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Abstract

The problem of estimating the regular portions of the contours in an image is for-

mulated in a probabilistic and multiscale framework. The objective is to compute a

small set of polygonal lines which, with high probability, contains an approximation to

every contour in the scene. These polygonal lines are represented by paths in a graph

whose arcs represent local contour hypotheses. The main difficulty of this problem

is that, in order to achieve high probability of accurate reconstruction according to a

global metric, it is necessary to deal with a combinatorially large number of contour

hypotheses. To control the complexity of the search, the notion of a compressible graph

is introduced and an efficient contour estimation algorithm based on graph compression

is proposed.

*Research supported by US Army grant DAAH04-95-1-0494, Center for Imaging Science, and MURI

grant DAAH04-96-1-0445, Foundations of Performance Metrics for Object Recognition.
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1 Introduction

Edge detection, or image segmentation, is an important ingredient of many image

analysis applications and consists in estimating the projection on the image plane of

the contours of the objects in a scene from the brightness intensities in the image. For

certain classes of images, the basic source of information to perform this task is given

by the sharp variations of brightness perpendicular to the edge which often occur in the

vicinity of the boundaries between objects. However, this source of information is quite

unreliable since in a typical image a substantial portion of the contours do not have

a sufficiently large brightness contrast compared to the noise ("invisible" boundaries).

Also, even though most of the contours in the image can be represented by smooth

curves with low curvature, singularities such as corners and junctions are present and

contribute to make the edge estimation problem quite difficult.

One possible approach to deal with these difficulties is to proceed in stages. First,

the regular and visible portions of the contours are recovered. Then, the missing parts

are estimated with the aid of the regular visible contours detected initially. Thus,

even though an edge representation containing only regular visible contours is certainly

incomplete for most practical purposes, it is nevertheless an important intermediate

stage of image segmentation.

To deal with the problem of contour estimation, we adopt a probabilistic model-

based approach. That is, we introduce a probabilistic model of the relationship between

the contours in the image and the brightness data and then use this model to design

an estimation algorithm and analyze its performance. The model is constructed in two

steps. First, a single-contour model of the brightness data is defined. The probability

measure induced by a single contour on the brightness image carries information about

the data only in a neighborhood of the contour. Thus, the support of the measure

induced by a contour consists of the a-algebra associated with a subregion of the image

domain. Then, a composite model is constructed which specifies a probability measure

on the entire image given a set of contours. The construction of the composite model
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is straightforward if one assumes an exclusion principle according to which only sets of

contours with disjoint domains are allowed.

The formulation of the estimation problem proposed here is different from the stan-

dard Bayesian method, in which the conditional density of the desired parameters is

obtained by multiplying the prior density of these parameters with the likelihood of

the data given the parameters. First, since we restrict our attention to only a subset of

the contours in the image, namely the visible regular contours, we are not in a position

to specify a complete probabilistic model of the data given the contours. In fact, the

available information is restricted to a neighborhood of the given contours. Thus, the

support of this measure is too small to define a density. Second, we do not assume a

prior measure on the contours; instead, we restrict the family of allowed sets of contours

and evaluate the performance of the proposed algorithm for all the contour sets in this

class.

The overall structure of the algorithm and most of the mathematical results are

rather independent from the specific brightness model of the contours. One simple such

model is obtained by assuming that the one dimensional discontinuity profile across the

edge is described by a step function smoothed by a gaussian filter with variance s, where

s is the blur scale of the contour. Since s is not known a priori, and since contours of

different scales might co-exist at the same location, a multiscale estimation approach is

needed.

For simplicity, some of the formal analysis will be restricted to flat contours, namely

contours with zero curvature (straight lines) of infinite length and such that the bright-

ness model is constant along to the edge. However, the algorithms (and many of the

mathematical results) are developed without these restrictions and require only that

the curvature is sufficiently small and that the variations of scale and of brightness

along the contour are sufficiently slow.

The main objective of the proposed algorithm is to obtain a global representation of

the contours in the scene. That is, contours in the scene will be approximated by planar
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curves and not merely by a set of independently estimated points. This requirement

complicates the estimation problem since the estimated curves have quite arbitrary

shapes and therefore are characterized by a large number of parameters. A global

representation of this type is important for the subsequent stages of edge detection

dealing with invisible contours and curve singularities.

The general structure of the algorithm is driven by three requirements: low ap-

proximation error; high confidence of success; and computational efficiency. The first

stage of the algorithm, which is briefly described in Section 4, computes a graph whose

vertices are candidate contour point and whose arcs are candidate contour fragments.

The major property of this graph is that, with high probability, it covers the set of

contours in the scene, that is, it contains at least one approximating path for each

contour in the scene. Due to noise, in order for the graph to cover all the contours with

high probability, it must contain many redundant vertices and arcs. As a consequence,

each contour might be represented by a combinatorially large number of paths. This

paper addresses the issue of how to compute efficiently a small subset of these paths

so that, with high probability, all contours are approximated by at least one path in

the subset. An important notion in this regard is that of compressibility of a graph. A

compressible sub-graph which preserves its covering properties can be computed from a

covering graph by estimating arc likelihoods and removing "divergent" arcs with locally

minimum likelihood.

1.1 Outline and contributions of the paper

This paper proposes a multiscale probabilistic framework to formulate and solve the

contour estimation problem according to a global performance criterion defined on

curvilinear sets. Section 3 introduces a sparse probabilistic model which allows to iso-

late the performance of the algorithm near each scene contour from the data outside

a neighborhood of the contour itself. Section 4 describes the local contour hypothe-

ses and how they are computed from the brightness image. Section 5 introduces the
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notion of compressible graphs which ensures that a globally accurate representation

of all the paths in a graph can be computed efficiently. Sufficient local conditions for

compressibility are described. Section 6 proposes a method to make the graph of local

contour hypotheses compressible by comparing the brightness model of these hypotheses

with the actual brightness data and pruning certain hypotheses with locally minimum

likelihood. The error probability of this method is analyzed. Section 7 describes an

algorithm which computes a covering of the set of paths in a compressible graph. Sec-

tion 8 generalizes many of the results to the case where multiple contours at the same

location are allowed. This generalization allows to detect contours simultaneously at

different scale passing through the same point. Section 9 presents some experimental

results and Section 10 draws some conclusions.

2 Previous work

The contour estimation algorithm proposed in this paper is based on estimation perfor-

mance requirements - low localization error and high probability of accurate detection

- defined on a curve representation of contours. Previous work on performance analy-

sis and algorithm design based on these statistical estimation criteria had been carried

out by modeling a contour as a set of small independent fragments which, essentially,

reduces edge detection to a one dimensional problem. Optimal linear operators for the

estimation of the discontinuity point along the direction perpendicular to the gradient

have been developed for step edges [4], and more complicated brightness models [24].

Surface fitting methods have also been proposed [12] which are essentially equivalent

to linear convolution schemes. Substantial work has been done to assess analytically

the one dimensional estimation performance [27, 26, 14] of these local edge detectors.

However, since most of this performance analysis is carried out for point-based models

of contours only, the stage of constructing curve representation from these edge-point

fragments is most of the time rather heuristic, with very little theoretical analysis of

the overall performance of the algorithm. In the end, performance of the algorithm is
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usually assessed by means of human judgment [13].

Several statistical frameworks have been proposed for contour estimation and image

analysis in general [10, 21, 11, 28]. Most of these methods are based on Bayes' formula.

That is, the problem specification must provide a prior density defined on the desired

representation and a conditional density of the data given this representation. Esti-

mation consists then in maximizing the a-posteriori probability of the representation

given the data. These methods can incorporate global information quite effectively but

often result in hard optimization problems. Moreover, these approaches do not usu-

ally allow to obtain information about the probability distribution of the errors. Most

variational and regularization approaches [3, 22, 25] to contour estimation can also be

viewed within this statistical framework.

Recently, a statistical approach based on multiscale recursive estimation on trees has

been proposed which yields efficient algorithms as well information about the covariance

of the errors [1]. This method has been successfully applied to texture modeling and

segmentation.

Wavelets provide an important tool to analyze a multiscale signal [19] and wavelet-

based representations can also be used to model non-stationary processes [17].

The importance of multiscale representations for contour estimation has been ac-

knowledged for a long time. Some multiscale algorithms for edge detection proceed

in a coarse to fine fashion [20, 2, 25] whereas others are more similar to the approach

proposed here in that they emphasize the importance of detecting all the relevant scales

[18], with priority given to the lowest one [8].

The proposed algorithms exploits the curvilinear nature of contours to augment

the information provided by brightness variation. Relaxation labeling has also been

used successfully for this purpose [23] as well as "snake" and curve evolution methods

[15, 16].

Some of the results in this paper have already been reported and proved within a

non probabilistic framework, and under the assumption that the scale of the contours
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is fixed and known [7]. The compressibility condition introduced here is very similar to

the stability property discussed in [7]. Some ideas on how to enhance the regular curve

representation with corners and junctions are discussed in [5].

