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An Efficient and Provably Correct Algorithm
for the Multiscale Estimation of Image
Contours by Means of Polygonal Lines

Stefano Casadei and Sanjoy Mittéellow, IEEE

Abstract—A large portion of image contours is characterized relates image contours to the brightness datdobal. More
by local properties such as sharp variations of the image intensity specifically, it will be assumed that this model guarantees that
across the contour. The integration of local image descriptors esti- every image contour “locally maximizes,” in a noise-robust

mated by using these local properties into curvilinear descriptors . . .
is a difficult problem from a theoretical viewpoint because of the SENS€, an edginess functigi, 6, s) which can be computed

combinatorially large number of possible curvilinear descriptors.  in linear time from the brightness image by means of a local
To deal with this difficulty, the notion of compressible graphs is and spatially homogeneous procedure. Hgré, s denote im-
introduced and a contour data model is defined leading to an age location, orientation and scale, respectively. The function
eff|C|ent linear-time algorithm which .prov.ably recovers contours #(p,6,s) can be viewed as a generalization of the intensity
with an upper bound on the approximation error. 7T .
gradient. More concretely, an image contour needs to have suf-
Index Terms—Curve estimation, edge linking, grouping, image ficiently high contrast with respect to the noise amplitude and
analysis, multiscale edge detection, perceptual organization. needs to have a “well-defined” orientation and scale in order to
“locally maximize” ¢(p, 8, s). When thesealetectabilitycondi-
|. INTRODUCTION tions occur, the image contour is said to sagpportedby ¢.

ANY computer vision systems require the estimation The proposed algorithm for contour estimation is based on

. a local-to-global strategy in which local (i.e., point-like) con-
of image contours to represent the edges betwegn !

. N i . . our hypotheses are formulated, locally evaluated, and finally
areas of the image with significantly different intensity values

(Fig. 1). The standard theory of edge estimation [5], [12], [29(*.:]0mposed into curvilinear descriptors. These computations are

represents edges by means of a collection of points whicf%‘rmad out by using a graph data-strgctur.e, cadiegel-graph
Wr}ose nodes aredgel-vectorsthat is triples of the form

are characterized as the maxima of the gradient magnitude, o 8, s), (location, orientation and scale). The crucial propert
the image intensity in the direction of the gradient. Althoug%’ A ’ : property

. . develop a linear time algorithm iscompressibilityof the
several methods have been proposed to link these point-li & el-araoh. A araph is-compressibleor comoressible with
descriptors of edges into curvilinear descriptors [35], [28 gel-graph. A grap P £ b

[11], [33], a provably correct algorithm for the curvilinear ccuracye, if the Hausdorff distance between any tragular

i “ a{ﬁths with the same end-points is less than
representation of edges has never been proposed. By “prov . o . .
more precise description of the proposed algorithm is as

correct” we mean that the algorithm should generate a IFotIIows: 1) Compute an edgel-graph dense enough to contain

f curv h th ver ntour in the im isfyin o .
of curves such that every contou the image satisfy aq least one approximating path near every image contour

a suitable data model is approximated by a curve in tr\}\%th hiah probability. Tvbically. since the edael-araph is
computed list. In a probabilistic framework, this performanc((:aOm utged E mean)s/. ofyap Iocgll rocedure thig reg ui?ement
requirement has to be satisfied with high probability. P y P ' q

ST .?sults in an exponential number of approximating paths
Provably correct curve-based edge estimation is more c# .
or each image contour. 2) For every node of the graph,

ficult than its point-based counterpart since the size of th ) : ;

) . . ’ . compute the edginess functiaf{p, 8, s) and the uncertainty
hypothesis space (i.e., the “volume” of the set of all possib Snctions P P p which. with
edge descriptors) is exponential in the image size if curve de- w(p,,), wsc (p, 0, 5), wor (p,0, 5), '

scriptors are used whereas it is only linear if point descriptorégh probability, provide upper bounds to the contour position,

are used. Thus developing an efficient (i.e., linear time) prO\S/(-:aIe and orientation errors (only(p, ¢, s) andwsc (p, 9, )
o . are used in the current version of the algorithm). These

ably correct estimation algorithm for curve-based edge repre-" . . . )
o . . functions are computed by comparing an intensity model of
sentation is a challenging problem. One important assumption

that is needed to tackle this problem is that the model whid] ideal edge with th'e intensity data. .3) Redupe the edgel-
graph to are-compressible one by removing certain arcs where

8, s) is locally minimum. 4) Finally, compute a complete
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Fig. 1. Curve-based representations of image contours computed by the proposed approach (middle) and by more traditional methods (right). The edge
representation on the right has been computed by using the Canny’s algorithm implementation of the Matlab’s image processing toolbox.

This paper, which focusses on the last two parts of thesentation given the data. These methods can incorporate
algorithm just described, is organized as follows. Section global information quite effectively but often result in hard
reviews related work. Section Ill contains notations and defiptimization problems. Moreover, these approaches do not
nitions used throughout the paper. Section IV gives sufficiensually provide information about the probability distribution
conditions for compressibility. Section V contains the definisf the errors. Most variational and regularization approaches
tion of the algorithm. Section VI introduces the detectabilitj3], [27], [30], [4] and methods based on criteria such as
conditions and discusses the performance of the algorithminimum description length [22] can also be viewed within
in a probabilistic setting. Section VII describes some detailkis statistical framework.
about the implementation of the algorithm and reports someRecently, a statistical approach based on multiscale re-
experimental results. The appendices contain material usedtwsive estimation on trees has been proposed which yields
prove the theoretical results. efficient algorithms as well as information about the covariance

of the errors [1]. This method has been successfully applied
to texture modeling and segmentation.
Il PREVIOUS WORK Wavelets provide an important tool to analyze a multiscale

The theoretical analysis of the proposed algorithm is basgignal [24] and wavelet-based representations can also be used
on an error distance defined on carve representation of to model nonstationary processes [21].
contours. Previous work modeled a contour as a set of smalllThe importance of multiscale representations for contour
independent fragments which, essentially, reduces edge degstimation has been acknowledged for a long time. Some
tion to a one-dimensional problem. Optimal linear operatorgultiscale algorithms for edge detection proceed in a coarse
for the estimation of the discontinuity point along the gradieito fine fashion [25], [2], [30] whereas others are more similar
have been developed for step edges [5], [12], and mdre the approach proposed here in that they emphasize the
complicated brightness models [29]. Surface fitting methodisportance of detectingll the relevant scales [23], with
have also been proposed [16] which are essentially equivalniprity given to the lowest one [13].
to linear convolution schemes. Substantial work has beenThe proposed algorithm exploits the curvilinear nature of
done to assess analytically the one-dimensional estimati@entours to augment the information provided by brightness
performance of these local edge detectors [32], [31], [18]ariation. Relaxation labeling has also been used successfully
However, since most of this performance analysis is carriéer this purpose [28] as well as “snake” and curve evolution
out for point-based models of contours only, the stage ofethods [19], [20], [10].
constructing a curve representation from these edge-poinfSome of the results in this paper have already been reported
fragments is most of the time rather heuristic, with vergnd proven within a nonprobabilistic framework, and under the
little theoretical analysis of the overall performance of thessumption that the scale of the contours is fixed and known
algorithm. In the end, performance of the algorithm is usuall]. The compressibility condition introduced here is very
assessed by means of human judgment [17]. similar to the stability property discussed in [7] and [8]. The

