—R
2, and let d

be a metric over <. In the context of the cited research, d is
the L2 metric for the case of a circular error model, while it
is the L� metric for the case of a square error model.

Let $* be the space of allowable transformations, a sub-
set of the set of all the mappings from ; to <. A mapping f
from a template T to < is called a transformation of T. We
denote by '(T) the space of all the transformations of T
and by rT a mapping from '(T) � '(T) to R satisfying

ρ α α
αT T

f f d f f1 2 1 2, max ,2 7 0 5 0 52 7=
∈

.

It is straightforward to show that rT is a metric norm over '(T).
Note that rT is defined on '(T) � '(T). Therefore, when we

need to measure the distance between two functions f1 and f2
that may be defined on sets larger than T, we must restrict
them to T. We will denote by f|T the restriction of f to T.

We next define the set of all allowable transformations
that are close to matchings. In the literature on model-based
vision, those transformations are termed feasible.

DEFINITION 1. Let T be a template, S be an image, e > 0 be a
bound on the noise, and k < |T| be a bound on the number of
unmatched points in T. We define A T Sk

e ,2 7, the set of feasible
transformations, to be

A T S A U Sk

U T U T k
e e, ,

/

2 7 2 7=
⊂ ≥ −
U ,

where

Ae(U, S) = {h ¶ $*/$f : U� S where rU(f, h|U) < e}.

Observe that the definition allows for noise, occlusion,
and spurious features.

Now, we define the set of feasible matchings, in the lit-
erature on model-based vision, those matchings are termed
feasible or geometrically consistent.

DEFINITION 2. Let T be a template, S be an image, and e > 0. We
define Me(T, S), the set of feasible matchings, to be

Me(T, S) = f : T� S/$h ¶ $* where rT(f, h|T) < e}.

Note that this definition allows for noise and spurious fea-
tures only. Extending the definition to allow for occlusion is
simple but analytically messy, due to the fact that the resulting
set will contain functions not sharing the same domain.

The set of feasible matchings may be exponential in size
in terms of m, the number of points in the model. On the
other hand, the set of feasible transformations is infinite.
Rather than directly handling the complexity of these two
sets, we turn our attention to representative subsets of
them. Checking if a subset is representative may be per-
formed by resorting to the concept of covering, which we
define next.

DEFINITION 3. Let T be a template, A and B be subsets of '(T),
and e > 0. A is said to be an e-covering of B if A ´ B and "g ¶ B,
$f ¶ A such that rT(f, g) < e.

In other words, the e-neighborhoods of the elements in A
cover B. Now we are in a position to formalize the objective
of the approximate matching problem in a rather general
framework.

Let T be template, S be a image, k < |T| be the maxi-
mum number of points in T that are allowed to be un-
matched to points in S, and e, d > 0, where e is a bound on
the noise. The objective of the transformation-space version
may be stated as: Compute C, a d-covering of A T Sk

e ,2 7. In
contrast, the objective of the correspondence-space version
may be stated as: Compute C, a d-covering of Me(T, S).

Note that we are not allowing for occlusion in the corre-
spondence-space version. The motivation is notational and
technical simplification.

Depending on the recognition algorithm, d may be pre-
specified or imposed by the algorithm. But in all cases, d
should be relatively small. Note also that the circular error
model corresponds to d being L2, the square error model
corresponds to d being L�, and the no-occlusion case corre-
sponds to k = 0.

Under the assumption that the features of interest are
points, the above settings are general enough to be tailored
to various matching approaches. Yet, they are necessary
and sufficient for algorithmic correctness as we argue next.

Specifically, we require C—the computed set of any
matching algorithm—to form a d-covering of the feasible
transformation (matching) space, for some relatively small
d. Not fulfilling this requirement, the algorithm is necessar-
ily leaving correct feasible transformations (matchings) that
are not d-close to any of the computed transformations
(matchings), and hence not accounted for in the output.