3 Contour models

A regular visible contour ?y in the scene, shortly a scene contour, induces a probability

measure on the observed image I. The image I consists of an array of real values,

which for simplicity can be assumed to be infinite. Its entries are denoted I(i,j),

(i, j) E Z x 2. A set of scene contours is denoted F. To obtain a probabilistic model of

the observed image given F, one needs to combine the probability measures associated

with the contours y E F into a composite measure on the observed image. The goal of

the estimation algorithm is to compute an estimate F of the scene contours F from the

observed image I. The estimate F consists of a set of contour descriptors, which in the

proposed algorithm are given by polygonal curves. The performance of the algorithm is

evaluated by three parameters: complexity, which can be measured by either the size of

the estimate F or the time complexity of the algorithm, or both; accuracy, namely the

distance from the scene contours to the contour descriptors; and confidence, namely the

probability that the scene contours are within the tolerated accuracy of the computed

descriptors. In short, the objective is to compute efficiently a compact estimate which

contains with high probability at least one accurate approximation for every scene

contour.

3.1 Probabilistic model of a scene contour

The projection on the image plane of a scene contour y can be represented by a planar

curve. The image of this curve is a subset of the real plane and will be called the trace

of y and denoted T(y). The simplest model for a scene contour is given by a contour

with zero curvature, infinite length and brightness model constant along the contour.
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Such a contour, called flat contour, is characterized by the following parameters:

* The orientation of the contour with respect to the x-axis, denoted ry.0;

* The distance of the contour from the origin, y.p;

* the brightness intensities on the left and right sides of the contour, denoted y.bl

and y.b2;

* the blur scale of the one dimensional discontinuity profile across the contour, y.s.

* The intensity (variance) of the noise, denoted y.v.

The set of flat contours is denoted Fo. A more general class of contours, denoted r1

and called regular contours, is given by contours with bounded curvature and with b1,

b2, s, v slowly varying along the contour. Notice that the definition of Fr depends on

the upper bound on curvature and the upper bounds on the rate of variation of b1, b2,

S, V.

Most of the following discussion and results are rather independent of the discon-

tinuity profile model across the contours. However, for the sake of concreteness, let us

fix a specific profile, namely a step function smoothed by a gaussian filter. Thus the

image data model associated with a flat contour y is

I(ij) = 3i ) (i, j) E D() (1)

where

P(i, jK) = Y.bl + (6.b2 - y.bl) (Gas * 6(-l))((i, j))

(2)
7.bl + (y.b2 - y.bl) erf (((ij) ; (2)

(- '1 ) is the unit step function: 6(-1 )(x) = 0 for x < 0, 6(-1)(x) = 1 for x > 0; G 8., is

a gaussian smoothing filter with variance y.s; ((i, j) is the signed distance from T(y)

to the the pixel (i, j); qr is a noise field assumed to be i.i.d. and gaussian with variance

?y.v; erf(.) is the error function given by

1 t 1,2
erf(x) : e- 1 ue du;



and D(y) C Z x Z is the domain of y, namely the set of image measurement affected

by the presence of the contour 7y in the scene. This model can be easily generalized to

the class of regular contours Fl.

The signal to noise ratio of y is defined to be the brightness contrast divided by the

variance of the noise,
SNR(y)= | 1-y.bl - yb2|
SNR(y) =

In order to be "visible" a contour must have sufficiently large signal to noise ratio.

Let ,u(Iy) be the probability measure associated with the brightness model (1). Its

support is the a-algebra generated by the family of sets

{{I : I(i, j) < ui,j, (i, j) E D(i, j)} ui,j e I}

and its value on one of these sets is

I erf (ui'j-~(i'Ja))
(ij) E D(i,j)

3.2 Composite models and the exclusion principle

The construction of composite probabilistic models from primitive ones has been studied

mostly for the problem of recognition [9]. We believe that a compositional approach

can be useful also to deal with tasks usually considered to be more "low level", such as

contour estimation. In this paper, only a trivial compositional model of contours will

be considered.

In order to define a composite probability model associated to a set of scene contours,

we are going to assume that each scalar measurement I(i, j) can be affected by at most

one scene contour (exclusion principle). This assumption is satisfied if we only allow

sets of scene contours F whose domains are pairwise disjoint:

D(y1) n D(y 2) = 0, for all y 1, y 2 E r such that yl - 72.

A contour set satisfying this property will be said to be free, since its element do not

interact. The collection of all free sets of regular contours is denoted g 1. The measure
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associated to a free contour set F C g1 is simply given by the product measure:

.(ItF) = H]j(II*).
yEF

Notice that this is a rather "incomplete" probabilistic model of the data. In fact,

for any given contour set F the image is completely arbitrary outside its domain D(F)

given by:

D(r)= U D(7y).
yEr

Furthermore, we are not going to assume that a prior measure on F is available. Rather,

we simply assume that F C 9 1 and that the signal to noise ratio of the elements of F

is sufficiently high. For these two reasons, it is not possible to define a conditional

probability of r given the data I. Nevertheless, we still want to guarantee that good

performance is achieved with high probability. More precisely, the goal is to prove an

upper bound on the estimation error of r which is independent of the data outside its

domain D(F). To do this, we are going to formulate conditions (of a non-probabilistic

nature) on the data inside D(F) which are sufficient to guarantee that the proposed

algorithm computes an accurate estimate of F. Then, the probability of attaining

this performance, which depends on r, is simply the conditional probability that this

conditions are satisfied given F.

4 Graph of local contour hypotheses

4.1 Edgels

The contour descriptors computed by the estimation algorithm are polygonal lines

represented by paths in a graph. The vertices of this graph represent local contour

hypotheses and are obtained by least-square fitting polynomial brightness models to

the data in small regions in the image. Regions of different sizes are used because the

scale s and the noise intensity v of the contours in the scene are unknown. If the set of

regions used for fitting is dense enough, both in the size and space dimension, then any
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contour -y will be sampled by a set of regions, denoted 7Z(y), sufficiently close to its trace

and of size approximately tuned to the blur scale of the contour so that the parameters

computed in these regions are good estimates of the local parameters of the contour.

Polynomial brightness models are used for fitting because they yield fast least-square

estimators and because the original brightness model, e.g. (2), can be approximated by

its Taylor expansion in a sufficiently small neighborhood of the contour.

Initially, for each region, a linear brightness model is used to estimate the local ori-

entation of the contour. Then, a cubic brightness model is fitted to a larger rectangular

region (aligned to the estimated orientation of the contour) to refine the estimate of

the location of the contour and to estimate the scale s and the contrast Ibl - b2 1. The

parameters estimated from each region are gathered to form an object, called edgel,

and the set of these edgels constitute the set of vertices of the graph. Each edgel e is

characterized by the following parameters:

* The estimated orientation of the contour, e.0.

* The estimated location of the point on the contour nearest to the center of the

region used to estimate e, e.p.

* The estimated blur scale of the contour, e.s.

* The estimated brightness values on the two sides of the contour, e.bl, e.b2.

* The fitting residual, e.v.

The total number of edgels is of the order of the number of pixels in the image,

times the number of scales. The edgels computed from the regions 7Z(y) are denoted

E(a). If -y is scene contour, -y F, then E(y) provides a good sampled approximation

of y.

Some of computed edgels are thresholded out by estimating locally the probability

that there exists a scene contour y E F such that the edgel belongs to E(y). If this

estimated probability is less than some threshold Pedgel,min, then the edgel is purged.
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p2a(e)

p-(e) p(e)e.p 7(e)

Figure 1: An edgel e. The segment of length 2w(e), perpendicular to the orientation of e,

and centered at e.p, is denoted r-(e). The end-points of -(e) are denoted p-(e) and p+(e).

For each edgel e we introduce two quantities, w(e) and wsc(e), which represent

estimates of the localization and scale uncertainty respectively. More precisely, if e C

E(7), then we assume that w(e) is large enough so that, with high probability, the

distance from e.p to T(y) is less than w(e). An essentially equivalent assumption is

that, with high probability, the trace T(y) intersects T(e), where -(e) is the straight

line segment with end-points p-(e), p+(e) given by (see Fig. 1)

p-(e) = e.p-w(e). ai(e), (3)

p+(e) = e.p +w(e)) tl(e). (4)

Here, itil(e) denotes the versor perpendicular to the orientation of the edgel, e.0. Simi-

larly, it is assumed that, with high probability, the scale of the contour 'y.s lies in the

interval

Tsc(e) [e.s - wsc (e), e.s + wC (e)]. (5)

4.2 Edgel-arcs and edgel-paths

An edgel-arc a is a pair of edgels a = (el, e2). A set of edgel-arcs A is called an edgel-

graph. To construct an edgel-graph A, the algorithm creates an edgel-arc between every

pair of edgels computed from adjacent regions, and then removes edgel-arcs which are

non valid according to Definition 1. In order for an arc to be valid, the parameters

of its edgels must be sufficiently close (see Definition 1). The set of vertices of the

edgel-graph A, is denoted V(A).
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/ (a)

T2(a)

Figure 2: An edgel-arc a. Its two vertices are denoted el(a),e 2 (a). We have also

T1 (a) = 7(el(a)), T2 (a) = T(e 2 (a)).