Several other statistical approaches have been proposednfew results presented here generalize the notion of efficient
contour estimation and image analysis in general [14], [26Ind reliable curve tracking in a graph so that multiple curves
[15], [34]. Most of these methods differ from our statisticatan intersect in the image plane, provided that they can be
approach in that they are based on Bayes' formula. Tregparated by some other slowly varying feature (such as scale).
is, the problem specification must provide a prior densitfhe image contour representation obtained by the proposed
defined on the desired representation and a conditional densilgorithm can be used to efficiently hypothesize corners and
of the data given this representation. Estimation consigtgictions [6]. It can also be used as an intermediate stage of
then in maximizing thea posteriori probability of the rep- a more general hierarchical scheme for edge estimation[9].
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wse (v) = wse (p, 0, s)
Wma (g

= max{w(v): v € V(n)}
Wwmax( A)

= max{w(v): v € V(A)}
a(y) C R?
o(a) c R?

o(m) CcR?

u(v) = (cosv.0,sinv.0)
4, (v) = (sinw.0, — cosv.6)

(@)

R
v
I

singularity

2>

p~(v) =vp—wlv) iL(v)

(b) pT(v) =vp+w) - iy (v)

Fig. 2. (a) A Y-junction gives rise to (b) three image contours. The shaded 9
areas indicate thelomainsof the image contours, namely the areas of 7(v) C IR
the image where the data is affected by the presence of the contour (see

Section VI-D). Note that the three domains are disjoint. Z(
T'a
pi(a

B~ (a) C R?

~—

I1l. NOTATION, TERMINOLOGY, AND DEFINITIONS

For our purpose, aimmage contouris a curvilinear edge
in the image which is sufficiently far away from singularities n 5
such as corners and junctions and which has sufficiently strong{j (@) C R
brightness contrast with respect to the noise amplitude (see
Fig. 2).

An image contour is denotegl and itstrace (a subset of Bla)
IR?) is denoteds (7). A set of image contours is denot&d p)
A flat contour is an ideal image contour whose tragey) (@)
is an infinite straight line. The noise-less brightness model of
a flat contour is translation invariant along the contour. The
orientation of a flat contouy is denotedy.f and the scale of

its brightness model is denoteds. R(r)
A contour point hypothesis is represented by a triple- =R(m.a1)U---UR(r.ar)
(p,#,s), called anedgel-vectarwherep € IR? is a candidate ~ La,©a,Sa
location in the image plané, € [0, 2x] is a candidate contour
orientation; ands > 0 is a candidate contour scale. A pair of
edgel-vectors: = (vy,v2), called anedgel-arg represents a Xy, ©g, Ag

contour fragment hypothesis. A set of edgel-vectarsjs an
edgel-graphand its vertices are denotdd(A). A path in an
edgel-graph, called aedgel-pathis denotedr and represents
a curvilinear contour hypothesis.

X17X27®17®2751752

A. Notation

For the following notation refer to Fig. 3.

Components of.
Vertices of the ara:.

Aly

v.p,v.0,v.s B. Definitions

941

Scale uncertainty.
Maximum position
uncertainty on a path.
Maximum position
uncertainty in the graph.
Trace of an image contour.
Straight line segment be-
tweena.vy.p and a.vo.p.
Polygonal line with ver-
ticesw.vg, -+ -, g .

Unit versor alongw.

Unit versor perpendicular
to v.
Unit
o(a).
Edgel location displaced to
the left.

Edgel location displaced to
the right.

Straight line segment be-
tweenp~(v) andp™(v).
(a) = r(aw;),i = 1,2.
pi(a) =awv,.p; i=12.
Lateral (left) segment with
end points

p~ (aw),p” (avz).

Lateral (right) segment
with end points

pt(avy), pT(aws).

Bla) = f=(a) U fH(a),
B(m) = pla)U---UB(ap).
Closed quadrilateral region
with vertices

p (av1),p (a.v2),
pt(awa), pT(awy).

versor parallel to

Attraction basin ofr.
Smoothness parameters of
a valid edgel-graph (Defi-
nition 5 below).

Accuracy parameters of a
covering edgel-graph (Def-
inition 6 below).
Parameters used to define
the detectability condition
(Definitions 10 and 11).
Arcs in A near toy (see
Definition 6).

Definition 1 (Simple Path):A path is simpleif the polyg-
onal line o(7) is homeomorphic to a straight line segment

a.vy, a. vy

TG, T Vertices of the pathr.

Ty, -, T Arcs of the pathnr. s Y ;

V(A) Vertices of the edgel- (i.e., if it does not self-intersect).

graph A.
Edginess function.
Position uncertainty.

Definition 2 (Regular Path):An edgel-pathr is regular if
it is simple and ifo () N 7(7.v;) = {w.v;.p},i =0,---,1. An
edgel-graph is regular if all paths in it are regular.
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denotedd(U/; — Us) is given by

d(Uy — Uz) = sup d(py — Us)
p1ClUy

= sup inf ||p1 — pol|. Q)
prEl; P2€EU2
The undirectedHausdorff distance is given by
ﬁ’( ) d(Ul, UQ) = max{d(Ul — UQ),d(UQ — Ul)} (2)
a
Definition 4 (Compressibility):An edgel-graphA is com-
pressible with accuracy, or e-compressiblgif for any two
regular edgel-paths, 7> having the same initial vertex and
the same last vertex we have

d(o(m),o(m3)) < €.

(a) Definition 5 (Valid Arc): Let LA>0,04 € [0,7/2],SA>0
be constants such that

Sa <wsc (v), YveV(A). (3)
An edgel-arca is said to bevalid, denoted

a € validarc(La,Oa,SA)

if
t(awy) - @(avz) > cosOa 4)
t(a) - t(av;) >0, 1=1,2 (5)
|a.vi.s — a.va.s| < Sa (6)
|a.v1.p — awa.p|| < La (7)
T(a.v) N7(a.vy) =0. (8)

A set of arcsA is said to be valid, denoted

A € validgraph(La,©a,SA)

a € validarc(Oa, Sa,La), Vae A.

(b)

Fig. 3. (a) A valid edgel-ara = (v1, v3). (b) an edgel-pathr with vertices Definition 6 (Covering Graph):Let v be a flat contour. Let
v1,- -+, v;. The shaded area indicates thraction basini2(). Xy > 0,00 € [0,7r/2], So > 0 be constants. The graph is
said tocover~ with accuraciesXy, G, Sy, if there exists a

T regular pathsr in A such that
Shl et | o d(o(7) = o(r)) < Xo 9)
4] T and, foro < i < I
— d(r.vi.p — o)) < Xo; (10)
' d(7.v;.0,7.0) <© 11
Fig. 4. An irregular edgel-path. (W v 7 ) <Po (1)
|7rw;.s — v.5] < So. (12)

Fig. 4 shows an irregular edgel-path. Notice that an edgdf- A coversy, the covering subgrapfof ~, denotedA|y, is
cycle (or any edgel-path with repeating vertices) is irregul@iven by the set of arcs whose two verticgsand v, satisfy
becauser.vy = 7.v; and therefore (10)—(12).

