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An Efficient and Provably Correct Algorithm
for the Multiscale Estimation of Image
Contours by Means of Polygonal Lines

Stefano Casadei and Sanjoy Mitter,Fellow, IEEE

Abstract—A large portion of image contours is characterized
by local properties such as sharp variations of the image intensity
across the contour. The integration of local image descriptors esti-
mated by using these local properties into curvilinear descriptors
is a difficult problem from a theoretical viewpoint because of the
combinatorially large number of possible curvilinear descriptors.
To deal with this difficulty, the notion of compressible graphs is
introduced and a contour data model is defined leading to an
efficient linear-time algorithm which provably recovers contours
with an upper bound on the approximation error.

Index Terms—Curve estimation, edge linking, grouping, image
analysis, multiscale edge detection, perceptual organization.

I. INTRODUCTION

M ANY computer vision systems require the estimation
of image contours to represent the edges between

areas of the image with significantly different intensity values
(Fig. 1). The standard theory of edge estimation [5], [12], [29]
represents edges by means of a collection of points which
are characterized as the maxima of the gradient magnitude of
the image intensity in the direction of the gradient. Although
several methods have been proposed to link these point-like
descriptors of edges into curvilinear descriptors [35], [28],
[11], [33], a provably correct algorithm for the curvilinear
representation of edges has never been proposed. By “provably
correct” we mean that the algorithm should generate a list
of curves such that every contour in the image satisfying
a suitable data model is approximated by a curve in the
computed list. In a probabilistic framework, this performance
requirement has to be satisfied with high probability.

Provably correct curve-based edge estimation is more dif-
ficult than its point-based counterpart since the size of the
hypothesis space (i.e., the “volume” of the set of all possible
edge descriptors) is exponential in the image size if curve de-
scriptors are used whereas it is only linear if point descriptors
are used. Thus developing an efficient (i.e., linear time) prov-
ably correct estimation algorithm for curve-based edge repre-
sentation is a challenging problem. One important assumption
that is needed to tackle this problem is that the model which
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relates image contours to the brightness data belocal. More
specifically, it will be assumed that this model guarantees that
every image contour “locally maximizes,” in a noise-robust
sense, an edginess function which can be computed
in linear time from the brightness image by means of a local
and spatially homogeneous procedure. Here, denote im-
age location, orientation and scale, respectively. The function

can be viewed as a generalization of the intensity
gradient. More concretely, an image contour needs to have suf-
ficiently high contrast with respect to the noise amplitude and
needs to have a “well-defined” orientation and scale in order to
“locally maximize” When thesedetectabilitycondi-
tions occur, the image contour is said to besupportedby

The proposed algorithm for contour estimation is based on
a local-to-global strategy in which local (i.e., point-like) con-
tour hypotheses are formulated, locally evaluated, and finally
composed into curvilinear descriptors. These computations are
carried out by using a graph data-structure, callededgel-graph,
whose nodes areedgel-vectors, that is triples of the form

(location, orientation and scale). The crucial property
to develop a linear time algorithm is-compressibilityof the
edgel-graph. A graph is-compressible, or compressible with
accuracy if the Hausdorff distance between any tworegular
paths with the same end-points is less than

A more precise description of the proposed algorithm is as
follows: 1) Compute an edgel-graph dense enough to contain
at least one approximating path near every image contour
with high probability. Typically, since the edgel-graph is
computed by means of a local procedure, this requirement
results in an exponential number of approximating paths
for each image contour. 2) For every node of the graph,
compute the edginess function and the uncertainty
functions sc or which, with
high probability, provide upper bounds to the contour position,
scale and orientation errors (only and sc
are used in the current version of the algorithm). These
functions are computed by comparing an intensity model of
an ideal edge with the intensity data. 3) Reduce the edgel-
graph to an -compressible one by removing certain arcs where

is locally minimum. 4) Finally, compute a complete
set of maximally long paths in the reduced graph such that
any two vertices are connected by exactly one computed path.
It can be proven that the computed set of paths approximates
every image contour with high probability according to the
directed Hausdorff distance.
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Fig. 1. Curve-based representations of image contours computed by the proposed approach (middle) and by more traditional methods (right). The edge
representation on the right has been computed by using the Canny’s algorithm implementation of the Matlab’s image processing toolbox.

This paper, which focusses on the last two parts of the
algorithm just described, is organized as follows. Section II
reviews related work. Section III contains notations and defi-
nitions used throughout the paper. Section IV gives sufficient
conditions for compressibility. Section V contains the defini-
tion of the algorithm. Section VI introduces the detectability
conditions and discusses the performance of the algorithm
in a probabilistic setting. Section VII describes some details
about the implementation of the algorithm and reports some
experimental results. The appendices contain material used to
prove the theoretical results.