Let's introduce the following notation (see Fig. 2). Let a = (el, e2) be an edgel-arc.

Then for i = 1, 2, let pi(a) = ei.p; Oi(a) = ei.O; si(a) = ei.s, ri(a) = T(ei). Let it(e)

be the unit versor in the direction of e.0 and let fi(a) be the unit versor from pl (a) to

p 2(a). Let O E [0, w], SA > 0, LA > 0 be constants. Let us assume that

WSC(e) > Sa, Ve (6)

Definition 1 An arc a is said to be valid if

f(el(a)). i(e2(a)) > cosO; (7)

ii(a). f(ei(a)) > 0, i =1,2; (8)

[sl(a)-s2(a)l < Sk; (9)

|Ip1(a)-p2(a)ll < LA; (10)

Tl(a) n 72 (a) = 0. (11)

A set of arcs A is said to be valid if all its arcs are valid.

To achieve scale invariance, the upper bound La on the length of an arc in (10) should

depend on the scales of the arc, sl(a) and sl(a): La = LA(sl(a), sl(a)). However, for

simplicity, this dependence is not denoted explicitly.

An edgel-path wr is simple if the polygonal line T(r) does not self-intersect (more

precisely, if T(7r) is homeomorphic to a straight line segment).
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----- 

(a) Data (b) Edgels (by contrast) at (c) The edgel-arcs forming
three scales: 1± = 2, 4, 6 the edgel-graph

::... / , ~- x'- .\ 2 
r": -··.-.....-,9 3~-~.-~-~-.~-,~a~p ~1 2 : ' £; e .. '

(d) Edgels, 1l = 2 (e) Edgels, 11 4 (f) Edgels, 1 = 6

Figure 3: The edgel-graph (shown in (c)) computed from the brightness data in (a)
by using three scales, 11 2,4,6. The parameter 21l is the width of the rectangular
region used for the cubic fit, as described in Section 4.1. The vertices of the edgel-graph
are shown in (b) with gray intensity proportional to contrast and in (d),(e),(f) with gray
intensity proportional to the likelihood indicator, given by equation (34). In (c),(d),(e),(f),
an edgel e is represented by a needle centered at e.p and with orientation e.O. The gray
intensity of the edgel-arcs in (c) are proportional to the arc likelihood indicator used in the
current implementation of the algorithm. See Section 9 for more details.
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Definition 2 Let A be an edgel-graph. A path in A with vertices eo, ... , el is said to

be regular if it is simple and if T(wr) n T(ei) = {ei.p}, i = 0,... , 1.

For any p E JI 2 and U C VR2 let d(p -, U) denote the distance from the point p to

the set U. For any two sets U1, U2 C 2 , let d(U1 -+ U2) be the directed Hausdorff

distance from U1 to U2:

d(U -+ U2 ) = max d(pl - U2) = max min I pl - P21 l (12)
P1E U1 plCU1 p2EU2

For any path 7r, the polygonal line passing through p(ei),... ,p(en), where el,... ,e,

are the vertices of 7r, is denoted T(ir).

Definition 3 The graph A is said to cover /y if there exists a regular path 7r in A with

vertices el, .. , e, such that

d(T(y) -X T(wr)) < Xo, (13)

and, for 1 < i < n,

d(ei.p - T(y)) < XO; (14)

d(ei.O, y.0) < Oo; (15)

lei.s- y.sl < So. (16)

If A covers 'y, the covering sub-graph of y, denoted Al[y, is given by the set of arcs

whose two vertices el and e2 satisfy (14)-(16). If a E Aly for some y E r then a is said

to be a covering arc.

It should be noted that the covering property of a graph is a monotone property,

that is, if A D A' and A' covers y, then A also covers -y. Furthermore, once the constants

Xo, ®0 and So have been fixed, if the graph A were computed by sampling the space

of all vertices and the space of all valid arcs with a sufficiently small resolution (rather

than the estimation procedure just described), then one would obtain a valid graph A

"dense" enough to cover any possible contour (not just the scene contours).
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Figure 4: An edgel-graph might contain several paths approximating the same scene

contour.

If the graph A is computed from the brightness image I by using the estimation

procedure just described (as it is in practice), then A is a random variable whose

probability measure depends on F. Then, we define Pov(F) to be the probability that

A covers F. It is quite plausible that if the signal to noise ratios of the contours in F is

sufficiently large, then Pov(F) can be made arbitrarily close to one by letting Pedgel,min

be sufficiently small, provided that the parameters in Definitions 1 and 3 are suitably

constrained and the domain of the image is finite.

A consequence of Pedgel,min being small is that there might be multiple redundant

edgels in correspondence of the same point on a contour. Therefore, there might be

multiple arcs in A approximating any fragment of a contour 7y C F, and the average

degree of a vertex in the graph might be large. Thus, each contour in F might be

covered by a combinatorially large number of paths (see Fig. 4). The presence of so

many redundant paths makes it difficult to extract a small number of paths from the

graph which approximate every contour in F. All the paths which approximate the

same scene contour are equivalent to each other and therefore should be compressed

into a unique representative in order to obtain a complete representation of the contours

with minimal complexity. In the next sections the notion of compressibility of a graph

will be introduced together with sufficient properties for compressibility which yield an

efficient algorithm to compress a covering graph. This algorithm is based on a feedback

function which estimates the likelihood that an arc is a covering arc, namely that it

belongs to the sub-graph of some scene contour. Sufficient properties of this feedback

function that guarantee good performance are discussed and related to the brightness

model of the contours.
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5 Compressible graphs

For any two subset of the real plane, U1 and U2 , d(U1 , U2) denotes the Hausdorff distance

between U1 and U2:

d(Ul, U2) = max {d(U -+ U2), d(U2 -+ U1)). (17)

Definition 4 An edgel-graph A is e-compressible if for any two regular paths 7rl, 7r2

having the same initial vertex and the same last vertex we have

d(T(-rl),T(_F2)) < Ie

According to this definition of compressibility an edgel-graph is compressible if all

the regular paths connecting two nodes are close to each other. Therefore, for our pur-

poses, these paths are all equivalent approximations of a scene contour so that only one

of them needs to be considered during path exploration. An efficient algorithm which

computes an approximation to every contour from a compressible graph is described in

Section 7.

5.1 Sufficient conditions for compressibility

It turns out that compressibility is a local property of a graph and can be enforced by

a simple computation involving only pairs of nearby arcs. The sufficient condition for

compressibility described in this section are useful if the exclusion principle as defined

earlier holds, that is, if one assumes that the contours in the scene have disjoint domains.

The definitions and results of this section should be compared with the similar ones

in [7]. More general conditions which allow for multiple contours in the same spatial

neighborhood, as long as these contours are well-separated in some other dimension

(such as scale), will be described in Section 8.

Before describing the sufficient condition, we introduce some notation. For any

a = (el, e2) E A let 3-(a), /3+(a), be the straight line segments with end-points p-(el),
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p (e2) |. Ne2e P- (e ( ir)
P-(e2)~~ ' ' 'I 'r(

12() )R(a)(a) a(a) +(a) + - - -pl + (el)

pe(el))

(a) Lateral segments of arc a= (el,e2) (b) Lateral boundaries of path X

Figure 5: Notation.
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p-(e2) and p+(el), p+(e2) respectively (see Fig. 5(a)). Let 3(a) -- ,B-(a) U + (a). Let

0.(a) be the straight line segment with end-points el.p, e2 .p. Let R(a) be the closed

region inside the quadrilateral with vertices p-(el), p-(e 2),p+(e2), p+(el). For any path

ir in A with vertices Er and arcs AX let (see Fig. 5(b))

(r-) = U 3(a);
aEA,

<7(X) = U 5(a);
aCEA

R(ar) = U R(a);aEA-
aCA,

max() : maxw(e).
eEE,

Similar definitions hold for /-(7r) and /+(Tr). Notice that Ca(T) = T(ir).

Theorem 1 (Sufficient condition for compressibility) Let A be a valid edgel-

graph. If

or(a) n (a') = 0, Va, a' E A, (18)

then, for any two regular paths 7r1, 7r2 in A with the same initial vertex and final vertex

we have

d(T(rl), T(w2 )) < min {wmax(7il), Wmax(7T2)}.

For the proof of Theorem 1 we need the following proposition.

Proposition 1 Let 7r be a regular path in A and let p E R(Tr). Then,

d(p -X (7-)) < wmax(F).

Proof of Theorem 1. From (18) we have c( 1rl) n /3(7r2) = 0 and (7r2) n /(T 1) = 0.

Let efi and ela be the first and last vertex of 7r1 and 7r2 and let

°(7i) = -a(7i) \ {efi.p, ela.P}, i = 1, 2.
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Since the paths Wri, i = 1, 2 are regular, we have

&°(7i) n T(efi) = o°(7ri) n r(ela) = 0, i - 1, 2.