Definition 7 (Divergent Arcs):Let « and ' be edgel-arcs.
We say thate’ is nondivergent in spaciom a, denotedy/||a,

Definition 3 (Hausdorff Distance)For any two sets if o(a) N G(a’) = 0. If not, thena’ is said to bedivergent in
U1, U,  IR?, thedirected Hausdorff distanciom U; to U, spacefrom a, denoteda’ }f a.

o(m)N7(ww) = o(m)N7(wa) D {rwp, m.v.p}.



CASADEI AND MITTER: EFFICIENT AND PROVABLY CORRECT ALGORITHM

943

r2(a)
‘””*(a)
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@

Fig. 5. (a) Space entities of an edgel-arc (b) scale entities ofa.

. Bzl@) By(a) | . BE@) )
55 (a) s (a) sa(a) s1(a) s;'(a) 57 (a) s
(b)

al  ay aj
gsc{a) osc(ah osc(ay /Y N N
Bzla) _ Ry(a) _ 5i(a) A ¥ NN
ﬁss_) o N Y Y
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Fig. 6. The relationship of: with a},a/,, and a/ is described in the table. For instanee,and a} are space divergent, space nonoverlapping, scale
divergent and scale nonoverlapping: 4 a A aipse a Aa’ fsc a A aipge a.

C. Notation and Definitions in Scale-Space
For the following notation refer to Fig. 5.

s~ (v) s~ (v) = v.s — wsg (v).
sT(v) st(v) = v.s + wsc (v).

s; (a) ( ) = s (aw),i = 1,2
st(a) si(a) = sT(av;),i = 1,2
7sc (v) Tsc (v) = [ ~(v), sT(v)].

éc (@)  7&c (a) = 7s¢ (@), = 1,2.
osc(a) osc(a) = [a v1.8, a.v2.9].
Rsc(a) Rsc(a) = 75c (a ) N ¢ (a).

Bsc (a), Bsc (a), Bc (a) are defined as follows:

Bsc (a) = {%?IC (a) U Téc (a)) \RSC (a)7 :; gzg EZ% i 8
(13)

If Rsc(a) is not empty, thenssc (a) is composed of two
disjoint connected components, denof# (), 53¢ («) and
given by

Bsc (@)
B (@)

= [min{sy (a), s; (a)}, max{s] (a), s5 (a)}]

= [min{s{ (a), 53 ()}, max{sy (a), 53 (@) }].

If Rsc (a) =0, then letfsc (a) = Bde (a) = R.

Definition 8 (Divergent Arcs):Let a,a’ be two arcs inA.
Then

* o/ is nondivergent in space from, denotedd’||a, if

a(ad) N Pla) = 0; (14)

+ ' is nondivergent in scale from, denotedd’||sc a, if

osc (a') N Bsc (a) # 0. (15)

Definition 9 (Overlapping Arcs):Let a,a’ be two arcs in
A. Then

* a’ overlapsa in space, denoted’ ¢ a, if

[’ .v1.p € R(a)] V [d .v2.p € R(a)]
Vio(a)nri(a) #DAala)N7(a) #0]; (16)

» a/ overlapsa in scale, denoted’ ¢s¢ a, if

osc (a’) C Rsc (a) U fBsc (a). a7

IV. SUFFICIENT CONDITIONS FOR COMPRESSIBILITY

A compressible graph is one where all paths between two
vertices are close to each other. In a compressible graph it
is possible to compute, in linear time, a set of paths which
approximate (according to the directed Hausdorff distance)
every other path. This is possible because multiple paths
between two vertices in a compressible graph can always be
safely “compressed” down to a single path.

It turns out that compressibility is a local property of a
graph. That is, there exist sufficient conditions for compress-
ibility which depend only on the geometric relationship of
pairs of neighboring arcs. In the fixed scale case, where the
scale dimension is projected out, two arcs are compatible
(meaning that they do not violate the compressibility con-
dition) if they are nondivergent in space (Theorem 2). This
rules out the possibility of estimating distinct contours passing
through the same neighborhood. Thus junctions can not be
recovered from a compressible graph.

In the scale-space generalization (Theorem 4), two arcs are
compatible if they are nondivergent in space whenever they
overlap in scale (i.e., they have similar scales) and if they are
nondivergent in scale whenever they overlap in space. This
makes it possible to estimate distinct contours passing through
the same neighborhood as long as they can be “separated” by
using the scale dimension.

Whereas the proof of the fixed scale case is simple, the
proof of the scale-space generalization is quite involved and is
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/
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I(Z(A)) step 11 S(A) = A\ AT ~_stepll_— U, B(a)
compute maximal paths compute compressible sub-graph

Fig. 7. The three steps of the algorithm (fixed scale case).

reported in Appendix B. The following proposition is needed  Proof of Theorem 2:From (18) we have (71 )N3(m2) =
to prove both theorems. 0 anda(me) N B(71) = 0. Let vz and vy, be the first and last

Proposition 1: Let = be a regular path im and letp € vertex ofr; and, and let

R(W) Then' O—O(ﬂ-i) = O—(Wi) \ {Uﬁ~p7 U1a~p}7 = 17 2.
d(p — o(m)) < WH*(r). Since the paths;,i = 1,2 are regular, we have
Theorem 2 (Sufficient Condition for Compressibility)et A o°(m;) N r(vg) = 0°(m;) N7 (vi) = 0, i=1,2.

be a valid edgel-graph. If

Thus since the boundary aRk(w;) is given by dR(m;) =
B(m;) U 7(vg) U7(v1,), we have

then, for any two regular paths;,7> in A with the same o°(m1) N OR(ms) = 6°(m2) N OR(my) = 0.

initial vertex and final vertex we have

d(o(m1), o(ma)) < min{W™* (m ), W™ (75)}.

d|la, V(a,a')e Ax A (18)

Then, fori = 1,2, 0°(n;) is contained in eitheR(7;) [where
i = i+ 1(mod 2)] or in the complement of(r;) in R*.
Corollary 3: If d/|ja,V(a.a’) € A x A, then A is com- Since A is a valid edgel-graph, from (5) it follows that

pressible with accuracyV™ax( A). o°(m) N R(m;) # 0,7 = 1,2, so thato®(m) C R(mz) and
o N o 0°(m) C R(w). The result then follows from Proposition
Theorem 4 (Sufficient Condition for Compressibility, Multi 0

scale Generalization):Let A be a valid edgel-graph. If

a osc a=dlla, V(a,a')e Ax A (29) V. ALGORITHM

doa=d|sca, VY(a,d)eAxA (20) The proposed algorithm takes as input an edgel-graph
an edginess function(p, 8, s), a location uncertainty function
w(v) = w(p, d,s) and a scale uncertainty functiensc (v) =
wsc (p, 6, s). Its output is a set of polygonal lines represented
d(o(m1),0(m2)) < min{W™* (1), W™ (73)}. by paths inA. Thes_e lines, under ap_propriate assu_mptions,
approximate all the image contours with high probability (see
Corollary 5: If (19), (20) hold then4 is compressible with Theorem 9). The three steps of the algorithm are illustrated
accuracyWwma=( A). in Fig. 7.

then, for any two regular paths;,n» in A with the same
initial vertex and final vertex
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Step I: The first step of the algorithm consists in evaluating unique representative among all paths with the same end-
the four relationd|, ||sc , ¢,osc on all pairs of edgel-arcs. For points. Then let
each edgel-arc, only nearby edgel-arcs need to be checked so

that this step can be carried out in linear time in the number I(X(A)) = U Qv) (27)
of arcs (assuming an upper bound on the density of arcs per vCVo (S(A))
image area).