II. PREVIOUS WORK

The theoretical analysis of the proposed algorithm is based
on an error distance defined on acurve representation of
contours. Previous work modeled a contour as a set of small
independent fragments which, essentially, reduces edge detec-
tion to a one-dimensional problem. Optimal linear operators
for the estimation of the discontinuity point along the gradient
have been developed for step edges [5], [12], and more
complicated brightness models [29]. Surface fitting methods
have also been proposed [16] which are essentially equivalent
to linear convolution schemes. Substantial work has been
done to assess analytically the one-dimensional estimation
performance of these local edge detectors [32], [31], [18].
However, since most of this performance analysis is carried
out for point-based models of contours only, the stage of
constructing a curve representation from these edge-point
fragments is most of the time rather heuristic, with very
little theoretical analysis of the overall performance of the
algorithm. In the end, performance of the algorithm is usually
assessed by means of human judgment [17].

Several other statistical approaches have been proposed for
contour estimation and image analysis in general [14], [26],
[15], [34]. Most of these methods differ from our statistical
approach in that they are based on Bayes’ formula. That
is, the problem specification must provide a prior density
defined on the desired representation and a conditional density
of the data given this representation. Estimation consists
then in maximizing thea posteriori probability of the rep-

resentation given the data. These methods can incorporate
global information quite effectively but often result in hard
optimization problems. Moreover, these approaches do not
usually provide information about the probability distribution
of the errors. Most variational and regularization approaches
[3], [27], [30], [4] and methods based on criteria such as
minimum description length [22] can also be viewed within
this statistical framework.

Recently, a statistical approach based on multiscale re-
cursive estimation on trees has been proposed which yields
efficient algorithms as well as information about the covariance
of the errors [1]. This method has been successfully applied
to texture modeling and segmentation.

Wavelets provide an important tool to analyze a multiscale
signal [24] and wavelet-based representations can also be used
to model nonstationary processes [21].

The importance of multiscale representations for contour
estimation has been acknowledged for a long time. Some
multiscale algorithms for edge detection proceed in a coarse
to fine fashion [25], [2], [30] whereas others are more similar
to the approach proposed here in that they emphasize the
importance of detectingall the relevant scales [23], with
priority given to the lowest one [13].

The proposed algorithm exploits the curvilinear nature of
contours to augment the information provided by brightness
variation. Relaxation labeling has also been used successfully
for this purpose [28] as well as “snake” and curve evolution
methods [19], [20], [10].

Some of the results in this paper have already been reported
and proven within a nonprobabilistic framework, and under the
assumption that the scale of the contours is fixed and known
[8]. The compressibility condition introduced here is very
similar to the stability property discussed in [7] and [8]. The
new results presented here generalize the notion of efficient
and reliable curve tracking in a graph so that multiple curves
can intersect in the image plane, provided that they can be
separated by some other slowly varying feature (such as scale).
The image contour representation obtained by the proposed
algorithm can be used to efficiently hypothesize corners and
junctions [6]. It can also be used as an intermediate stage of
a more general hierarchical scheme for edge estimation[9].
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(a)

(b)

Fig. 2. (a) A Y-junction gives rise to (b) three image contours. The shaded
areas indicate thedomains of the image contours, namely the areas of
the image where the data is affected by the presence of the contour (see
Section VI-D). Note that the three domains are disjoint.

III. N OTATION, TERMINOLOGY, AND DEFINITIONS

For our purpose, animage contouris a curvilinear edge
in the image which is sufficiently far away from singularities
such as corners and junctions and which has sufficiently strong
brightness contrast with respect to the noise amplitude (see
Fig. 2).

An image contour is denoted and its trace (a subset of
is denoted A set of image contours is denoted

A flat contour is an ideal image contour whose trace
is an infinite straight line. The noise-less brightness model of
a flat contour is translation invariant along the contour. The
orientation of a flat contour is denoted and the scale of
its brightness model is denoted

A contour point hypothesis is represented by a triple
called anedgel-vector, where is a candidate

location in the image plane; is a candidate contour
orientation; and is a candidate contour scale. A pair of
edgel-vectors called anedgel-arc, represents a
contour fragment hypothesis. A set of edgel-vectors,is an
edgel-graphand its vertices are denoted A path in an
edgel-graph, called anedgel-path, is denoted and represents
a curvilinear contour hypothesis.

A. Notation

For the following notation refer to Fig. 3.

Components of .
Vertices of the arc .
Vertices of the path .
Arcs of the path .
Vertices of the edgel-
graph .
Edginess function.
Position uncertainty.

sc sc Scale uncertainty.
Maximum position
uncertainty on a path.
Maximum position
uncertainty in the graph.
Trace of an image contour.
Straight line segment be-
tween and .
Polygonal line with ver-
tices .
Unit versor along .
Unit versor perpendicular
to .
Unit versor parallel to

.
Edgel location displaced to
the left.
Edgel location displaced to
the right.
Straight line segment be-
tween and .