Thus,

&(ir) n &R(T2) = (r(72) n &R(ir,) = 0.

Then, for i = 1,2, O°(Tri) is contained in either R(irF) (where i = i + 1(mod 2)) or in

the complement of R(ir-). From (8) it follows that &°(wri) n R(7%) # 0, i = 1, 2, so that

uo°(ri) c R(7 2) and Go°(7r 2) C R(7ri). The result then follows from Proposition 1. ]

From Theorem 1 we have the following corollary. Let

W-- max w(e). (19)
eEV(A)

Corollary 1 If (18) holds then A is W-compressible.

If the arcs a and a' satisfy condition (18) in Theorem 1, the we say that a' is

non-divergent in space from a and we denote this a' 11 a. Otherwise, we say that a'

is divergent in space from a, denoted a'ffa. Notice that a'YJa does not imply afa' in

general.

5.2 Computing a compressible edgel-graph

A simple algorithm to obtain a compressible sub-graph of an arbitrary edgel-graph is

to detect all divergent pairs of arcs and remove one of the two arcs from the graph

(compare with the similar algorithm proposed in [6, 7]). If care is used to decide which

of these two arcs is removed, one can ensure that covering arcs are seldom removed so

that, with high probability, the resulting sub-graph still covers F if the original graph

covers F. To make this decision, one can use an "edginess" function qA(a), e.g. some

estimate of the likelihood that an arc is a covering arc, and then remove the arc with

the smallest edginess. Let A* be the edgel-graph produced by this algorithm. That is,

A* = A \ At, A t = {a E A : 3a' c div(a), OA (a) _< A (a')) (20)
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where div(a) denotes the set of arcs divergent with a:

div(a) = {a' E A : a'XJa V aiwa'}. (21)

Proposition 2 A* is W-compressible.

Proof. Let a, a' be two edgel-arcs in A such that a'Xa V a a'. Let us assume, without

loss of generality, that bA(a) •< qA(a'). Since a' E div(a), from (20) we have a C At

and therefore a X A*. Hence, for every pair of edgel-arcs a, a' E A*, a' II a, that is,

a(a) n 3(a') = 0. Then from Corollary 1, it follows that A* is W-compressible. [O

Definition 5 Let OA : A -+ IR and let A* be given by (20). Let y be a contour covered

by A. If AI7 C A* then OA is said to preserve y.

Proposition 3 Let V be a contour covered by A. Then OA preserves - if and only if

q5A(a) > qA(a'), Va' E div(a).

Proof. Let a C Al[. If qA(a) > qA(a') for every a' c div(a) then, from (20), a ¢ At

and a E A*. On the other hand, if OA(a) •< OA(a') for some a' E div(a) then a E At

and a ¢ A*. E[

Notice that Proposition 2 holds true for any function bA. Clearly, qA has to be

chosen so that the probability of removing covering arcs is small. Let's consider edginess

functions of the form

qA(a) = min O{E(el(a)), .qE(e2(a))} (22)

where, for any edgel e,

OE(e) = C(e.p, e., e.s), (23)

and O(p, 0, s) is an edginess function of three continuous variables, p E 0R2, 0 E [0, 27r],

s > 0, computed from the observed image I. Lemma 1 at the end of this section, which
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is based purely on geometrical arguments, gives sufficient conditions for the edginess

function to be capable of discriminating covering arcs from spurious divergent arcs.

Roughly speaking, the lemma asserts that if the edginess function near a contour is

larger than the edginess function at points whose distance from the contour is in a

certain range of values, then the arc suppression procedure just described will preserve

the covering sub-graph of the contour. The lemma contains the parameters 00, X0 and

S0 introduced in Definition 3 (covering edgel-graph) and the new parameters 01, X 1

and X 2, which are assumed to satisfy the following conditions

00 < 01, (24)

cos 01
X0 < XI < 2 ew(e), Ve E V(A) (25)

X 2 > X + max{La, W}, (26)

where LA is the maximum arc length in a valid graph and W = maxev(A) w(e). Let

Ldiv be the maximum distance between any two points p E a(a), p' E u(a'), over all

a E A and a' E div(a).

Lemma 1 (Preservation of covering arcs) Let A be a valid edgel-graph. Let 01,

X 1 and X 2 be constants such that (24), (25) and (26) hold true. Let y be a flat contour

covered by A and let OA : A -+ IR be given by (22),(23). Then OA preserves ay if for any

p, 0, s and p', O', s' we have (p, 6, s) > b(p', 0', s') whenever

d(p -T(y)) < Xo, (27)

d(0, y.) < (o, (28)

Is, .sl So, (29)

I p'-pHl < Ldiv, (30)

and at least one of the two conditions hold true

d(p' - T("y))E [X1, X 2]; (31)

d(p',T(-y)) < X1 A d(0', y.0) > 01. (32)
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Proof. Let 7y be a flat contour for which the sufficient condition of the lemma is

satisfied. From Proposition 3, we have to prove that qA(a) > OA(a') for every a E Aly

and a' E div(a). Let then a E Aly and a' E div(a). One needs to prove that for every

i E {1, 2} there exists j E {1, 2} such that

q)(pi(a), Oi(a), si(a)) > (pj(a'), Oj(a'), sj(a')).

A stronger statement will be proved, namely that there exists j E {1,2) for which

this inequality holds for both i E {1,2}. Let us make the following substitutions in

(27)-(32): p = pi(a), 0 -= i (a), s = si (a); p' = pj (a'), ' = Oj (a'), s' = sj(a). Notice that

since a E Aly we have that (27)-(29) hold with the above substitutions for i = 1, 2.

Furthermore, for i = 1,2 and j = 1,2, we have I]pi(a) -pj(a')ll < Ldiv from the

definition of Ldiv. Thus both vertices of a satisfy (27)-(30). It remains to prove that

one of the two vertices of a' satisfies either (31) or (32). First, let us assume that

d(pj(a') -+ T(y)) < X1 => d(0j(a'), y.0) < E 1, j =1,2, (33)

so that condition (69) of Proposition 6 holds true. Then, from Proposition 6 it follows

that one of the two vertices of a' satisfies (31). Let then assume that (33) is false, namely

that there exists j E {1,2} such that d(pj(a') -+ T(y)) < X 1 and d(Oj(a'),?y.0) > ,1.

Then (32) is satisfied by the vertex j. []

6 Likelihood indicator for graph compression

A natural way to construct an edginess function is to estimate the likelihood that an

arc belongs to the covering sub-graph of some scene contour. In order to use Lemma

1, let's define OA to be given by (22) and (23), where 0(p, 0, s) is the likelihood that

a scene contour with scale s and orientation 0 passes through the point p. Notice

that, since the edginess function is used only to compare competing arcs, it is not
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R(p, 0,s)

Figure 6: Region R(p, 0, s) used to compute 0(p, 0, s).

necessary to normalized this likelihood into a probability measure. In fact, the proposed

arc suppression procedure to obtain a compressible graph is invariant to monotone

transformations of the edginess function. An increasing function of likelihood will said

to be a likelihood indicator.

The likelihood indicator q(p, 0, s) is constructed by least-square fitting a brightness

contour model with scale s and orientation 0 passing through the point p to the observed

image in a rectangular region R(p, O, s) centered at p, with orientation 0 and dimensions

proportional to s. Then, 0(p, 0, s) is defined as minus the residual of the optimal fit:

O(p, 0, s) =-min 1 (- (p') -(pO'p, 0,s, bl, b2))2dP)
b1,b2 IR(p, 0, s) (p,O,s)

(34)

The expression (34) needs to be discretized appropriately if the observed image is

discrete. Since /(p'lp, 0, s, bl, b2) is a linear function of b1 and b2 (compare with (2)),

the minimization can be performed by linear convolution with two appropriate filters,

which depend on 0 and s. Notice that, if a gaussian noise model is assumed, and

the proper normalization is chosen, then the quantity in (34) is indeed an increasing

function of the likelihood that a contour with orientation 0 and scale s passes through

the point p, maximized over the nuisance parameters bi and b2. Fig. 3 (d),(e),(f)

illustrate the value of 0(p, 0, s), which is coded into the intensity of the edgels by means

of (23).
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6.1 ID analysis of the likelihood indicator

To illustrate the behavior of 0, let's consider its one dimensional projection, which is

given by:

¢(x ) -mn1 ~x +as 2
bl,2(x, s) - mi (((I(x') - /3(x' X, s, bi, b2))2dX' ) (35)

where a > 0 is a constant. To analyze the behavior of the likelihood indicator in

the neighborhood of a scene contour, let's substitute for I(x') in (35) the noise-free

brightness model (2) centered at the origin and with unit scale:

I(x') = =(x'l0, 1, -1, 1) e-erf(x') j e 2 du (36)

and let qo(x, s) be the likelihood indicator function obtained in this way. Notice that

whereas X0(x, s) is a random variable, do(x, s) is a fixed function. More generally, we can

define 0,(x, s) to be X(x, s) computed with I(x') equal to the same brightness model

(36) plus i.i.d. gaussian noise with variance v. The indicator function q0 (x, s) is shown

in Fig. 7.