Step II: In each pair of arcs violating the compressibiliyvhereVo(¥(A)) denotes the set of vertices Ii(A) with zero
condition, the arc with minimum edginess is marked fdp-degree. The sell(%(A4)) can be further compressed by
removal. The reduced graph, denot&dA), can easily be choosing the longest path in each collection of paths having
shown to be compressible. This step can also be done in [in88€ end-point in common.
time. More precisely, let

. A. Results
$(a) = min{@(a.v1), P(a.vz)} (21) Proposition 6: (A) is compressible with accuracy
and Wmax(A).
Proof: For simplicity, we prove the result in the fixed
div(a) ={d’ € A:d' Jf and osc a} scale case. The more general proof is similar. et be two
Uld € A: alld A / 2 €dgel-arcs in4.such that' € divo(a)_, i.e.a ffavalf a’._Let
) /{a < , afja ao‘f’c <} (22) us assume, without loss of generality, thét) < ¢(a’). Since
divsc (a) ={a’ € A:d’ ffsc aAd'oa} a’ € divg(a), from (25) we haver € A" and thereforex ¢
Ufa € Aialfsc d’ Aaod'}.  (23) X(A). Hence, for every pair of edgel-aresa’ € %(A), d/||a,
_ o that is,o(a) N B(a’) = 0. Then from Corollary 3, it follows
Then, the reduced compressible grapf¥) is given by that X:(A) is compressible with accurady’™2=(A). O
Y(A) =A\ AT Theorem 7:1f X(A) is regular then for any path in

At ={a € A: 3d € div(a) Udivsc (a), ¢(a) < ¢(a’)}. E((A))) tier;/gii(s(,i)a path € II(%(A)) such thatd(o () —
a\m .
(24) Proof: Let = be a path inx(A). SinceX(A) is regular
In the fixed scale version of the algorithm we have (compa‘rrien d .do?s nolt cont;tn. any AcycLe, 'S a dsub!oath of some
with Theorem 2) maximal regular pat |n.E.(. ) whose en —pqlntsﬁ,vla, are
terminal vertices. By definitiorfI(>(4)) contains one path
S(A) = A\ Af frW?m z&)to Ulah Sin;(e ?(/x;l) i(sA )(:)om;;;/essit()f) W_:_t:: ac?uracy
i o . / max we haved(o(n’),o(n)) < WTa(A). Then, from
Al ={a € A:3d" € divo(a), ¢(a) < a)} (D) 1y  5(r), it follows thatd(o(r) — o(#)) < WHax(4).0
where

VI. PERFORMANCE ANALYSIS
divo(a) ={d' € A:d’ faVvald}. (26)

Step Ill: A recursive procedure is used to extract, in Iinea{?' Assumption on the Edgel-Graph
time, one path between any two connected pairs of terminalln order for the proposed algorithm to be able to estimate a
vertices of©(A) (a vertex isterminalif either its out-degree setl’ of image contours, the edgel-graghmust satisfy two
or its in-degree is zero). By assuming tHatA) is regular requirements:
(and hence it does not contain any cycle), it is easy to prove. it has to be valid (see Definition 5);
that the resulting set of paths, denoi@:(A)), approximates  « it must cover every image contoyre I' (see Definition
every path inX(A) with accuracyV™2*( A) according to the 6).

directed Hausdorff distance (see Theorem 7). These two requirements involve six parameters:
_ _l\_/lore precisely., let)(v) be the se'g of paths i_E(A) with. La,©a, Sa, Xo,00, Ag. The first one,L, is the maximum
initial vertex v given by the following recursive equationg|iowed distance in the image plane between two consecutive
(assuming that(A) is regular and does not contain anyertices in a path. Similarly®, and Sa are the maximum

cycle): orientation change and the maximum scale change between
{nil} if Agu(v) = 0 two consecutive vertices. The other three paramef€ssPo,
’ o and A, are the accuracies with which the image contours
Q(v) = { compress U U aor |, I' are c;oyered byA. o
A (8) 7CQavn) In principle, one can construct an edgel-graptsatisfying

if Aoy (v) # 0 these requirements by sampling densely enough the space of
edgel-vectordR? x [0, 271] x [0, 0] and by connecting all pairs
where A, (v) is the set of arcs incident fromt ¢ o7 denotes of edgel-vectors which form a valid edgel-arc. This construc-
the path obtained by prepending the arno =; compress (P), tion yields a valid edgel-graph which covers all image contours
for any set of pathd’, is a subset of” obtained by selecting with bounded curvature whose scale parameter changes slowly
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enough along the contour. Such an edgel-graph will be saidAn image contour is said to besupportedby the edginess

to be fully dense function ¢(p, 8, s) if for any p,6,s and p',¢',s" we have
In practice, to reduce computational costs, a much smallgfp, 8, s) > ¢(p', ¢, s") whenever

edgel-graphA, derived from the brightness image, has to be

used. It will be assumed that is rich enough to cover each dp = (7)) = Xo (32)
image contoury € I with high probability. Clearly, a tradeoff d(0,7.6) <©Oq (33)
exists between the complexity of and the probability of |s — 7.8 €S0 (34)

covering the contourd’. More precisely, we are going to ! ol < Lo 35
N ; : Ip" = pll < Laiv (35)

assume that the probability that coversI® with accuracies

Xo,00, g is given by and at least one of the two following conditions hold true:
4ty (28) d(p’ — o(7)) € [X1, X] (36)

PN N Xo, 00, Ao) d(p,o(v)) < XL Ad(#,7.0) € [01,27]. (37

where 4(I') is the total length of the contours ifi. This In (35), Ly is the maximum distance between any two points
formula states that the violation of the covering condition is@€ o(a),p’ € o(a’), over all arc pairga, a’) € (Ax A) which
Poisson process indexed by the arc-length of each contour &flate the compressibility condition. That is,
tha}t the image contqurs_m are m_dep_endent from each ot_her. Laiy = max{diam(o(a) U o(a')): (a, ),
This latter assumption is satisfied if we assume that image
contours are sufficiently distant from each other, namely if Violate compress. congl.
their domains are disjoint. N

C. Results on the Detectability of Image Contours

B. The Detectability Condition From Theorem 7, it follows that an image contoyr

An important result of the work presented here is thgovered b_yA is going to be detected correctly if_ the reduced
definition of a sufficient condition which guarantees thaiompressible graphi(A) also coversy. The following resuits

image contours can be recovered in linear time from a ginga_ra_\ntees thqt the condition introdu_ced in Definiti_on .10 is
edginess functioms(p, 6, s). Roughly speaking, this sufﬁcientsyﬁ'c'em for this to happen. The multiscale generalization is
condition requires that)(p, 6, s) be locally maximum near given by Theorem 10 in Section VI-E.

image contours in a sense which takes into account the factrheorem 8 (Preservation of Covering Arcd)et A €
that the location of the maxima af(p, ¢, s) fluctuate around validgraph(La,©a,SA). Let v be a flat contour covered
their ideal position due to noise. Furthermore, the uncertairly A and supported by according to Definition 10. LeE(A)
functionsw(p, 8, s) andwsc (p, #, s) must provide sufficiently be given by (25). Themi|y C %(A).