.

.
Lateral (left) segment with
end points

.
Lateral (right) segment
with end points

.
.

.
Closed quadrilateral region
with vertices

.

Attraction basin of .
Smoothness parameters of
a valid edgel-graph (Defi-
nition 5 below).
Accuracy parameters of a
covering edgel-graph (Def-
inition 6 below).
Parameters used to define
the detectability condition
(Definitions 10 and 11).
Arcs in near to (see
Definition 6).

B. Definitions

Definition 1 (Simple Path):A path is simpleif the polyg-
onal line is homeomorphic to a straight line segment
(i.e., if it does not self-intersect).

Definition 2 (Regular Path):An edgel-path is regular if
it is simple and if An
edgel-graph is regular if all paths in it are regular.
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(a)

(b)

Fig. 3. (a) A valid edgel-arca = (v1; v2): (b) an edgel-path� with vertices
v1; � � � ; vl: The shaded area indicates theattraction basinR(�):

Fig. 4. An irregular edgel-path.

Fig. 4 shows an irregular edgel-path. Notice that an edgel-
cycle (or any edgel-path with repeating vertices) is irregular
because and therefore

Definition 3 (Hausdorff Distance):For any two sets
, thedirected Hausdorff distancefrom to ,

denoted is given by

(1)

The undirectedHausdorff distance is given by

(2)

Definition 4 (Compressibility):An edgel-graph is com-
pressible with accuracy, or -compressible, if for any two
regular edgel-paths having the same initial vertex and
the same last vertex we have

Definition 5 (Valid Arc): Let
be constants such that

sc (3)

An edgel-arc is said to bevalid, denoted

if

(4)

(5)

(6)

(7)

(8)

A set of arcs is said to be valid, denoted

if

Definition 6 (Covering Graph):Let be a flat contour. Let
be constants. The graph is

said tocover with accuracies if there exists a
regular path in such that

(9)

and, for

(10)

(11)

(12)

If covers the covering subgraphof , denoted , is
given by the set of arcs whose two verticesand satisfy
(10)–(12).

Definition 7 (Divergent Arcs):Let and be edgel-arcs.
We say that is nondivergent in spacefrom , denoted ,
if If not, then is said to bedivergent in
spacefrom , denoted
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(a) (b)

Fig. 5. (a) Space entities of an edgel-arca: (b) scale entities ofa:

Fig. 6. The relationship ofa with a0

1
; a0

2
; and a0

3
is described in the table. For instance,a and a0

1
are space divergent, space nonoverlapping, scale

divergent and scale nonoverlapping:a0 a ^ a0

1
�=sc a ^ a0 sc a ^ a0

1
�=sc a:

C. Notation and Definitions in Scale-Space

For the following notation refer to Fig. 5.

sc .
sc .

.

.
sc sc .

sc sc sc .
sc sc .
sc sc sc sc .

sc sc sc are defined as follows:

sc sc sc sc if sc
if sc

(13)

If sc is not empty, then sc is composed of two
disjoint connected components, denotedsc sc and
given by

sc

sc

If sc , then let sc sc

Definition 8 (Divergent Arcs):Let be two arcs in
Then

• is nondivergent in space from denoted , if

(14)

• is nondivergent in scale from, denoted sc , if

sc sc (15)

Definition 9 (Overlapping Arcs):Let be two arcs in
Then

• overlaps in space, denoted , if

(16)

• overlaps in scale, denoted sc , if

sc sc sc (17)

IV. SUFFICIENT CONDITIONS FOR COMPRESSIBILITY

A compressible graph is one where all paths between two
vertices are close to each other. In a compressible graph it
is possible to compute, in linear time, a set of paths which
approximate (according to the directed Hausdorff distance)
every other path. This is possible because multiple paths
between two vertices in a compressible graph can always be
safely “compressed” down to a single path.

It turns out that compressibility is a local property of a
graph. That is, there exist sufficient conditions for compress-
ibility which depend only on the geometric relationship of
pairs of neighboring arcs. In the fixed scale case, where the
scale dimension is projected out, two arcs are compatible
(meaning that they do not violate the compressibility con-
dition) if they are nondivergent in space (Theorem 2). This
rules out the possibility of estimating distinct contours passing
through the same neighborhood. Thus junctions can not be
recovered from a compressible graph.

In the scale-space generalization (Theorem 4), two arcs are
compatible if they are nondivergent in space whenever they
overlap in scale (i.e., they have similar scales) and if they are
nondivergent in scale whenever they overlap in space. This
makes it possible to estimate distinct contours passing through
the same neighborhood as long as they can be “separated” by
using the scale dimension.