On the other hand, it is sufficient for an algorithm to
enumerate only a d-covering of the feasible transformation
(matching) space for some relatively small d due to the fol-
lowing reasons. If one were using the correspondence space
approach, it would be redundant to enumerate all of the
potentially exponential feasible matchings as some of them
may just correspond to the same transformation. Such a
case occurs, for instance, when trying to match a template
to an image containing a higher-density version of this
template. Therefore, one is satisfied with a representative
part; i.e., a subset that does not contain lots of matchings
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that are close to each other, yet guarantees that any match-
ing in the original set is represented by (i.e., close to) a
matching in the computed set. Formally, one would be sat-
isfied by computing a covering of the set of feasible match-
ings. A similar “sufficiency” argument applies to the feasi-
ble transformation space, with the added justification that
the space is infinite in size.

In the next section, we define the sampling criteria in a
way that preserves the value of the matching algorithm
output as long as the objective of the algorithm is consistent
with the above formalization of the problem.

3 SAMPLING CRITERIA

In the following, we denote by Be(p) the e-neighborhood of
a point p in X (with respect to the metric d). For a set of
points U ´ <, we extend the definition to Be(U), where

B U B
U

e e0 5 0 5=
∈

α
α
U .

DEFINITION 4. Let S be an image and e > 0. An image P is said to
be an e-sampling of S if P ´ S and Be(P) = Be(S).

Note that sampling differs from covering in two aspects.
First, sampling uses = rather than ´. Second, sampling is
performed on sets of points, while covering is performed
on sets of functions.

Recall that we defined the transformation version of the
model-based vision problem as the task of covering the set
of feasible transformations. We show below that if we ap-
propriately sample the image, then a solution of the sam-
pled version is also a solution of the original problem.

THEOREM 1. Let T be a template, S be an image, k � |T|, and
e > 0. If P is an e-sampling of S, then A T P A T Sk k

e e, ,2 7 2 7= .

By the sampling definition:

1)�P ´ S.
2)�Be(P) = Be(S).

The fact that P ´ S implies that A T P A T Sk k
e e, ,2 7 2 7⊂ . So, we

only have to show that A T S A T Pk k
e e, ,2 7 2 7⊂ . Consider any

h A T Sk∈ e ,2 7. By definition, there exists U ´ T and f : U � S,

such that |U| � |T| - k and rU(f, h|U) < e. rU(f, h|U) < e
means that h(b) ¶ Be(f(b)) for each b ¶ U. Consider any
b ¶ U, we have h(b) ¶ Be(f(b)) ´ Be(S) = Be(P). In other
words, there exists a g ¶ P, such that d(h(b), g) < e. This is
true for any b ¶ U, so there exists g : U � P such that

rU(g, h|U) < e. It follows that h A T Pk∈ e ,2 7 .
Let us move to the correspondence version of the

problem. Recall that we defined the correspondence ver-
sion of the model-based vision problem as the task of cov-
ering the set of feasible matchings. In the following theo-
rem, we show that if we appropriately sample the image,
then an acceptable solution of the sampled version is also
an acceptable solution of the original problem, albeit with
a slightly different covering radius. The new covering ra-
dius is greater by 2e, which is considered a slight differ-
ence since e—the recognition error—is set to a small value.
More formally, see Theorem 2.

THEOREM 2. Let T be a template, S be an image, k � |T|, and
e > 0. If P is an e-sampling of S, then a d-covering of Me(T, P)
is a (2e + d)-covering of Me(T, S).

Let A be a d-covering of Me(T, P). We show that A is a
(2e + d)-covering of Me(T, S). First, we have

A ´ Me(T, P) ´ Me(T, S),

where the first inclusion follows from the definition of A
and the second from the fact that P ´ S. Hence, we only
need to show that for each g ¶ Me(T, S), there exists f ¶ A,
such that rT(f, g) < 2e1 + d.

Consider any element g of Me(T, S). By definition, there

exists t ¶ $*, such that rT(g, t|T) < e. This means that

t A T S∈ e
0 ,2 7 . But, according to the previous theorem,

A T S A T Pe e
0 0, ,2 7 2 7=  because P is an e-sampling of S. So,

there exists h : T � S such that rT(h, t|T) < e. This means
that h ¶ Me(T, S). But, P is a d-covering of Me(T, S). So, P

must contain an element f with rT(f, h) < d. Summing it up,
we conclude that P contains an element f satisfying

rT(f, g) � rT(f, h) + rT(h, t|T) + rT(g, t|T) < d + e + e,

which completes the proof.
To put things in perspective, we assumed that the features

of interest are point sets. We considered two versions of the
model-based vision problem, the transformation space ver-
sion and the correspondence space version. We indicated that
previously reported research work falls in either one of those
two versions. We then formalized, in a rather general setting,
the criteria of an acceptable solution. We argued that an ac-
ceptable solution should consist of a covering (whose radius
is relatively small) of the space of feasible transformations (or
matchings). Then, we defined sampling and showed that if it
is used to reduce the size of the image the quality of the rec-
ognition output will not be affected. The solution that results
from running the matching algorithm on the sampled image
will either satisfy the same acceptance criteria as the results
from running it on the original image (in the transformation
space version) or a practically equivalent criteria (in the cor-
respondence space version).