accurate upper bounds to the amount of fluctuation of these Proof: Let v+ be a flat contour which satisfies the
maxima. An image contour which locally maximizgss the detectability condition. From (25), we have to prove that
above sense is said to bepporteddy ¢. The precise definition ¢(a) > ¢(a’) for everya € Aly anda’ € divo(a). Let then

of this detectabilitycondition requires the introduction of moreg € Aly anda’ € dive(a). One needs to prove that for every
parametersX;, X, ©1, 03, 51, 52, which must satisfy certain ; € {1,2} there existsi € {1,2} such that

constraints [see (29)—(31) and (45)—(46)]. Roughly speaking,

the detectatgility éon)digion) is as(foll)ov(vs.)] M ° ¢pi(a), 8i(a), si(a)) > $(p;(a'), 8;(a), 5;(a"))-

» The edginess function(p, 8, s) is larger in the Xo- A stronger statement will be proven, namely that there exists
neighborhood ofy than it is at a suitable range ofj € {1,2} for which this inequality holds for both e {1,2}.
distances fromy, denoted[ X1, X»]. A similar property Let us make the following substitutions in (32)—(3%):=
is needed in the orientation and scale dimensions. Thata),8 = 6;(a),s = s;(a);p’ = p;(a’), 0" = 0;(d’),s =
is, ¢(p, 0, s) must be sufficiently low whedl € [©,,0,] s;(a). Notice that since: € A|y we have that (32)—(34) hold
and whens € [Sq, S3]. with the above substitutions far = 1,2. Furthermore, for

* The uncertainty estimates(p,d, s) andwsc (p,f,s) are ¢ =1,2 andj = 1,2, we have||p;(a) — p;(¢')|| £ Laiv from
upper bounds on the displacement of the maxima tfe definition ofL;,. Thus both vertices of satisfy (32)—(35).
¢(p, 0, s) from the true position and scale parameter df remains to prove that at least one of the two verticeg’of

the nearest image contour. satisfies either (36) or (37). First, let us assume that
fc)lz\(/l)\c;vrse precisely, in fixed scale case, the condition is as d(p; (') — 0(7)) < X1 = d(8;(d'),7.6) < O,
' i=1,2 (38)
Definition 10 (Detectability Condition): Let X;, X, ©; . » ) .

be such that so that condition (64) of Proposition 12 (in Appendix A)
holds true. Then, from Proposition 12 it follows that one of
Op <0y (29) the two vertices ofa’ satisfies (36). Let then assume that

cos 0 (38) is false, namely that there existse {1,2} such that

Ko <Xy < —5—= WHH(A) B0 ipi(a') = (7)) < X1 andd(6;(a’),7.8) > ©.. Then (37)
Xy > X1 +max{La, W™*(A)}. (31) is satisfied by’ v, . a
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Recall that the Theorem 8 holds for aiy, X, ©; satisfy-
ing (29)—(31). Since we assumed that the uncertainty function
w is constant let us substitutd ™in(A) = Wmx(A4) = W
in (29)—(31). Furthermore, let us assume ttat is chosen
small enough so thatn < W. Then, for any fixedX, and
W, let us minimizePZ.(X1) + P2.(©1) over all X; and©;
satisfying (29)-(31) and leF,,.(W, X,) be the optimal error
upper bound. Notice thad” is the accuracy error with which
contours are reconstructed (compare with Theorem 7)Xand
is the maximum distance from the contoufy) at which the
edginess function is required to obey the contour model (39).
The X,-neighborhood of(+) is the domainof ~.
Fig. 8. Violation of the detectability condition. One instance(pf, §') is If the image contains a set of image contoliysthen the
such thats” € [X1, X5]. The other one satisfies’ < X3 anda’ > ©;. domains of these contours must be disjoint so that the edginess
function inside each domain is influenced by exactly one
contour model (compare with Fig. 2). Such a set of contours
] ] - ) . is said to beindependent

To find an expression for the probability of misdetecting \ve assume that the violation of the detectability condition
a set of image contours, let us consider the fixed scale cg$g pojsson process indexed by the contour's arc-length. Thus
and let us assume that the uncertainty functmr_s constant,_ if I is a set of independent contours covered by the input
w(p,6,s) = W. Let us assume that the edginess functiogyge|graph, an upper bound to the probability of violating

¢(p,0,5) = ¢(p,0) in the neighborhood of a flat imageye getectability condition (and of misdetectifigis given by
contour is given by

B(p,8) = P(d(p — o(7)), d(6,7.6) +v(p.6)  (39) 1 exp (— M) g P, X2>) (1)

D. Probability of Misdetection

LCOI‘I‘

where: [0,00] x [0,7] — IR is a monotonically decreasing h
function of both variables and(p, 8) is noise. Let(p,6) be where L
an edgel-vector which satisfies conditions (32) and (33) 8{
Theorem 8 (condition (34) can be ignored). lketlenote the
distance fronmp to () and leta = d(6,~.8). See Fig. 8 for
the notation. A violation of the detectability condition occur
if there exists(p’, §') such thaip(p’, 8") > ¢(p, 8); ||p' — pl| <
Ly and eitherz’ € [ X1, Xo] or 2’ < X3 Ao > ©4, where Theorem 9: Let I be an independent set of image contours
' = d(p) — o(y)) and = d(¢,~.6). By using (39), inthe image. IfS(A) is regular then, with probability at least
o(p',0") > ¢(p,8) can be rewritten as

corr IS @ “correlation length” parameter.

By putting together Theorems 7 and 8, and assuming that
e probabilities of violating the covering condition and the
sufficient condition of Theorem 8 are given by (28) and (41),
éespectively, we have the following theorem, which holds
under all the assumptions made in this section.

“(r) qr) !
v 0) = v(p,0) > Y(z,0) — P ). (40) P <_>\(Xo,@o,Ao) " Lo bgP"“(W’A?))

Sincey is a decreasing function and< Xo, &« < ©o, W (41 eyery v € I' there existsi ¢ TI(2(A)) such that
have (z,a) > (Xo,0). Similarly, ' € [X1,X2] = d(o(7) — (7)) < Xo + W.
/ ! / !
P(a’,a’) < P(X1,0) and 2’ < Xy A > O = Notice that in the noise-free limit case, andAfis fully

Z/’(“7/’0‘/)90 < 9(0,01). - ) , dense, then the above probability estimate converges to one.
Let P2, (X1) be the probability that there exists, ¢’ such  \otice also that since the directed Hausdorff distance has been
that used to measure the error, the approximating gattan be
(!, 0') — 1(p, 8) > (X0, ©0) — $(X1,0). longer than the actual image contour(see Fig. 9).
Similarly, let P2_(©,) be the probability that there exist§ ¢/ E. Detectability in Scale-Space
such that The following result is a generalization of Theorem 8 to the
v(p',0") — v(p, 0) > 1(Xo,00) — 1(0,01). multiscale case. Let

Then, the probability that the detectability condition is vio- Lgiy = max - Iax
lated at a specific point along the contour is upper bounded ocA a'Cdivia)udivsc ()

by Pz.(X1) + P2.(6). Notice that, sincey(Xo,O0) — | max Ipia) — p;(a)| (42)
¥(X1,0) > 0 and y(Xo, Og) — (0,01) > 0, in the limit o ,

where the variance of the noise goes to zero, the error °3 = WX aCAly o' dita) ictis) |si(a’) —.s]  (43)
probability P7 (X1) + P5.(©1) also goes to zero. Thus in ¥, — max max max max

the noise-free limit case, the algorithm correctly detects all Y aCAly @/cdivsc (a) iC(1,2}

the image contours covered by. ~d(pi(a’) — o(7)). (44)
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Fig. 9. Three different ways a T-junction might be approximated by the algorithm.