Whereas the proof of the fixed scale case is simple, the
proof of the scale-space generalization is quite involved and is
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Fig. 7. The three steps of the algorithm (fixed scale case).

reported in Appendix B. The following proposition is needed
to prove both theorems.

Proposition 1: Let be a regular path in and let
Then,

Theorem 2 (Sufficient Condition for Compressibility):Let
be a valid edgel-graph. If

(18)

then, for any two regular paths in with the same
initial vertex and final vertex we have

Corollary 3: If then is com-
pressible with accuracy

Theorem 4 (Sufficient Condition for Compressibility, Multi-
scale Generalization):Let be a valid edgel-graph. If

sc (19)

sc (20)

then, for any two regular paths in with the same
initial vertex and final vertex

Corollary 5: If (19), (20) hold then is compressible with
accuracy

Proof of Theorem 2:From (18) we have
and Let and be the first and last

vertex of and and let

Since the paths are regular, we have

Thus since the boundary of is given by
we have

Then, for is contained in either [where
or in the complement of in

Since is a valid edgel-graph, from (5) it follows that
so that and

The result then follows from Proposition
1.

V. ALGORITHM

The proposed algorithm takes as input an edgel-graph
an edginess function a location uncertainty function

and a scale uncertainty functionsc
sc Its output is a set of polygonal lines represented

by paths in These lines, under appropriate assumptions,
approximate all the image contours with high probability (see
Theorem 9). The three steps of the algorithm are illustrated
in Fig. 7.
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Step I: The first step of the algorithm consists in evaluating
the four relations sc sc on all pairs of edgel-arcs. For
each edgel-arc, only nearby edgel-arcs need to be checked so
that this step can be carried out in linear time in the number
of arcs (assuming an upper bound on the density of arcs per
image area).

Step II: In each pair of arcs violating the compressibility
condition, the arc with minimum edginess is marked for
removal. The reduced graph, denoted , can easily be
shown to be compressible. This step can also be done in linear
time. More precisely, let

(21)

and

sc

sc (22)

sc sc

sc (23)

Then, the reduced compressible graph is given by

sc

(24)

In the fixed scale version of the algorithm we have (compare
with Theorem 2)

(25)

where

(26)

Step III: A recursive procedure is used to extract, in linear
time, one path between any two connected pairs of terminal
vertices of (a vertex isterminal if either its out-degree
or its in-degree is zero). By assuming that is regular
(and hence it does not contain any cycle), it is easy to prove
that the resulting set of paths, denoted ), approximates
every path in with accuracy according to the
directed Hausdorff distance (see Theorem 7).

More precisely, let be the set of paths in with
initial vertex given by the following recursive equation
(assuming that is regular and does not contain any
cycle):

if

if

where is the set of arcs incident from denotes
the path obtained by prepending the arcto ,
for any set of paths is a subset of obtained by selecting

a unique representative among all paths with the same end-
points. Then let

(27)

where denotes the set of vertices in with zero
in-degree. The set can be further compressed by
choosing the longest path in each collection of paths having
one end-point in common.

A. Results

Proposition 6: is compressible with accuracy

Proof: For simplicity, we prove the result in the fixed
scale case. The more general proof is similar. Let be two
edgel-arcs in such that , i.e., Let
us assume, without loss of generality, that Since

, from (25) we have and therefore
Hence, for every pair of edgel-arcs

that is, Then from Corollary 3, it follows
that is compressible with accuracy

Theorem 7: If is regular then for any path in
there exists a path such that

Proof: Let be a path in Since is regular
and does not contain any cycle, is a subpath of some
maximal regular path in whose end-points are
terminal vertices. By definition, contains one path
from to Since is compressible with accuracy

we have Then, from
, it follows that

VI. PERFORMANCE ANALYSIS

A. Assumption on the Edgel-Graph

In order for the proposed algorithm to be able to estimate a
set of image contours, the edgel-graphmust satisfy two
requirements:

• it has to be valid (see Definition 5);
• it must cover every image contour (see Definition

6).

These two requirements involve six parameters:
The first one, , is the maximum

allowed distance in the image plane between two consecutive
vertices in a path. Similarly, and are the maximum
orientation change and the maximum scale change between
two consecutive vertices. The other three parameters,
and are the accuracies with which the image contours

are covered by
In principle, one can construct an edgel-graphsatisfying

these requirements by sampling densely enough the space of
edgel-vectors and by connecting all pairs
of edgel-vectors which form a valid edgel-arc. This construc-
tion yields a valid edgel-graph which covers all image contours
with bounded curvature whose scale parameter changes slowly
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enough along the contour. Such an edgel-graph will be said
to be fully dense.