In the next section, we present a sampling algorithm. The
ideal objective is to compute a sampling that is optimal in
terms of the resulting number of points. To reduce the com-
putational complexity of the problem, however, we will be
satisfied with a locally optimal solution that we define next.

DEFINITION 5. Let S be an image and e > 0. P is said to be a lo-
cally optimal e-sampling of S if P is an e-sampling of S, and P
is the only e-sampling of P.

4 SAMPLING ALGORITHM

In this section, we present a general version of the sampling
algorithm that computes a locally optimal sampling of an
image S and that applies to a large class of error models.
Next, we turn our attention to the case of a square error
model and conclude by adapting the sampling algorithm
for the case of L� metric and images that are subsets of Z2.
The algorithm turns out to run in time linear in the number
of pixels in the image.
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THEOREM 3. Let S be an image and e > 0, and consider the fol-
lowing algorithm.

Then SAMPLE computes P, a locally optimal e-sampling of S.

Let a1, a2, ¤, an be the elements of S in the order consid-

ered by the loop in line 2. Let Pi be the value of P in line 3

for a = ai, and let Pn+1 = P. Clearly,

P = Pn+1 ´ Pn ´ ¤ ´ Pi ´ ¤ ´ P1 = S.

We use induction to prove that Be(Pi) = Be(S) "i = 1 ¤ n + 1.
Obviously, Be(P1) = Be(S). Now assume that Be(Pi) = Be(S)

for i = k. If Be(ai) ³ Be(Pi - {ai}), then Pi+1 = Pi. Else if Be(ai) ´
Be(Pi - {ai}), then

B P B P

B P B

B B P

B P

i i i

i i i

i i i

i

e e

e e

e e

e

+ = −

= − ∪

⊂ −

=

12 7 < A3 8
< A3 8 2 7
2 7 < A3 84 9

2 7

α

α α

α αbecause

It follows that Be(Pi) = Be(S) for i = k + 1. So for i = n + 1, we
obtain Be(P) = Be(S). Since P ´ S, we conclude that P is an e-
sampling of S.

To show that P is locally optimal, assume that there exists
P�, a proper subset of P, that is also an e-sampling of S. Let i
be the index of an element a in P - P�. Then, according to
Line 3, Be(a) ³ Be(Pi - {a}). But P� ´ Pi - {a}, so Be(a) ³ Be(P�).
Hence, Be(P�) ¡ Be(S). As a result, P is the only e-sampling of
P. In other words, P is a locally optimal e-sampling of S.

From here onwards, we turn our attention to the case
where <�= R2 and d = L�. Namely, for p and q in <

d(p, q) = max{|px - qx|, |py - qy|}.

This is the case corresponding to research efforts that use
the square error model as in [4]. The following lemma is
used in Theorem 5, which is our roadmap to move from the
general version of the sampling algorithm to the more spe-
cific version handling the case of the L� metric.

LEMMA 4. Let S be a finite subset of Z2, t ¶ Z+/2, and h ¶ (0, 0.5).
Let q ¶ R2, such that Bh(q) ´ Bt(S). Then there exists b ¶ S
such that Bh(q) ´ Bt(b).

See the Appendix for the proof.

THEOREM 5. Let S be a finite subset of Z2, a ¶ Z2, and e > 0.
Then the following statements are equivalent,

1)� B B S2 2 2 2e e/ /α0 5 0 5⊂ .

2)� B B Se eα0 5 0 5⊂ .

3)� B B Se eα0 5 1 6 0 5 1 6∩ ⊂ ∩Z Z/ /2 22 2 .