Definition 11 (Detectability Condition, Multiscale General«’ }fsc aVa #sc o'. Hence, from the corollary of Lemma 18

ization): Let Sy, S2 be positive constants such that in Appendix C, we have that for eac¢hhere existg such that
S1 SWEEH(A) — a = So 45)  [si(a) = s;(a')| € [wEE (a,a') — Sa, wEE(a,a’) + Sal
52 2 WEE™(A) + Sa + 5o (46) C[WEE™ — SA, WEE 4+ S4].

and let Xy, X,,0, be such that (29)-(31) hold. Anginceq e Ay, we have thatis;(a) — sy < So.i = 1,2,
image contoury is said to besupportedby the edginess gnq therefore
function ¢(p,6,s) if for any p,8,s and p’,¢’, s’ we have

P(p,0,s) > ¢(p',¢',s") whenever |s;(a’) — v.5] € [WEED — Sa — So, WEEX + Sa + Sol-
d(p — o(7)) < Xo (47) From (45) and (46) it follows then thafts;(a’) — ~.s| €
d(6,7.6) <Oq (48) [Sl, SQ]. O
|s —7.s] <So (49)
lp" — pl| < Law (50) VII. | MPLEMENTATION DETAILS AND EXPERIMENTS

and at least one of the following three sets of conditions holgz Computation of an Edgel-Graph

d(p' — o(7)) € [X1, X] (51)  One possible method to compute an edgel-graptvhich
|s" — ~.5] <53 (52) covers contours with high probability is to use a traditional
point-based edge detector run at several scales and with
|s" — .| €[S, S2] (53) very permissive thresholds. The specific method used in our
d(p’ — o(v)) < X3 (54) implementation is a variant of the facet-model edge detector
[16] and is based on a cubic polynomial approximatiofx;),
d(p' — o(7)) £Xu (55) of the brightness model across a contogf), which is
d(#',~.0) €01, 27] (56) assumed to be a step discontinuity smoothed with a Gaussian
|s' — 7.5] < Ss. (57) filter of variances

1 e/ 2
Theorem 10 (Preservation of Covering Arcs, Multiscale Gen- Bx) = bi+ (b2 — b)) Vo /_Oo WA du (58)
eralization): Let A € validgraph(La,©a,SA). Lety be a
flat contour covered byl and supported by according to wherex denotes the signed distance from the contour. Initially,
Definition 11. Let>(A) be given by (24). Theni|y C 3(A). for each region, a linear brightness model is used to estimate
Proof: The proof is similar to the proof of Theorem 8.the local orientation of the contour. Then, a cubic brightness
Let v be a flat contour for which the multiscale detectabilitynodel, representing the Taylor expansion of (58), is fitted to a
condition is satisfied. From (24), we have to prove thdarger rectangular region (aligned to the estimated orientation
¢(a) > ¢(a’) for everya € Aly anda’ € div(a) Udivsc (a). of the contour) to refine the estimate of the location of
Let thena € Aly anda’ € div(a) Udivsc (a). One needs to the contour and to estimate the scaleand the brightness
prove that for every € {1, 2} there existg € {1, 2} such that intensitiest;,b,. The rectangular regions used for the cubic
fit are three pixel long in the direction of the contour &id
P(pi(a), 0i(a), si(a)) > ¢(p;(a’),8;(a’), s;(a’)). wide across the contour. Three values of the paranieteave
. . . een used: 2, 4, and 6. Then, every pair of valid edgel-vectors
:;IOCEI,CZ t(rjl]?vt(ELA)J();r(]E(;Ozhaerri;greeg}IC:I dt::z (?5)))_ (tflz'lotfhlhreeosrflg $ connected with an arc. The second column of Fig. 11 shows
o S
follows immediately from Theorem 8 because (52) and (5%\’0 examples of an edgel-graph computed in this way.
follow from (43) and therefore the trigger condition (54) , .
(52) implies (36) and55) A (56) A (57) implies (37). Let then B: Edginess Function
a’ € divsc (a). It is sufficient to prove that for each vertéx  The edginess functiof(p, 6, s) is computed by least-square
of a there exists a vertex of «’ which satisfies the trigger fitting the 2-D generalization of the brightness contour model
condition (53) A (54). Equation (54) follows immediately (58), denotedi(p’|p, 8, s, b1, b2), to the observed imagK-) in
from (44) forj = 1,2. From a’ € divsc (a) it follows that a rectangular regiod(p, 8, s) centered ap, with orientation
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8, height equal to three pixels and width equal4t@ Then,
¢(p, 0, s) is defined as minus the residual of the optimal fit:

#(p,0,s)

. 1
= —min

bibe |R(p,0,s)

1/2
: </ (I(p/) _ﬁ(p/|p79737b17b2))2 dp,) .
R(p,8,s)
(59)

Since S(p'|p,8,s,b1,b2) is a linear function ofb; and
bs, the minimization in (59) can be performed by linear
convolution with two appropriate filters, which depend &n
ands. Notice that, if a Gaussian noise model is assumed, and

the proper normalization is chosen, then the quantity in (59) is =~ X
proportional to the likelihood that a contour with orientation @)

# and scales passes through the poipt maximized over the
nuisance parametebs andb.. The behavior ofp(p, 8, s) near
a contour in the absense of noise is illustrated in Fig. 10.

C. Experimental Results

Fig. 11 shows the polygonal lines obtained by the fixed scale
version of the proposed algorithm. The results are compared
with the output of Canny’s algorithm, as implemented by
Matlab’s image processing toolbox. The functie{v) has
been set td.75 pixel everywhere. After experimenting with
several images, we found, quite surprisingly, that this value
is nearly optimal for most images we tested on. Since the
observed value oK is a small fraction of a pixel, the bound
on the localization error (see Theorem 9) is about one pixel.
Computation time for the current implementation is a few . . . . ‘ . .
milliseconds per pixel. -+ 3 2 Iogs 1 2 3 4

(b)
Fig. 10. Sections of the functiott(x, 0, s), where:¢(x, 8, s) denotes the

Efficient computation of a curvilinear representation of thedginess function evaluated near a flat contpsuch thaty.# = 0,v.s = 1
edges in an image is a challenging problem from a theoretlgagﬂo‘t"égotsﬁe %riggt:fssm m(g?i! (ILS gj‘;‘:”agugi’-:’i)or‘:""g?x_— o 1‘/5)5 0_5)1;3
perspective because of the exponential size of the hypothesknction oflog .
space. An approach based on the notion of compressibility of

a graph has been proposed to deal with curve estimation in a ) ) N
theoretically sound way and a specific contour model togetHeeded. In fact, the proposed algorithm includes curvilinear
with an estimation algorithm have been proposed to solve thanstraints in the determination of the scale of the contours.