In practice, to reduce computational costs, a much smaller
edgel-graph derived from the brightness image, has to be
used. It will be assumed that is rich enough to cover each
image contour with high probability. Clearly, a tradeoff
exists between the complexity of and the probability of
covering the contours More precisely, we are going to
assume that the probability that covers with accuracies

is given by

(28)

where is the total length of the contours in This
formula states that the violation of the covering condition is a
Poisson process indexed by the arc-length of each contour and
that the image contours in are independent from each other.
This latter assumption is satisfied if we assume that image
contours are sufficiently distant from each other, namely if
their domains are disjoint.

B. The Detectability Condition

An important result of the work presented here is the
definition of a sufficient condition which guarantees that
image contours can be recovered in linear time from a given
edginess function Roughly speaking, this sufficient
condition requires that be locally maximum near
image contours in a sense which takes into account the fact
that the location of the maxima of fluctuate around
their ideal position due to noise. Furthermore, the uncertainty
functions and sc must provide sufficiently
accurate upper bounds to the amount of fluctuation of these
maxima. An image contour which locally maximizesis the
above sense is said to besupportedby The precise definition
of thisdetectabilitycondition requires the introduction of more
parameters: which must satisfy certain
constraints [see (29)–(31) and (45)–(46)]. Roughly speaking,
the detectability condition is as follows.

• The edginess function is larger in the -
neighborhood of than it is at a suitable range of
distances from , denoted A similar property
is needed in the orientation and scale dimensions. That
is, must be sufficiently low when
and when

• The uncertainty estimates and sc are
upper bounds on the displacement of the maxima of

from the true position and scale parameter of
the nearest image contour.

More precisely, in fixed scale case, the condition is as
follows.

Definition 10 (Detectability Condition): Let
be such that

(29)

(30)

(31)

An image contour is said to besupportedby the edginess
function if for any and we have

whenever

(32)

(33)

(34)

(35)

and at least one of the two following conditions hold true:

(36)

(37)

In (35), is the maximum distance between any two points
over all arc pairs which

violate the compressibility condition. That is,

Violate compress. cond.

C. Results on the Detectability of Image Contours

From Theorem 7, it follows that an image contour
covered by is going to be detected correctly if the reduced
compressible graph also covers The following results
guarantees that the condition introduced in Definition 10 is
sufficient for this to happen. The multiscale generalization is
given by Theorem 10 in Section VI-E.

Theorem 8 (Preservation of Covering Arcs):Let
Let be a flat contour covered

by and supported by according to Definition 10. Let
be given by (25). Then

Proof: Let be a flat contour which satisfies the
detectability condition. From (25), we have to prove that

for every and Let then
and One needs to prove that for every

there exists such that

A stronger statement will be proven, namely that there exists
for which this inequality holds for both

Let us make the following substitutions in (32)–(37):

Notice that since we have that (32)–(34) hold
with the above substitutions for Furthermore, for

and we have from
the definition of Thus both vertices of satisfy (32)–(35).
It remains to prove that at least one of the two vertices of
satisfies either (36) or (37). First, let us assume that

(38)

so that condition (64) of Proposition 12 (in Appendix A)
holds true. Then, from Proposition 12 it follows that one of
the two vertices of satisfies (36). Let then assume that
(38) is false, namely that there exists such that

and Then (37)
is satisfied by
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Fig. 8. Violation of the detectability condition. One instance of(p0; �0) is
such thatx0

2 [X1; X2]: The other one satisfiesx0 < X1 and�0 > �1:

D. Probability of Misdetection

To find an expression for the probability of misdetecting
a set of image contours, let us consider the fixed scale case
and let us assume that the uncertainty functionis constant,

Let us assume that the edginess function
in the neighborhood of a flat image

contour is given by

(39)

where is a monotonically decreasing
function of both variables and is noise. Let be
an edgel-vector which satisfies conditions (32) and (33) of
Theorem 8 (condition (34) can be ignored). Letdenote the
distance from to and let See Fig. 8 for
the notation. A violation of the detectability condition occurs
if there exists such that

and either or where
and By using (39),

can be rewritten as

(40)

Since is a decreasing function and we
have Similarly,

and

Let be the probability that there exists such
that

Similarly, let be the probability that there exists
such that

Then, the probability that the detectability condition is vio-
lated at a specific point along the contour is upper bounded
by Notice that, since

and in the limit
where the variance of the noise goes to zero, the error
probability also goes to zero. Thus in
the noise-free limit case, the algorithm correctly detects all
the image contours covered by

Recall that the Theorem 8 holds for any satisfy-
ing (29)–(31). Since we assumed that the uncertainty function

is constant let us substitute
in (29)–(31). Furthermore, let us assume that is chosen
small enough so that Then, for any fixed and

, let us minimize over all and
satisfying (29)–(31) and let be the optimal error
upper bound. Notice that is the accuracy error with which
contours are reconstructed (compare with Theorem 7) and
is the maximum distance from the contour at which the
edginess function is required to obey the contour model (39).
The -neighborhood of is thedomainof

If the image contains a set of image contoursthen the
domains of these contours must be disjoint so that the edginess
function inside each domain is influenced by exactly one
contour model (compare with Fig. 2). Such a set of contours
is said to beindependent.