To clarify the relationship between the likelihood indicator and the conditions of

Lemma 1, let's fix the scale s = 1 and let q(x) - q(x, 1), X>(x) -= ,(x, 1), and let's

assume that the noise is the image has variance v. Let's write X>(x) as

XV(x) = O(x) + f)(x) 

where, for each x E IR, f,(x) is a random variable whose variance vanishes for v -- 0.

In order for the sufficient condition of Lemma 1 to be violated when the distance to 7y

from the two points p, p' are given by x < Xo and x' e [X 1, X 2] respectively, it must be

that q,(x') > X>(x), that is

fv(x') - f,(x) > 0o(x) - o0 (x') > "Do(Xo,X 1, X2 ), (37)

where

40O(Xo,X1,X 2) = min Oo(U) - muax o(U).
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Figure 7: The indicator function o(X, s).
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Figure 8: Region across scene contour where data obeys one dimensional model.

Let Psxtb,O (y) be the probability that the event (37) does not occur. Since the variance

of f,(x') - f,(x) vanishes for v - O0, if the constants Xo < X 1 < X 2 are chosen so that

bo0 (Xo, X1, X 2) is a positive number and if v is sufficiently small, then the probability

that (37) occurs is small so that Pstb,O(3y) is close to one. Thus, the likelihood indicator

0 can be viewed as a stabilizing feedback signal which separates correctly edgel-arcs

covering a scene contour from spurious divergent arcs, with probability Pstb,O('Y)'

Similar stabilizing properties of the likelihood indicator exist also in the scale di-

mension, as can be seen in Fig. 7, and in the orientation dimension. Let PStb,O(y) and

Pstb,O((y) be the corresponding probabilities. Presumably, one has

lim Pstb,O (7) = lim tb, (7) = lim Pstb, (') = 1.v-+O v--O v-0

In general, let us define PStb,o(Y) be the probability that the sufficient condition of

Lemma 1 is satisfied at one fixed location along the contour y C r.

6.2 Arc suppression error probability in 2D

To evaluate the probability that q(p, 0, s) violates the sufficient condition of Lemma

1, let P E 1I be a free contour set and let 'y E P. Let us assume that the domain of

a', D(a), is defined so that it contains all the pixels with distance to T(3') less than

X2 . Then, consider a rectangular region R with width 2X2 across the contour and with

height H in the direction along the contour (see Fig. 8). The probability distribution

of the data in R is governed by (1) and (2). Thus, if H is sufficiently small, with

probability Pstb,O, the condition of Lemma 1 will not be violated in R. Let LStb('Y)
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be the maximum height H for which this is true. LStb(Y) is some sort of correlation

length of q(p, 0, s). To evaluate the probability that no error occurs anywhere along

the contour y, let's cover the whole contour with disjoint rectangular regions of height

Ltb(y). Then, the probability than no errors occur in any of these regions is

IT(y)I

[Pstb,O (Y)0 Lstb(Y))

where IT(y)l is the length of the contour. Then, the probability that the likelihood

indicator preserves all the covering edgel-arcs of the contours in F, denoted Pstb(F), is:

IT(y)I

Pstb (F) - I[Pstb,(7Y)1 Lstb(Y) 

EFr

7 Computation of a covering estimate

To provide an accurate estimate of F, a set of edgel-paths should contain at least one

approximating path for every contour y E F. Since the proposed probabilistic model

for a contour y does not provide any information outside the domain D(Y), nor specific

constraints to model contour end-points, it is possible that the path approximating some

scene contour y extends beyond the end-points of 7. Thus, an appropriate distance

function to measure how well a path approximates a contour is the directed Hausdorff

distance d(T(y) -X T(Tr)) defined by (12). Then, then distance from a contour set F to

a set of paths F is defined as:

d(F -+ F)= max min d(T(7 ) -+ T(7r)).
7EFr 7rEf

The goal of an estimation algorithm is to compute a F with small complexity such

that d(F -X F) is small with high probability. The notion of compressible graphs is an

important tool for controlling the complexity of the computed representation. In the

previous sections we have described how to compute a compressible graph A* from the

observed image which covers the scene contours with probability Pcov(F)' Pstb(F). This

probability ultimately depends on the signal to noise ratio in the brightness data and

the total length of the scene contours in r.
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Definition of paths(e)

1 If Aout(e) = 0

2 Q(e) := {nil}

3 return;

4 else

5 For every a G Aut(e)

6 paths(e2 (a));

7 Q(e) := compress U U ao7
aEAout(e) 7rEQ(e2(a))

8 return;

Table 1: The procedure paths(e) computes a covering subset, denoted Q(e), of the set

of paths originating from the vertex e. Let Aout(e) denote the set of arcs leaving from

the vertex e and for any edgel-arc a let e 2(a) denote the second vertex of a (i.e. e2 if

a = (el, e 2)). If Aout(e) is empty (lines 1,2), then Q(e) contains only the zero-length

path nil. If Aout(e) is not empty (lines 5,6), then the procedure paths(.) is called

recursively on all the vertices connected to e by an arc, namely on all the elements of

the set {e2 (a) : a E Aout(e)}. It is assumed here that the graph does not contain cycles.

Then (line 7), for every a E Aut(e), all the paths in the compressed representations

Q(e2 (a)) are composed with the arc a. The resulting set of paths is then compressed

by selecting a unique representative in every set of paths which terminate at the same

vertex.
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If A* indeed covers F, then the set of all regular paths in A* is certainly an accurate

representation of r. From Definition 3, it turns out that the approximation error of this

exhaustive representation is Xo. Clearly, the representation containing only maximal

regular paths, namely regular paths which are not sub-paths of any other path, has the

same approximation error. However, the set of all maximal regular paths can still be a

combinatorially large set, as discussed in Section 4 and illustrated by Fig. 4.

Since A* is a W-compressible edgel-graph, where W is given by (19), it is possible

to compress significantly the maximal-path representation without increasing the ap-

proximation error by more than W. To simplify the discussion let us assume that A*

does not contain cycles. Now, for any source el, and any sink e2 (a source is a vertex

with no in-arcs and a sink is a vertex with no out-arcs) let HI(el, e 2) be the set of all

regular paths from el to e2. Clearly, all elements of HI(el, e2) are maximal paths. Then,

since A* is W-compressible, the symmetric distance between any two paths Il(el, e2) is

less than W. Thus, I(el, e 2) can be safely compressed down to one element without

increasing the approximation distance by more than W. Let then F be the set of paths

in A* obtained by selecting arbitrarily one path in Il(el, e2) for each source el and sink

e2. Under all the assumptions made we have the following theorem.

Theorem 2 Let F C 9G be a free set of regular contours. Then, with probability PCO,(F)'

PStb (F),

d(r -P) < Xo + W.

A simple recursive procedure to compute the paths Q(e) originating from a vertex e is

described in Table 1. The estimate I is then given by the union of all Q(e) over all

sources e in the graph A*.
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8 Generalization of the exclusion principle

8.1 Composite models with overlapping primitives

The arguments and results in Sections 6 and 7 are based on the assumption that the

exclusion principle holds, namely that the scene is composed of regular contours having

disjoint domains in the image plane so that the components of the scene do not interfere

with each other. However, in order to construct more general contour models, it can

be useful to allow the primitive contours to overlap in space. For instance, some non-

regular contours, such as contours with corners and junctions, can be modeled as sets of

regular contours which intersect at a point. Another example of overlapping contours is

given by contours of different scales intersecting at some point in space (e.g. a shadow

cast on a surface with a reflectance discontinuity edge).

One important issue, which is not dealt with here, is how to compose the probability

measures of the primitives when their domain overlap and therefore the support of

these measures are not independent. One possibility is to consider all the non-empty

intersections of the atoms of the primitive measures, multiply together the primitive

measures of these, and then renormalize. These composite probability models can be

quite different from the original ones if the amount of overlap is significant.

Another way to construct models when the domain of the primitives overlap is to

use an "occlusion" approach. That is, the primitive with highest "priority" determines

the probability measure of the data in the common regions. This method could be used

to model intersecting contours of different scales.

8.2 Compressibility in scale-space

Rather than pursuing these modeling issues further, we show how the arc suppression

algorithm described in Sections 5 and the two main results therein (Theorem 1 and

Lemma 1) can be generalized so that intersecting contours can be estimated indepen-

dently from each other, provided that they can be separated reliably along some other
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dimension, such as scale.