problem in a multiscale setting. Probabilistic analysis of the
performance has been carried out under certain probabilistic APPENDIX A
assumptions on the detectability condition. In the noise-free  RESULT NEEDED FOR THEPROOF OF THEOREM 8
limit case, the image contours in the model class are recoveregor any flat contoury and X > 0, let Nx(y) be the
with probability one with an upper bound on the approximatiofejghhorhood ofy of radius X
error, measured by the directed Hausdorff distance.
On the experimental side, the results are mixed. In fact, Nx(v)={p e R*: d(p — o()) < X}
whereas on some images the performance of the proposed , . ,
algorithm compares favorably with existing methods, the ext e following proposition has been proven in [8] (see [8,
complication of the algorithm needed to make it theoreticall'yemma 1])-
sound does not seem to pay off at the experimental level.Proposition 11: Let v be a flat contour; let € A be such
However, the multiscale algorithm has not yet been fulljhat
implemented and therefore it is premature to draw a definitive
conclusion. A possible situation where there might be some pi(a) ENx,(v), =12 (60)
practical gains is when an automatic scale selection mechanism d(6;(a),~.6) <61, 1=1,2 (61)

VIIl. CONCLUSIONS AND FUTURE WORK
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Fig. 11. Polygonal approximations of image contours. The gray value intensifiyXi{A)) is proportional to the local brightness contrast. The blur scale
parameter used in each experiment has been chosen to maximize the quality of the result (columns 3 and 4).

2X,

<wifa), =12 (62) APPENDIX B
cos O PROOF OF THEOREM 4
Ko = Ko > wila), t=12 (63) Definition 12: A graph for which (19) and (20) hold is said
Then, 87 (a) U 8~ (a) C Nx,(v)\ Nx, (7). to be separated

By using this proposition, one can prove the following \jore explicitly, a graph is separated whenever the following
result. The proof is similar to the proof of [8, Proposition 4] -onditions are satisfied.

Proposition 12: Let v be a flat contour and let € Aly. (S1) If pi(a’) € R(a) or pa(a’) € R(a) thenosc (a’) N
Let a’ € divo(a) be such that Bsc (a) = 0.
) ) ‘ (S2) If o(a’) N 7i(a) # 0 and o(a’) N 72(a) # O then
d(pi(a’) = o(7)) £ X1 = d(0:(a'),7.0) <O1.  i=12 55 (a') N Psc(a) = 0.

(64) (S3) Ifosc (a') € Rsc (a)UPsc (a) theno(a')NG(a) = 0.
For any regular edgel-path with arcs(aq, -, a,) let
Oy <O, (65)
cos O . / / "
Xo < X1 < -min{wi (a), wa(a), w1 (a"), we(a)} Bac (1) = U fBsc (a)
(66) izl
Xz > Xy + max{|[pa(a’) — pr(a)]], Ae (m) = A ()
wi (), wa(a), wi(a'), wa(a’)} (67) i=1

1 / ! !
then there existy’ € {p1(’), pz(a’)} such that and letgsc (7) = Bsc (7) UBLe (7). Notice thatBse () and

d(p’ — o(v)) € [X1,X2]. (68) B4 () are connected sets (see Fig. 12).
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Fig. 12. An edgel-patir composed of three ares , a2, a3. (a) the edgel-path’s entities in the image plane. (b) the edgel-path’s entities on the scale axis.

Proposition 13: (Fig. 12) Let = be a regular edgel-path
with arcs (aq,---,a,),n > 1, and leta’ = (v{,v}) be an
edgel-arc such thatsc (a’) N Bsc () = ¥ and

{vl.s,v5.5} N | ) Rsc (a;) # 0.

=1
Then
osc (da') C ﬂ Rsc (a;). (69) Fig. 13. Proposition 14.
=1
Proof: Without loss of generality, let Proposition 14: (Fig. 13) Letx be a regular path with arcs
(a1, --,an),n > 1, in a separated edgel-graph and let
, " ‘ o = (v).vh) € A be an arc such that].p € R(a;),v].s €
vis € U e () Rsc (a1) and [Fig. 13(a)]
NNrt(a; h=1,2; Vie{2---,n—1} (70
and letk be such that a(a’) N 1*(ai) # 0, ,2; Vi€ {2,---,n—1}. (70)
Then
v1.s € Rsc (ag), 1<k <n.

n—1
osc (a') C Rsc (a;). 71
Since fBsc (ar) < Rsc (ax), namely, all the real numbers in sc (@) Dl sc (@) (71)

Psc (ar) are less or equal to any real numberfigc (az),

from v/.s € Rsc(ax) it follows that fgg (ar) < vl.s. Furthermore, ifvyp € R(a,) [Fig. 13(b)],

Thus sincev].s € osc (¢') and osc (a') N Bge (ar) = 0, ) n
we havefsc (ax) < osc (o). Therefore, sincefse (ax) C osc (@) C [ Rsc (ai)- (72)
Bsc (r) and fgc (7) is a connected set, fromrsc (') N i=1
Bsc (m) = 0 it follows that B¢ (7) < osc (a'). Similarly, Proof: From the separation condition (S1) antlp €
osc (a') < fBde (7). Thus R(a;) we have
/38_C (az) < osc (a/) < ﬁg—c (ai)v t=1,--,n, asc (a/) N /3SC (al) =0 (73)
that is If n > 3, from (70) and the separation condition (S2) we have
osc (@) N Bsc (a;) = 0, i=2---,n—1 (74)
osc (a') € Rsc (a;), i=1,---,n. O
which, together with (73), yields
The followmg notation will bg used when_deahng with osc (@) 1 fsc ({ar, - an_1)) = 0, n>2 (75)
properties and assumptions holding for sets of integers. The set
of integersi such that > k andi < k is denoted{k,---,I}. where {(a;,---,a,_1) denotes the edgel-path with arcs

If I <k then this set is empty and therefore a property which,---,a,_1. Then, (71) follows from (75) and Proposition
holds truevi € {k,---,l} is always true it < k. The notation 13.

t =k,---,lis equivalent tot < ¢ <[ and therefore requires To prove the second part, let,.p € R(a,). Then, from
thatk < [. the separation condition (S1) we geic (a’) N Bsc (an) = 0
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Fig. 16. Proposition 17. The situation shown, namelyr’) ¢ R(x), is
prohibited by the proposition.

Proof: Let k be such that].p € R(a;). For the purpose
of contradiction, letz(a’) N (7)) # B and leta; be the first
exit arc foro(a’). That is,o(a’) N B(a;) # ® and

old)npla;)=0, Vielk,---,1-1} (76)

where we have assumed for simplicity tha I. From the
Fig. 15. Proposition 16. The shown geometric configuration, namefyeparation condition (S3), it is sufficient to prove that
o(a") N B(w) # 0, is prohibited by the proposition.

osc (d') C Rsc (ar) U Bsc (ar)- (77)
and therefore, by combining this with (75), it follows that
osc (a')NfPsc (7) = ® which, by Proposition 13 implies (72). Note that from+|.s € RZq(v].p) = Rsc(ax) and the

0 separation condition (S1) it follows that
For any regular edgel-pathr and anyp € R(w) let

REc (p) = Rsc(a), whereq is the unique arc int such osc () C Rsc (ax)- (78)
thatp € R(a).