We assume that the violation of the detectability condition
is a Poisson process indexed by the contour’s arc-length. Thus
if is a set of independent contours covered by the input
edgel-graph , an upper bound to the probability of violating
the detectability condition (and of misdetecting is given by

(41)

where is a “correlation length” parameter.
By putting together Theorems 7 and 8, and assuming that

the probabilities of violating the covering condition and the
sufficient condition of Theorem 8 are given by (28) and (41),
respectively, we have the following theorem, which holds
under all the assumptions made in this section.

Theorem 9: Let be an independent set of image contours
in the image. If is regular then, with probability at least

for every there exists such that

Notice that in the noise-free limit case, and if is fully
dense, then the above probability estimate converges to one.
Notice also that since the directed Hausdorff distance has been
used to measure the error, the approximating pathcan be
longer than the actual image contour(see Fig. 9).

E. Detectability in Scale-Space

The following result is a generalization of Theorem 8 to the
multiscale case. Let

sc
(42)

(43)

sc
(44)
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Fig. 9. Three different ways a T-junction might be approximated by the algorithm.

Definition 11 (Detectability Condition, Multiscale General-
ization): Let be positive constants such that

sc (45)

sc (46)

and let be such that (29)–(31) hold. An
image contour is said to besupportedby the edginess
function if for any and we have

whenever

(47)

(48)

(49)

(50)

and at least one of the following three sets of conditions hold:

(51)

(52)

(53)

(54)

(55)

(56)

(57)

Theorem 10 (Preservation of Covering Arcs, Multiscale Gen-
eralization): Let Let be a
flat contour covered by and supported by according to
Definition 11. Let be given by (24). Then

Proof: The proof is similar to the proof of Theorem 8.
Let be a flat contour for which the multiscale detectability
condition is satisfied. From (24), we have to prove that

for every and sc
Let then and sc One needs to
prove that for every there exists such that

Notice that (47)–(50) are identical to (32)–(35) of Theorem 8.
If (and therefore then the results
follows immediately from Theorem 8 because (52) and (57)
follow from (43) and therefore the trigger condition (51)
(52) implies (36) and implies (37). Let then

sc It is sufficient to prove that for each vertex
of there exists a vertex of which satisfies the trigger
condition Equation (54) follows immediately
from (44) for From sc it follows that

sc sc Hence, from the corollary of Lemma 18
in Appendix C, we have that for eachthere exists such that

sc sc

sc sc

Since we have that
and therefore

sc sc

From (45) and (46) it follows then that

VII. I MPLEMENTATION DETAILS AND EXPERIMENTS

A. Computation of an Edgel-Graph

One possible method to compute an edgel-graphwhich
covers contours with high probability is to use a traditional
point-based edge detector run at several scales and with
very permissive thresholds. The specific method used in our
implementation is a variant of the facet-model edge detector
[16] and is based on a cubic polynomial approximation, ,
of the brightness model across a contour, , which is
assumed to be a step discontinuity smoothed with a Gaussian
filter of variance

(58)

where denotes the signed distance from the contour. Initially,
for each region, a linear brightness model is used to estimate
the local orientation of the contour. Then, a cubic brightness
model, representing the Taylor expansion of (58), is fitted to a
larger rectangular region (aligned to the estimated orientation
of the contour) to refine the estimate of the location of
the contour and to estimate the scaleand the brightness
intensities The rectangular regions used for the cubic
fit are three pixel long in the direction of the contour and
wide across the contour. Three values of the parameterhave
been used: 2, 4, and 6. Then, every pair of valid edgel-vectors
is connected with an arc. The second column of Fig. 11 shows
two examples of an edgel-graph computed in this way.

B. Edginess Function

The edginess function is computed by least-square
fitting the 2-D generalization of the brightness contour model
(58), denoted to the observed image in
a rectangular region centered at with orientation
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height equal to three pixels and width equal to Then,
is defined as minus the residual of the optimal fit:

(59)

Since is a linear function of and
the minimization in (59) can be performed by linear

convolution with two appropriate filters, which depend on
and Notice that, if a Gaussian noise model is assumed, and
the proper normalization is chosen, then the quantity in (59) is
proportional to the likelihood that a contour with orientation

and scale passes through the point, maximized over the
nuisance parameters and The behavior of near
a contour in the absense of noise is illustrated in Fig. 10.