Recall that according to the arc suppression algorithm of Sections 5, two arcs a, a' C

A are considered to be incompatible with each other whenever r(a) n /3(a') = 0. Thus,

a compressible graph can not contain two paths which intersect and diverge from each

other. One can relax this restriction by allowing spatially divergent pairs of arcs,

provided that they can be labeled in such a way that the two arcs can be processed

independently from each other. For instance, if all vertices are labeled either "red" or

"green" and if only arcs with vertices of the same color are allowed, then a spatially

divergent pair of arcs of different color is acceptable, since one can compute red and

green paths independently from each other, e.g. in two independent stages.

Scale (or other contour features such as orientation, brightness intensity, etc.) can

be used as a label to separate paths which overlap spatially. If the scale of scene

contours is constant along each contour and if scale can be estimated perfectly, then

one can construct a graph containing only arcs whose two vertices have identical scales

and then restrict the arc suppression step to only pairs of divergent arcs with the same

scale. Pair of divergent arcs with different scales can co-exist since paths of different

scales can be processed independently of each other.

Implementing this idea in a more realistic situation, when scale estimates are noisy

and scale can vary along the contour requires some extra work. Notice that in the

definition of a valid graph, the scale difference between the two end-points of an arc is

required to be bounded but it can be non-zero.

As indicated by the results below, the roles of the space and scale dimensions are

quite symmetric in determining what pairs of arcs are incompatible as well as in using

the likelihood indicator function to select which arc to remove. Roughly speaking, a

pair of arcs is incompatible if either the two arcs are divergent in space and overlapping

in scale or divergent in scale and overlapping in space.
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Figure 9: Left: Space entities of and edgel-arc a. Right: scale entities of a.

8.3 Notation

The geometric entities introduced in Section 5.1 for the space dimension, 3(a), T(a),

R(a), etc., can also be defined in a similar way for the scale dimension with only minor

modifications. To distinguish between the two sets of symbols, we'll use a sp subscript

for the entities in the space dimension and a sc subscript for those in the scale dimension.

Thus rsp(a), T5p(a), Rsp(a), IIsp, etc. will replace the notation 3(a), T(a), R(a), 11, etc.,

See Fig. 9 for a graphical explanation.

For any e E V(A), let T5c(e) be the interval of the real line with end-points s-(e),

s+ (e), where

s-(e) = e.s- ws(e),

s+(e) = e.s + w (e).

For any a = (el, e 2) E A let -.lc(a) = Tc(el), r2c (a) = sc(e2),

Usc(a) - [el.s, e 2.s],

Rsc(a) = rsc(a) n 72c (a),

(a) (%c (a) U Ts2c(a)) \ Rs c(a) if Rsc(a) :~ 0

IR if Rsc(a) =0

If Rsc(a) is not empty, then Osc(a) is composed of two disjoint connected components,

denoted ,s-(a), ,s+c(a) and given by:

sic(a) = [min {s(a),s 2 (a)},max {s(a),s2 (a)}],

Ps+c(a) = [min { s + (a), S + (a)} ,max { s+ (a), S2 (a)}],
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\E (asc (a/ disc (a') (

a7 2 3p(a4 n / (a) R,,(a) >/(a)

sp(a3) s

Figure 10: Left: a and a' are space divergent and space non-overlapping, a' , spa A a' ~spa.

a and a2 are space non-divergent and space overlapping, a' li a A a' o a. a and a2 are

space non-divergent and space overlapping, a'' isp a A a' op a. Right: a and a' are scale

divergent and scale non-overlapping, a't sca A a'
t S ca. a and a' are scale non-divergent

and scale overlapping, a' lIsc a A a' osc a. a and a' are scale non-divergent and scale non-

overlapping, a' lisc a A a' mca.

where s -(a) = s-(ei), st(a) = s+(ei), i = 1, 2. If Rsc(a) = 0, then let ,s-c(a) = ,+c(a) =

1.

8.4 Sufficient condition for compressibility in scale-space

For the following definition refer to Fig. 10 for examples.

Definition 6 Let a, a' be two arcs in A. Then

* a' is non-divergent in space from a, denoted a' lisp a, if

asp(a') n 23p (a) = 0; (38)

* a' is non-divergent in scale from a, denoted a' II,c a, if

asc(a') n Osc(a) = 0; (39)

* a' overlaps a in space, denoted a' osp a, if

[pi(a') E Rsp(a)] V

[p2 (a') C Rsp(a)] V (40)

[ ) n p (a') ) - A0 asp (a')) n 'r2(a) #& 0]
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* a' overlaps a in scale, denoted a' o,,s a, if

sc(a') C Rsc(a) U /s, (a). (41)

Notice that these four relations are not symmetric in general. Most of the proof of the

following result is in appendix B.

Theorem 3 (Sufficient condition for compressibility) Let A be a valid edgel-

graph. If

a' osca a' a p a, a,a' EA, (42)

a' a a' isc a, Va, a' E A, (43)

then, for any two regular paths 7r1 , 72 in A with the same initial vertex and final vertex,

d (T(rl), T(r2)) < min {wSPax (7 2 ) } .

Proof. Let efi and ela be the first and last vertex of rl and 7r2. Clearly, efi.p E Rsp(7rl)

and efi.s c R7s (efi.p). Since 7rl and 72 are regular paths, it follows that gosp(r2)fTSp(w7l) =

0, where Tsp (1l) denotes TSp(efi) U rsp(ela). From (8) we have that sp (a') n R"op(rl) ¢ 0

where a' is the first arc of 7 2. Then, from Proposition 11,

Uas(7 2 ) C Rsp(7l1).

Similarly, by interchanging 7rl with r2 in the above argument,

asp (71) C Rsp (T2)

The result then follows from Proposition 1. D

Let

WSp = max wsp(e).
eEV(A)

Corollary 2 If (42), (43) hold then A is Wsp-compressible.
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8.5 Computing a compressible edgel-graph in scale-space

The algorithm to compute a compressible edgel-graph A* described in Section 5.2 can

be easily adapted to deal with the more general condition of Theorem 3. We still have

A \ At but now At is (compare with (20)):

At = {a E A : 3a' E divsp(a) U divsc(a), OA (a) < OA (a')) (44)

where divsp(a) and div,,s(a) are given by:

divsp(a) = { a'Eia A a'o, a U a' A : a4spa'A a o, a'}; (45)

divsc(a) = {a'Ea A a' a' o, a} U {a' E A : asca' A a osp a'}. (46)

Recall that, for any contour ?y covered by A, OA is said to preserve 7y if Aly c A* (see

Definition 5). The proof of the following proposition is analogous to the corresponding

one in Section 5.2.

Proposition 4 Let -y be a contour covered by A. Then OA preserves y if and only if

ObA(a) > (PA(a'), Va' c divp (a) U divsc(a).

The following result is a generalization of Lemma 1. Recall that ® 0, X0 and So are

the parameters introduced in Definition 3 (covering edgel-graph) and that 01, X1 and

X 2 are parameters satisfying (24)-(26). Furthermore, let

Ldiv = max max max Pi (a) - pj(a') ; (47)aEA a'Edivsp(a)Udivsc(a) i,jE{1,2}

S3 = max max max max Isi(a') - y.s$; (48)
7r aEAI3y a'Edivsp(a) iE{1,2}

X3 = max max max max 1$(pi(a'))J. (49)
7 aEAI-y a'Edivsc(a) iE{1,2}

where $(p) is the signed distance from T(?y) to the the point p. Let us introduce two

constants 0 < S1, S2 which satisfy

S1 < wm in-Sa -So; (50)

S2 > wax SA + So, (51)
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where

WsT = mi n w-c(e); (52)
eEV(A)

Ws5 x max wsc(e), (53)
eEV(A)

and SA is the maximum scale change between the vertices of a valid edgel-arc (see

Definition 1).

Lemma 2 (Preservation of covering arcs) Let A be a valid edgel-graph. Let ry be

a flat contour covered by A. Then qA preserves 7y if for any p, 0, s and p', O', s' we have

O(p, 0, s) > q(p', 0', s') whenever

d(p,T(y)) < Xo, (54)

d(0, y.0) < e 0 , (55)

d(s,T(7y)) < So, (56)

Ilp'-pll < Ldiv, (57)

and at least one of the following three sets of condition hold

d(p' T(y)) E [X 1,X 2 ], (58)

is'-y.sl S3 ; (59)

Is' - 7.sl e [S1, S2] (60)

d(p'- T(-y)) < X 3; (61)

d(p' - T(-y)) < X 1 , (62)

d(0',1 .0) Ž 0o1, (63)

s'-y.sl _< S3. (64)
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Proof. The proof is similar to the proof of Lemma 1. Let y be a flat contour for which

the sufficient condition of the lemma is satisfied. From Proposition 4, we have to prove

that OA(a) > OA(a') for every a E Al y and a' E divsp(a) U div,,(a). Let then a E Aly

and a' E divp(a) U div,,sc(a). One needs to prove that for every i c {1,2} there exists

j E {1, 2) such that

0(pi(a), Oi(a), si(a)) > (pj(at), Oj(a'), sj(a')).