See the Appendix for the proof. The previous theorem is
used next to customize the sampling algorithm—presented
in Theorem 3—for the L� metric and images that are subsets
of Z

2. The customized version computes a locally optimal
sampling in time linear in the number of pixels in the image.

THEOREM 6. Let S be a finite subset of Z2. Let N and M be the
respective height and width of the smallest enclosing rectangle
of S. Let e > 0. Then, a locally optimal e-sampling of S can be

computed in O(MNÑ2eá2).

Without loss of generality, we may assume that the
smallest enclosing rectangle of S is [1, N + 1] � [1, M + 1].

Let 6[1 ... N + 1] [1 ... M + 1] be the binary matrix repre-
senting S, where 6[m] [n] = 1 if the point m � n ¶ S and
6[m] [n] = 0 elsewhere.

Consider the condition in Line 3 of SAMPLE in Theorem 3:

Be(a) ´ Be(S - {a}).                                 (1)
According to Theorem 5, we know that for b ¶ Z2, Be(b)

´ Be(S) if and only if Be(b) > (Z/2)2 ´ Be(S) > (Z/2)2. So, (1)
is equivalent to

Be(a) > (Z/2)2 ´ Be(S - {a}) > (Z/2)2.           (2)

Let i = ax, j = ay, and e = −2 1 2e2 7/ . Let A[1 ¤ 2(M + 2e)]

[1 ¤ 2(N + 2e)] be a matrix defined by

A[k][l] = card{a ¶ S/(k/2 - e) � (l/2 - e) ¶ Be(a)}.
Accordingly, (2) is equivalent to A[k][l] > 1, for k = 2i - 1, ¤,
2(i + e) - 1, l = 2j - 1 to 2(j + e) - 1. Therefore, the following
realization of SAMPLE computes a locally optimal e-
sampling of S in O(MNÑ2eá2).
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Note that all the entries of A are assumed to have been
initially set to zero. When e is given or assumed to be
bounded (as is the case in model-based vision), the above
running time becomes O(MN). Consequently, the algorithm
becomes linear in the terms of the number of pixels in the
image.

Finally, images that are subsets of Z2 exhibit a nice prop-
erty under sampling. This property is clarified in the fol-
lowing corollary (of Theorem 5). In words, it implies that
the output of the sampling algorithm changes only at val-
ues of e that lie on the Z/2 grid.

COROLLARY 7. Let S be a finite subset of Z2 and e > 0. Then P is
a (Ñ2eá/2)-sampling of S if and only if P is an e-sampling of S.

Because e e≤ 2 2/ , it is clear that if P is an e-sampling
of S, then P is a 2 2e / -sampling  of S. We still have to
prove the converse.

Let P be a 2 2e / -sampling  of S, then P ´ S and
B S B P2 2 2 2e e/ /0 5 0 5= . Let a be an element in S, then we

have B B P2 2 2 2e e/ /α0 5 0 5= . According to the previous theo-

rem, we obtain B B Pe eα0 5 0 5= . As a result, B S B Pe e0 5 0 5⊂ . On
the other hand, B P B Se e0 5 0 5⊂  because P ´ S. Consequently,
B S B Pe e0 5 0 5=  and, therefore, P is an e-sampling of S.

5 EXPERIMENTAL VERIFICATION

In Section 2, we argued that we should sample the image at
a value e equal to the error bound, in order to guarantee
preservance of recognition information.

In this section, we use the previous algorithm to sample
several images at different values of e (under the L� metric).
We observe the effect of e on the saving factor, which we
define to be the ratio of the number of points in the original
image to that of the sampled one.

We consider four images that were subject to edge de-
tection. Those images are typical of the ones that arise in
model based vision and are representative of the kind of
savings that one may achieve by sampling. The results of
the sampling algorithm are reported in Table 1.

While the saving factor can be as low as one (when the
image is already sampled), and as high as (Ñ2eá - 1)2 (when
the image is a large black rectangle), these cases are not
common in practice. Commonly occurring cases are more
like the ones displayed in Fig. 1, Fig. 4, and Fig. 7. Their
sample versions are shown in Fig. 2, Fig. 3, Fig. 5, Fig. 6,
Fig. 8, Fig. 9, and Fig. 10. For such cases, it is justifiable to
state that the saving factor falls—roughly speaking—in the
range of two to six. Finally, we emphasize that a saving
factor of k results in a time gain of kp for an O(np) matching
algorithm, where n is the number of points in the image.