C. Experimental Results

Fig. 11 shows the polygonal lines obtained by the fixed scale
version of the proposed algorithm. The results are compared
with the output of Canny’s algorithm, as implemented by
Matlab’s image processing toolbox. The function has
been set to pixel everywhere. After experimenting with
several images, we found, quite surprisingly, that this value
is nearly optimal for most images we tested on. Since the
observed value of is a small fraction of a pixel, the bound
on the localization error (see Theorem 9) is about one pixel.
Computation time for the current implementation is a few
milliseconds per pixel.

VIII. C ONCLUSIONS AND FUTURE WORK

Efficient computation of a curvilinear representation of the
edges in an image is a challenging problem from a theoretical
perspective because of the exponential size of the hypothesis
space. An approach based on the notion of compressibility of
a graph has been proposed to deal with curve estimation in a
theoretically sound way and a specific contour model together
with an estimation algorithm have been proposed to solve the
problem in a multiscale setting. Probabilistic analysis of the
performance has been carried out under certain probabilistic
assumptions on the detectability condition. In the noise-free
limit case, the image contours in the model class are recovered
with probability one with an upper bound on the approximation
error, measured by the directed Hausdorff distance.

On the experimental side, the results are mixed. In fact,
whereas on some images the performance of the proposed
algorithm compares favorably with existing methods, the extra
complication of the algorithm needed to make it theoretically
sound does not seem to pay off at the experimental level.
However, the multiscale algorithm has not yet been fully
implemented and therefore it is premature to draw a definitive
conclusion. A possible situation where there might be some
practical gains is when an automatic scale selection mechanism

(a)

(b)

Fig. 10. Sections of the function (x; 0; s); where: (x; �; s) denotes the
edginess function evaluated near a flat contour
 such that
:� = 0; 
:s = 1
and whose brightness model is given by (58) withb1 = �1; b2 = 1; x
denotes the distance to
: (a)  (x; 0; s) as function ofx: (b)  (x; 0; s) as
a function of log s:

is needed. In fact, the proposed algorithm includes curvilinear
constraints in the determination of the scale of the contours.

APPENDIX A
RESULT NEEDED FOR THEPROOF OFTHEOREM 8

For any flat contour and , let be the
neighborhood of of radius

The following proposition has been proven in [8] (see [8,
Lemma 1]).

Proposition 11: Let be a flat contour; let be such
that

(60)

(61)
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(a)

(b)

(c)

Fig. 11. Polygonal approximations of image contours. The gray value intensity in�(�(A)) is proportional to the local brightness contrast. The blur scale
parameter used in each experiment has been chosen to maximize the quality of the result (columns 3 and 4).

(62)

(63)

Then,
By using this proposition, one can prove the following

result. The proof is similar to the proof of [8, Proposition 4].

Proposition 12: Let be a flat contour and let
Let be such that

(64)

(65)

(66)

(67)

then there exists such that

(68)

APPENDIX B
PROOF OF THEOREM 4

Definition 12: A graph for which (19) and (20) hold is said
to be separated.

More explicitly, a graph is separated whenever the following
conditions are satisfied.

(S1) If or then sc
sc
(S2) If and then

sc sc
(S3) If sc sc sc then
For any regular edgel-path with arcs let

sc sc

sc sc

and let sc sc sc Notice that sc and

sc are connected sets (see Fig. 12).
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(a) (b)

Fig. 12. An edgel-path� composed of three arcsa1; a2; a3: (a) the edgel-path’s entities in the image plane. (b) the edgel-path’s entities on the scale axis.

Proposition 13: (Fig. 12) Let be a regular edgel-path
with arcs and let be an
edgel-arc such thatsc sc and

sc

Then

sc sc (69)

Proof: Without loss of generality, let

sc

and let be such that

sc

Since sc sc , namely, all the real numbers in

sc are less or equal to any real number insc ,
from sc it follows that sc
Thus since sc and sc sc ,
we have sc sc Therefore, since sc

sc and sc is a connected set, fromsc
sc it follows that sc sc Similarly,
sc sc Thus

sc sc sc

that is,

sc sc

The following notation will be used when dealing with
properties and assumptions holding for sets of integers. The set
of integers such that and is denoted
If then this set is empty and therefore a property which
holds true is always true if The notation

is equivalent to and therefore requires
that

Fig. 13. Proposition 14.