Notice that (54)-(57) are identical to (27)-(30) of Lemma 1. If a' E divsp(a) then the

results follows immediately from Lemma 1 because (59) and (64) follow from (48) and

therefore the trigger condition (58)A(59) implies (31) and (62)A(63)A(64) implies (32).

Let then a' C div,,(a). It is sufficient to prove that for each vertex i of a there exists a

vertex j of a' which satisfies the trigger condition (60)A(61). (61) follows immediately

from (49) for j = 1, 2. From a' E divsc(a) it follows that a' ,Sca V ajsca'. Hence, from

the corollary of Lemma 3 in Appendix C, we have that for each i there exists j such

that

Isi(a) - sj(a')l c [wcin(a, a') - S., wcax(a, a') + Sa] C [Wscin - SA, Wrscax + SA].

Since a E Aly, we have that Isi(a) - s.yl < So, i = 1, 2, and therefore

Isj(a') - .s E [Wsm in - SA - So, s m a x + S/ + So].

From (50) and (51) it follows then that Isj(a') - -. sl E [S1, S2]. °]

9 Experiments

A set of edgels has been computed from the image 11(a) by using the method described

in Section 4.1. The rectangular regions used to estimate the edgels are three pixel long

in the direction of the contour and 21l wide across the contour. Three values of the

parameter IL have been used, 2, 4 and 6. The likelihood indicator has been computed

by assuming the blurred step model (2) and by using regions of width equal to twice
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Figure 11: Polygonal approximations of regular scene contours.
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the estimated blur scale. These edgels are shown in Fig. 3(d),(e),(f). The three sets of

edgels are shown together in Fig. 3(b), where the gray value intensity is proportional

to brightness contrast rather than the likelihood indicator. Fig. 3(c) shows the arcs

obtained by connecting edgels computed from adjacent regions after removing invalid

arcs. Finally, Fig. 11 shows the polygonal approximations of the regular scene contours

obtained by processing each of the three sets of arcs independently from each other.

The parameter wsp(e) has been set to 0.75 for all edgels. The gray value intensity is

proportional to the local brightness contrast.

10 Conclusions and future work

A multiscale probabilistic model of regular scene contours has been proposed, together

with a computationally efficient algorithm to approximate these contours by means

of polygonal curves. An important notion in developing an efficient algorithm which

guarantees high probability of accurate reconstruction is that of a compressible graph.

It has been argued that if the signal to noise ratio in the image is sufficiently high

then, with high probability, the proposed algorithm computes a representation which

is guaranteed to contain at least one good approximation for each scene contour, as

measured by the directed Hausdorff distance.

Future work will focus on using the basic regular-and-visible contour model stud-

ied here to construct composite probabilistic models of more complex contours, such

as contours with corners and junctions and partially invisible (i.e. with low signal to

noise ratio) contours. Our general approach to develop efficient and reliable algorithm

to estimate these complex models is based on three components: composition of de-

scriptors (e.g. arcs composed into paths); pruning of unlikely descriptors (e.g. edgel

thresholding); and compression of equivalent hypotheses.
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A Lemmas for Section 5

For any flat contour -y and X > 0, let Nx(7y) be the neighborhood of -y of radius X:

Nx(7) = {p C R2 : d(p -+ T(y)) < X}.

The following proposition has been proved in [7] (see Lemma 1 in [7]). Recall the

following notation. For any a = (el,e 2 ), let pi(a) = ei.p, Oi(a) = ei.O, wi(a) = w(ei),

etcetera.

Proposition 5 Let y be flat contour; let a E A be such that

pi(a) C Nx (y/), i = 1, 2, (65)

d(Oi(a),%.0) < 01, i -= 1,2 (66)

2X 1
co0 < wi(a), i = 1,2, (67)

COSe01

X 2 -X 1 I > wi(a), i= 1,2. (68)

Then, /+ (a) u/-(a) c Nx2 (Y) \ Nx, (y).

By using this proposition, one can prove the following result. The proof is similar

to the proof of Proposition 4 in [7].

Proposition 6 Let y be a flat contour and let a E Al-y. Let a' C div(a) be such that

d(pi(a') -+ T(y)) < X 1 = d(Oi(a'), y.0) < 01, i = 1, 2. (69)

If

00 < 01, (70)

cos 01
Xo < X 1 < 2 *min {wl (a), w 2 (a),wl(a'), w 2 (a'), (71)

X2 > Xl + max{|IP2(a')-p(a')l , wl(a),W2(a),wl(a'),W2(a) }, (72)

then there exists p' E {pl(a'),p2(a')} such that

d (p' -4 T(y)) E [X1, X2]. (73)
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Figure 12: An edgel-path composed of three arcs a1, a2, a3. Left: the edgel-path's entities

in V2. Right: the edgel-path's entities in the scale domain.

B Lemmas for Section 8.4

Definition 7 A graph for which (42) and (43) hold is said to be separated.

More explicitly, a graph is separated whenever the following conditions are satisfied:

(S1) If Pi (a') E Rp (a) or p2 (a') E Rp (a) then rsc (a') n ,sc (a) = 0.

(S2) If asp(a') n Tsp(a) =A 0 and ursp(a') n T2p(a) = 0 then aCc(a') n 3sc(a) = 0.

(S3) If crsc(a') C Rs (a) U /3sc(a) then asp(a') n /3sp(a) = 0.

For any regular edgel-path 7r with arcs (al,..., an) let

n

s (7) = U p;sc (a),
/=1
n

Asc (7r) = UAs-c (a),
i=l

and let Osc(w) = /s-(7) U s(+c(). Notice that /,s-c() and s+,(w) are connected sets.

Proposition 7 Let ir be a regular edgel-path with arcs (al,... ,an), n > 1, and let

a' = (el, e') be an edgel-arc such that asc(a') n 3sc(7r) = 0 and

n

{el .s, e2.s} n U Rc (ai) 4 0.
i=1
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Then,

n

asc (a') C n Rsc(ai). (74)
i=l

Proof. Without loss of generality, let e'.s E UlI1 Rsc(ai) and let k be such that e'.s c

Rsc(ak), 1 < k < n. Since 4s-c (ak) < Rsc(ak), namely all the real numbers in ,s-c(ak) are

less or equal to any real number in R5c(ak), from e'.s E Rsc(ak) it follows that -c (ak) <

e~.s. Thus, since e'.s E sc (a') and csc(a')n P-c (ak) = 0, we have Os;(ak) < acs(a').

Therefore, since 3 s-c(ak) C 3-c(Tr) and ,-c(-r) is a connected set, from asc(a') ns-3c(wr) = 0

it follows that P3sc(r) < us(a'). Similarly, ,sc(a') < s+c(r). Thus /3s(ai) < acr(a') <

P+C(ai), i = 1,... ,n, that is, ,sc(a') E Rsc(ai), i= 1,..., n. O

The following notation will be used when dealing with properties and assumptions

holding for sets of integers. The set of integers i such that i > k and i < k is denoted

{k,... , l}. If I < k then this set is empty and therefore a property which holds true

Vi E {k,... , I} is always true if I < k. The notation i = k,... , I is equivalent to

k < i < I and therefore requires that k < 1.

Proposition 8 Let wr be a regular path with arcs (al,..., an), n > 1, in a separated

edgel-graph A and let a' = (el, el) E A be an arc such that e'.p c Rsp(a 1), e'.s E Rsc(a,)

and (see Fig. 13(a))

crp(a' ) n-(ai) 5 0, h = 1,2; Vi E {2,. ,n-1}. (75)

Then,

n-1

sc(a') C n Rsc (ai). (76)
i=l

Furthermore, if e'.p E Rsp(an) (see Fig. 13(b)),

n

Usc(a') C n Rsc(ai). (77)
i=l
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(a) (b)

Figure 13: Proposition 8. Condition (75) holds for i = 2: crsp(a') n T%~p(a2) # 0, rsp(a') n

T2p(a 2) 0. By Proposition 8, if e'.s C Rsc(al) this implies that usc(a') C i2l_1 Rsc(ai). In

(b) we also have e'.p E Rsp(a 3) so that rsc(a') C n3=1 Rc(ai).

Proof. From the separation condition (S1) and e'.p E Rsp(al) we have

USC(a) 0n is(a,) = 0. (78)

If n > 3, from (75) and the separation condition (S2) we have

sC(a ) n sc(ai) = 0, i = 2, . .., n- 1 (79)

which, together with (78), yields

,sc(a') n Asc((al,... , an-)) = 0, n > 2, (80)

where (al,..., an_1) denotes the edgel-path with arcs a1,..., an_1. Then, (76) follows

from (80) and Proposition 7.

To prove the second part, let e'.p E Rsp(an). Then, from the separation condition

(S1) we get r,,c(a') n As(an) = 0 and therefore, by combining this with (80), it follows

that r,,(a') n s3c(7) = 0 which, by Proposition 7 implies (77). O

For any regular edgel-path wr and any p E Rp(wr) let Rsr(p) = Rsc(a), where a is the

unique arc in 7r such that p C Rsp(a).
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Figure 14: Proposition 9.