Fig. 1. Original image.

Fig. 2. Sampling for e equals 1.5.

Fig. 3. Sampling for e equals 2.0.

Fig. 4. Original image.

TABLE 1
SAMPLING OF THREE IMAGES: SAVINGS FOR DIFFERENT e

e Kitchen Chair Telephone
1.5 2.46 2.23 2.07
2.0 3.47 3.13 2.69
3.0 5.78
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6 CONCLUSION

In this article, we presented a general formalization of the
model-based vision problem or the problem of matching
with geometric uncertainty. Based on this formalization, we
designed a powerful tool to reduce the number of fore-
ground points, thereby speeding up a large class of match-
ing algorithms.

APPENDIX

LEMMA 5. Let S be a finite subset of Z2, t ¶ Z+/2, and h ¶ (0, 0.5).

Let q ¶ R2 such that Bh(q) ´ Bt(S). Then there exists b ¶ S,

such that Bh(q) ´ Bt(b).

Suppose that

Fig. 5. Sampling for e equals 1.5.

Fig. 6. Sampling for e equals 2.0.

Fig. 7. Original image.

Fig. 8. Sampling for e equals 1.5.

Fig. 9. Sampling for e equals 2.0.

Fig. 10. Sampling for e equals 3.0.
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"b ¶ S, Bh(q) ³ Bt(b).                           (3)

Let H be a minimal subset of S whose t-neighborhood cov-
ers Bh(q), i.e.,

Bh(q) ´ Bt(H)  and                                (4)

Bh(q) ³ Bt(H - {a}) "a ¶ H.                        (5)

According to (3), H contains more than one element. Let a
be an element of H. We know that H - {a} ¡ f. Equations (3),
(4), and (5) imply that

Bh(q) ³ Bt(a), Bh(q) ³ Bt(H - {a}),  and

Bh(q) ´ Bt(a) < Bt(H - {a}).

Accordingly, let

x1 � y1 ¶ (Bt(a) - Bt(H - {a})) ¯ Bh(q)   and

x2 � y2 ¶ (Bt(H - {a}) - Bt(a)) ¯ Bh(q).

We have x1 � y2, x2 � y1 ¶ Bh(q) because Bh(q) is an open rectan-

gular region. As a result, x1 � y2, x2 � y1 ¶ Bt(a) < Bt(H - {a}).

Consider x1 � y2 ¶ Bt(a) < Bt(H - {a}). Then either

x1 � y2 ¶ Bt(a) -Bt(H - {a}),                          (6)

x1 � y2 ¶ Bt(H - {a}) - Bt(a), or                       (7)

x1 � y2 ¶ Bt(a) > Bt(H - {a}).                       (8)

In the last case, namely, if x1 � y2 ¶ Bt(a) > Bt(H - {a}),
then it is not plausible to have x2 � y1 ¶ Bt(a). Because if this
were true, we would obtain x1 � y2, x2 � y1 ¶ Bt(a) which,
due to the fact that Bh(q) is an open rectangular region, im-
plies that x2 � y2 ¶ Bt(a), which is not true by definition.

Now, we add some given facts to (6) and (7) and to a
consequence of (8) to obtain

x y B B H

x y B H B
t t

t t

1 2

2 2

× ∈ − −
× ∈ − −

%&K'K
α α

α α
0 5 : ?2 7

: ?2 7 0 5
and

                (9)

or
andx y B H B

x y B B H
t t

t t

1 2

1 1

× ∈ − −
× ∈ − −

%&K'K
α α

α α
: ?2 7 0 5

0 5 : ?2 7               (10)

or
andx y B H B

x y B B H
t t

t t

2 1

1 1

× ∈ − −
× ∈ − −

%&K'K
α α

α α
: ?2 7 0 5

0 5 : ?2 7               (11)

We prove that each of (9), (10), and (11) is not possible.
Hence, (3) would be contradicted and the proof would be
complete.

First, consider (9). We define It(x) and It(V), for x ¶ R,
V ´ R, and t > 0, to be

It(x) = (x - t, x + t)

I V I x
x V

τ τ0 5 0 5=
∈
U .