Proposition 14: (Fig. 13) Let be a regular path with arcs
in a separated edgel-graph and let

be an arc such that
sc and [Fig. 13(a)]

(70)

Then

sc sc (71)

Furthermore, if [Fig. 13(b)],

sc sc (72)

Proof: From the separation condition (S1) and
we have

sc sc (73)

If , from (70) and the separation condition (S2) we have

sc sc (74)

which, together with (73), yields

sc sc (75)

where denotes the edgel-path with arcs
Then, (71) follows from (75) and Proposition

13.
To prove the second part, let Then, from

the separation condition (S1) we getsc sc
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Fig. 14. Proposition 15.

Fig. 15. Proposition 16. The shown geometric configuration, namely
�(a0) \ �(�) 6= ;; is prohibited by the proposition.

and therefore, by combining this with (75), it follows that
sc sc which, by Proposition 13 implies (72).

For any regular edgel-path and any let

sc sc where is the unique arc in such
that

Proposition 15: (Fig. 14) Let be regular paths in a
separated edgel-graph such that and

sc where is the first vertex of . Then

sc

for every vertex of
Proof: First, let us assume that consists of one arc

Let be the arcs of . Let be
such that and Without loss of
generality, let us assume that (otherwise, interchange
with in the argument). Notice that, since

Thus from the second part of Proposition 14 applied to the
edgel-path

sc sc

from which

sc sc

For paths with more than arc the result follows by recursion.

Proposition 16: (Fig. 15) Let be a regular path with arcs
in a separated edgel-graph Let

If and sc then

Fig. 16. Proposition 17. The situation shown, namely�(�0) 6� R(�); is
prohibited by the proposition.

Proof: Let be such that For the purpose
of contradiction, let and let be the first
exit arc for That is, and

(76)

where we have assumed for simplicity that From the
separation condition (S3), it is sufficient to prove that

sc sc sc (77)

Note that from sc sc and the
separation condition (S1) it follows that

sc sc (78)

Thus (77) holds if If , we will first prove that

sc sc (79)

If then (79) follows immediately from (78). If
then from (76) we have

which, together with the first part of Proposition 14, proves
(79) for Then, since sc sc
sc , from (79) we have

sc sc sc sc sc

sc sc

For any edgel-path , let where
and and the first and last vertex of Let denote
the interior of and let denote the interior of the
polygonal line , namely less its two end-points.

Proposition 17: (Fig. 16) Let be paths in a separated
edgel-graph such that and sc
where is a vertex of If and

then

and sc for all the vertices of
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Fig. 17. Some notation for the proof of Lemma 18.z denotes a point in�sc (a0) \ �sc (a):

Proof: For the purpose of contradiction let us assume that
Since is a closed set, then must

contain a point outside Then, since ,
it follows that must intersect the boundary of ,
which is given by Since we
must have and therefore
For simplicity let us assume that is the first vertex of
and that Let be the first arc in the path

such that First, let us prove that

sc (80)

If then this follows immediately from

sc If we have where
is the subpath with arcs and vertices
Then (80) follows from Proposition 15. From (80) we have

sc where is such that Then,
by substituting for in Proposition 16
one gets which is a contradiction.

Proof of Theorem 4:Let and be the first and last
vertex of and Clearly, and

sc Since and are regular paths, it follows that
where denotes From

(5) we have that where is the first arc
of Then, from Proposition 17

Similarly, by interchanging with in the above argument,

The result then follows from Proposition 1.

APPENDIX C
LEMMA FOR SECTION VI-E

For any let

sc sc sc (81)

sc sc sc (82)

Lemma 18: (Fig. 17) Let be such that sc
and

(83)

(84)

Then,

sc sc
(85)

sc sc
(86)

Proof: From sc it follows that

sc sc

that is

sc sc sc sc sc

Therefore, there exists sc such that belongs to one
of the two intervals sc but not to the other. Without loss
of generality, let then sc sc (see Fig. 17),
that is, by letting

sc sc (87)

from which,

sc sc (88)

Since by assumption, (88) yields, by letting

sc sc

(89)

Let us introduce the two functions
We have

(90)

(91)

Notice that

(92)

Also, since

(93)

To prove (85) let us fix
Since and sc we have

and therefore, from (92)

(94)

(95)

These, together with (90) and (91) yield

(96)

(97)

These two inequalities and [which
comes from (93)], imply that and can not be
both outside the interval which proves
(85).
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Fig. 18. Lemma 18: existence oft0
l

such that�2(t0l) � �2(z):

To prove the second part, let us fix
If then let be the point in

where the function is greater or equal to (one of
the two points has this property because notice
that is the point in furthest away from Thus

(the second inequality follows
from (92) and Then, from (90) we
have that is in the interval

Let now From (91) and (3) we have
Thus since and

by moving on the real axis from toward so that
decreases, either or is reached before Let be this
point. Clearly, Hence, from and

it follows that
Thus from (91),

Corollary 19: If (83) and (84) hold and sc sc
then

sc sc
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