Proposition 9 Let 7r, Ir' be regular paths in a separated edgel-graph A such that sp (7r) C

Rsp(w) and e1.s E RsC(e'.p) where el is the first vertex of ir'. then

e'.s E R'(e'.p)

for every vertex e' of 7r'.

Proof. Refer to Fig. 14. First, let's assume that 7r' consists of one arc a' = (el, e2).

Let {aiI be the arcs of 7r. Let k, 1 be such that el.p E Rsp(ak) and e'.p C Rsp(al).

Without loss of generality, let's assume that I > k (otherwise, interchange el with e2 in

the argument). Notice that, since crsp(v') c Rsp(7r),

casp(a') n 7-h(ai) 0, h= 1,2; Vi {k + 1,. .. ,1 -1.

Thus, from the second part of Proposition 8 applied to the edgel-path (ak,...., al),

asc(a') C Rsc(al)

from which

e2.s C Rsc (a) = Rc(2.p).

For paths with more than arc the result follows by recursion. C:

Proposition 10 Let 7i be a regular path with arcs (al,... , an), ai (ei, ei+l) in a

separated edgel-graph A. Let a' = (el, e) E A. If el.p C Rsp(7r) and el.s c Rsc(el.p)

then asp(a') n 0sp(i) = 0.
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Figure 15: Proposition 10. The situation shown, namely asp(a') nosp() # 0, is prohibited

by the proposition.

Proof. Refer to Fig. 15. Let k be such that el.p E Rsp(ak). For the purpose of

contradiction, let rsp(a')n P0 p(1-) : 0 and let al be the first exit arc for ,sp(a'). That

is, UCr(a') n0 sp(a') ) 0 and

o(a') n A~p(ai) 0, Vi E {k,. . , I-}, (81)

where we have assumed for simplicity that k < I. From the separation condition (S3),

it is sufficient to prove that

ac (a') C RSc(a,) U i (al) (82)

Note that from e'.s C R7c(el.p) = Rsc(ak) and the separation condition (S1) it follows

that

sc (a') C Rsc(ak). (83)

Thus (82) holds if k = 1. If I > k + 1, we will first prove that

ac (a') c Rsc(al_ 1). (84)

If I = k + 1 then (84) follows immediately from (83). If 1 > k + 2 then from (81) we

have

rsp(a') n rh-(ai) 0, h 1, 2; i = k + 1,..., -

46



Tsp 7T(7~~~s( )

Figure 16: Proposition 11. The situation shown, namely ap(-r') ¢ Rsp(wr), is prohibited

by the proposition.

which, together with the first part of Proposition 8, proves (84) for 1 > k + 2. Then,

since Rsc(al-1) = Tsc(e-_1) n Tsc(ei), from (84) we have

Usc(a') C Rsc(al-1) C Tsc(el) C (Tc(el) U Tsc(el+l)) = Rsc(al) U sc(a) ).

For any edgel-path 7r, let Tsp(r) = TSp(efi) U Tsp(ela) where efi and ela and the first

and last vertex of ir. Let R'p(Tr) denote the interior of Rsp(ir) and let sp (7r) denote the

interior of the polygonal line 7sp(-T), namely rsp(Tr) less its two end-points.

Proposition 11 Let 7, wr' be paths in a separated edgel-graph A such that e'.p c Rsp(wr)

and e'.s E Rsc(e'.p) where e' is a vertex of w'. If %°p(r') n Tsp(r) = 0 and asp(7') n

Rs (7r) : 0, then

JSp( r') C Rsp(i-)

and e'.s E Rsc(e'.p) for all the vertices e' of 7F'.

Proof. Refer to Fig. 16. For the purpose of contradiction let us assume that Orsp(7') 

Rsp(7r). Since Rsp(7r) is a closed set, then o p(7r') must contain a point outside Rsp(7r).

Then, since o p('F) n RP(Tir) Z 0, it follows that a'p(7r') must intersect the boundary

of Rsp(7r), which is given by Tsp(7r) U 3sp(7). Since usp(Tr') n TSp(7r) = 0 we must have

S'p(vr') 3n ,sp(r) - 0 and therefore asp(r') n /sp(7) $ 0. For simplicity let us assume

that e' is the first vertex of 7r', e', and that usp(a') n Rsp(7r) Z 0. Let a' be the first arc
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in the path ir' such that asp(at) nA /Sp() 0 0. First, let us prove that

ek.s C R (e.p). (85)

If k = 1 then this follows immediately from el.s E Rs(e .p). If k > 1 we have

asp (7T") C Rsp(ir) where r" is the subpath with arcs a,. , a_ and vertices el,... , ek.

Then (85) follows from Proposition 9. From (85) we have et.s G Rsc(aj) where j is such

that el.p E Rsp, (aj). Then, by substituting a' = (e , e +l) for (e', e') in Proposition 10

one gets a(a) n /(1r) -= which is a contradiction.

C Lemma for Section 8.5

For any a = (el, e2) E A let

wSin(a) - min{wsc(el), wsc(e 2 ) }, (86)

wCaX(a) = max{wsc(el),wsc(e2)}. (87)

Lemma 3 Let a, a' G A be such that a',1sca and

Isl(a) -s 2 (a)l < SA, (88)

IsI(a')-s2((a)I < SN. (89)

Then,

Vj c (1, 2} ,3i E (1, 2}, sj(a') - si(a)l C [w'in(a) - Sa, wmax(a) + SA] (90)

Vi C {1, 2}, 3j C {1, 2}, [sj(a') - si(a)f E [w'in(a) - Sa, wmaX(a) + SA] (91)

Proof. From a' ,jca it follows that

rSC(a') n /sc(a) 0,

that is,

-sc(a') n ((s-c (a) U Ts2c(a)) \ ('rlc(a) n T72c(a))) : 0.
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s2(a) = t2 Sl(a) = tl z s

Figure 17: Some notation for the proof of Lemma 3. z denotes a point in asc(a') sBc(a).

Therefore, there exists z C aS(a') such that z belongs to one of the two intervals Tjs(a)

but not to the other. Without loss of generality, let then z C T-Jc(a), z V Ts2c(a) (see Fig.

17), that is, by letting t1 = si(a), t 2 = s2 (a),

z- t1 < wl(a), - >t2 > w2(a), (92)

from which,

IZ- t < • ax(a), - t 2 | > wc"(a). (93)

Since It1 - t2 l < SA by assumption, (93) yields, by letting w = wm in(a), W2 = wSax(a),

wl- Sa < Iz-tIl < w 2,

W1 < Iz-t 2] < w2+Sa.

Let's introduce the two functions 6i(s') = Is' - tl, i = 1, 2. We have

wl-SA < 61(z) < W 2, (95)

wI < 62 (z) <W 2 + SA. (96)

Notice that

Ii(x) - i(x')l < Ix - zxl, I x, x' G R, i = 1,2, (97)

Also, since ItI - t 21 < Sa,

61(x) - 62(x) < SA, Vx E 1i. (98)
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Figure 18: Lemma 3: existence of t' such that 62(t') < 62(z).

To prove (90) let's fix, t E {tE,t'} = {si(a'), s2 (a')}. Since It' - t' < SA and

z E usc(a') = [t', t'], we have It' -z I < SA and therefore, from (97),

1(tk) -1(z)l < Sa, (99)

2(tk)-562(z)Il < SA. (100)

These, together with (95) and (96) yield

51(t4) < W2 + SA, (101)

wl-SA < 62 (tk). (102)

These two inequalities and 161(tk) - 52(tk)l < S/ (which comes from (98)), imply that

61(t') and J2(t') can not be both outside the interval [wI - SA, w 2 + SA], which proves

(90).

To prove the second part, let's fix tk E {t,,t2} = {s 1(a),s 2(a)}. If k = 1, then let

t' be the point in {t', t'} where the function 61 is greater or equal to 61(z) (one of the

two points has this property because z E [t', t']; notice that t l is the point in {tf, tl}

furthest away from tl). Thus, 61(z) < 61(t') < 61(z) + S/ (the second inequality follows

from (97) and Iz - tl < ItI - t2 < S/x). Then, from (95) we have that 61(tl) is in the

interval [wl - Sa, w 2 + SA].

Let now k = 2. From (96) and (6) we have 62 (z) = ]Z- t2 l > w 1 > SA. Thus, since

z E [t', t'] and It' - tI < SA, by moving on the real axis from z towards t 2 so that 62

decreases, either t' or t' is reached before t 2. Let t' be this point. Clearly, 62 (t') < 62 (Z).

Hence, from z E [t', t'] and It' - t[] < SA, it follows that 62(z) - SA < 62 (t') < 02 (z).

Thus, from (96), 62 (tl) E [wl - SA, w 2 + SA]. O
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Corollary 3 If (88) and (89) hold and a' ,,sa V a ,sca' then

Vi {1, 2},3j C {1, 2}, Isj(a') - si(a)l C [w'sc(a, a') - Sa, wrca(a, a) + Sax.
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