Let Hx = {x/x � y ¶ H and R � y2 > Bt(x � y) ¡ ®}. Clearly,

ax ¶ Hx, It(Hx - ax) � y2 = Bt(H - {a}) > R � y2, and It(ax) � y2

= Bt(a) > R � y2. So (9) implies that,

x1 ¶ It(ax) - It(H - {ax}) and

x2 ¶ It(Hx - {ax}) - It(ax).

As a result,

Ih(qx) ³ It(a), "a ¶ Hx                           (12)

and

Ih(qx) ´ It(Hx).                                 (13)

Let a1, a2, ¤, an be the elements of Hx ordered such that,
for i, j ¶{1, ..., n}, ai > aj if i > j.

We claim that a1 < qx < an. If this were not true, in other
words if qx � a1 or qx � an, then (13) would imply that Ih(qx) ´
It(a1) or It(an), which contradicts (12). Let

s i
a qi x

=
≤

max .

Because a1 < qx < an, we know that 1 � s, s + 1 � n. We further
claim that Ih(q) ´ It(as) < It(as+1); we have qx ¶ [as, as+1], so
Ih(qx) ´ Ih([as, as+1]). In addition, h ¶ (0, 0.5) and t ¶ Z+/2, so
h < t. Consequently, Ih(qx) ´ It([as, as+1]). Using (13), we obtain
Ih(qx) ´ It([as, as+1]) > It(Hx). But, It(Hx) ´ It(R - (as, as+1)) and
It([as, as+1]) > It(R - (as, as+1)) = It(as) < It(as+1), so Ih(q) ´ It(as)
< It(as+1).

As a result, we have

Ih(qx) ³ It(as),

Ih(qx) ³ It(as+1), and

Ih(qx) ´ It(as) < It(as+1).

So It(as) > It(as+1) ¡ f and It(as) > It(as+1) ´ Ih(qx). In other

words, (as + t) - (as+1 - t) > 0 and (as + t) - (as+1 - t) � 2h.

So 0 < 2t - (as+1 - as) � 2h. But S ´ Z2 and t ¶ Z+/2. So {as,

as+1, 2t} ¶ Z. Consequently, 2h � 1, which contradicts the
fact that h ¶ (0, 0.5). As a result, (9) is not possible. Simi-
larly, we can prove that (10) and (11) are not possible.
Hence, (3) is not possible and the proof is complete.

THEOREM 6. Let S be a finite subset of Z2, a ¶ Z2, and e > 0.
Then the following are equivalent:

1)� B B S2 2 2 2e e/ /α0 5 0 5⊂ .

2)� B B Se eα0 5 0 5⊂ .

3)� B B Se eα0 5 1 6 0 5 1 6∩ ⊂ ∩Z Z/ /2 22 2 .

Clearly, (2) implies (3). We still have to prove that (1) im-
plies (2) and that (3) implies (1).

If (1) were true, it could be written as

B B B S
2 2 2 2e e e e/ /2 7 0 52 7 0 5− ⊂α .

Let q be any element of Be(a), so we have

B q B S
2 2 2 2e e e/ /2 7 1 6 0 5− ⊂ .

Since 2 2 2e / /∈ +Z  and 2 2 0 0 5e e/ , .2 7 2 7− ∈ , then us-
ing the previous lemma, we conclude that
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∃ ∈ ⊂−β βS B q B/
/ /2 2 2 2e e e2 7 1 6 1 6 .

In other words, $b ¶ S/q ¶ Be(b). Hence, q ¶ Be(S), which
implies that Be(a) ´ Be(S). Consequently, (1) implies (2).

If (3) were true, i.e., if Be(a) > (Z/2)2 ´ Be(S) > (Z/2)2,
then we would obtain that

B1/2(Be(a) > (Z/2)2) ´ B1/2(Be(S) > (Z/2)2).

In other words,

B B B B
S

1 2
2

1 2
22 2/ // /e eα β

β
0 5 1 64 9 1 6 1 64 9∩ ⊂ ∩

∈

Z ZU .       (14)

But for g ¶ Z2, B B B1 2
2

2 22/ //e e
γ γ1 6 1 64 9 1 6∩ ⊂Z . Replacing

in (14), we get

B B
S

2 2 2 2e e/ /α β
β

0 5 1 6⊂
∈
U .

In other words, B B S2 2 2 2e e/ /α0 5 0 5⊂ . Consequently, (3)

implies (1).
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