Proposition 15: (Fig. 14) Letx,«’ be regular paths in a Thus (77) holds ift = I. If [ > k+ 1, we will first prove that
separated edgel-grapth such thato(#’) C R(x) andwv].s €
RZ: (vi.p) wherev] is the first vertex ofr’. Then osc (a') C Rsc (ai—1). (79)

v'.s € Rgc (v'.p) If I = k+ 1 then (79) follows immediately from (78). If
[ > k + 2 then from (76) we have
for every vertexv’ of /.
Proof: First, let us assume that' consists of one arc  o(a’)N7"(a;) #0, h=1,2; i=k+1,---,1-1
a = (v{,v}). Let a1,---,a, be the arcs ofr. Let k,I be
such thatvi.p € R(ax) andvy.p € R(a;). Without loss of which, together with the first part of Proposition 14, proves

generality, let us assume that & (otherwise, interchange,  (79) for I > & + 2. Then, sinceRsc (a—1) = 7sc (vi—1) N
with v4 in the argument). Notice that, sineén’) C R(~) 7sc (v), from (79) we have

o(a)n Th(ai) #0, h=12 Viel{k+1,--,1-1} osc (a') C Rsc (ar—1) C 7sc (vi) C (7sc (v) U rsc (vi41))

=R U S . O
Thus from the second part of Proposition 14 applied to the sc (a) U fisc (ar)

edgel-path{ay, - - -, a;)
For any edgel-pathr, let 7(7) = 7(vg) U 7(v1a) Wherewvg
osc (a') C Rsc (@) and v, and the first and last vertex af. Let R°(w) denote
the interior of R(w) and leto®(w) denote the interior of the
from which polygonal lineo(r), namelyo(r) less its two end-points.

Proposition 17: (Fig. 16) Letw, n’ be paths in a separated
vh.s C Rsc (@) = R (v5.p). / / T (0
edgel-graphA4 such thatv’.p € R(r) andv’.s € RE¢ (v'.p)

_ where +' is a vertex ofx’. If o°(x') N 7(x) = 0 and
For paths with more than arc the result follows by recur&ibn.; ;') 0 Ro(7) # @, then

Proposition 16: (Fig. 15) Letx be a regular path with arcs
(a1, -+, ap),a; = (v;,v;41) in a separated edgel-grapgh Let o(n') C R(n)
a = (v],vs) € A If v{.p € R(n) andvi.s € R&¢ (vi.p) then
o(d) N B(x) = 0. andv].s € R&¢ (vi.p) for all the verticesv} of «’.



CASADEI AND MITTER: EFFICIENT AND PROVABLY CORRECT ALGORITHM 953

osc(a) osc(a’)
2(a)
| vz l Toc(a) i
L Bel@ T i Bk
S2 (a)Y =ty s1(a)=t z s

Fig. 17. Some notation for the proof of Lemma 18.denotes a point irsc (a’) N Bsc (a).

Proof: For the purpose of contradiction let us assume that Vi € {1,2},35 € {1,2},
o(n') ¢ R(w). SinceR(w) is a closed set, thea°(r’) must si(a) — si(a)] € [WER(a) — Sa, wE(a) + Sal.
contain a point outsid&(« ). Then, sinces®(«")NR° (%) # 0, 55() ()] € lugt(a) (@) ]

it follows that o°(#') must intersect the boundary (), _ (86)

which is given byr(r) U 8(x). Sinces®(x’) N 7(r) = B we Proof: Froma' ffsc a it follows that

must haver°(x’) N 3() # ( and therefores(z") N 3(m) # 0. osc (/) N Bsc (a) £ 0

For simplicity let us assume that is the first vertex ofr’, that is

and thato(a} )N R°(w) # 0. Let o}, be the first arc in the path !

«' such thato(aj,) N B(m) # 0. First, let us prove that osc (a') N ((78c (a) Udc () \ (15¢ (@) N 78c (a)) # 0.
v}.5 € RE¢ (v}.p). (80) Therefore, there exists€ osc (a’) such that: belongs to one

If k — 1 then this follows immediately fromvj.s of the two_intervaISréc (a) ilaut not to th2e other. With_out loss

Ric (v,.p). If k > 1 we haveo(r”) C R(r) where " of ge_nerallty, I_et there € 3¢ (a), 2z ¢ 75¢ (o) (see Fig. 17),

is the subpath with arcs,, - - -, a}_, and vertices/,, - - - , v} that is, by lettingt, = s1(a),t2 = s2(a)

Then (80) follows from Proposition 15. From (80) we have |z — t1] < wdc (a), |z = ta] > wdc (a)  (87)

zl;;c.s ebR_sc_(aj)/ wh?r?j /is s)ufch Eh/atv;f.)p_ ePR(aj)._ 'The;]é from which,

y substitutinga), = (v}, v},,) for (v}, v5) in Proposition e in

one getso(aj,) N B(w) = @ which is a contradiction. |z = t1] < wse™(a), |2 = t2] 2 wsc"(a)- (88)
Proof of Theorem 4:Let vz andwvy, be the first and last Since |t - ta| < Sa by assumption, (88) yields, by letting

vertex of 71 and my. Clearly, vg.p € R(m1) andwvg.s € w1 = wi(a),w? = wi(a)

R3¢ (vs.p). Sincem; andw, are regular paths, it follows that wi — Sa < |z —t1] <ws

a°(me)N7(my) = 0, wherer(r; ) denotes(vg )UT (v, ). From < : g 89

(5) we have that(a}) N R°(7;) # 0 whered is the first arc wy < |2 —t2| <wz + Sa. (89)

of 7. Then, from Proposition 17 Let us introduce the two function$(s’) = | — #;],4 = 1, 2.

() C R(m). We have
Similarly, by interchangingr; with 5 in the above argument, wy = Sa <é1(2) < wa (90)
O’(7T1) c R(WQ). wp < (52(2) < wo + Sa. (91)
The result then follows from Proposition 1. O Notice that
[6:(2) — §i(2)| < |z — 2|, Vo2’ €eR, i=1,2. (92)
Also, sincel|t; — ¢ S,
APPENDIX C It 2| < S
LEMMA FOR SECTION VI-E |61(2) — 62(x)| < Sa, VzeR. (93)
For anya = (v1,v2) € A let To prove (85) let us fixty € {t1,15} = {s1(a’), s2(a")}.
; Since|t] — t5| < Sa andz € osc (a') = [t},t,], we have
wse'(a) = min{wsc (v1), wsc (v2)}, 81 T
holt [t — 2| < Sa and therefore, from (92)
wseta) = maxfusc (v), wse ()} (82) 61(t4) — 61(2)] < S, (94)
: (Fig. A
anl(_jemma 18:(Fig. 17) Leta,a’ € A be such that/ Jsc a 162(£1) — 62(2)] < Sa. (95)
151(a) — 52(a)] < Sa (83) These, together with (/90) and (91) yield
[s1(a’) — sa(d)] < Sa. (84) 81(t)) <w2+5a (96)
Then wy — Sa <62(ty). (97)

. . These two inequalities anfb(¢},) — 62(t},)| < Sa [which
Vi€ {1/’2}’5“ < {1’2}min i comes from (93)], imply that,(t;) and é:(¢},) can not be

|sj(a’) — si(a)| € [wsg"(a) — Sa,wsd*(a) + Sal both outside the intervdls; — Sa, ws + Sa], Which proves
(85) (85).
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¥ 62(2) 1
1 1
| w1 ! l
i
:6— SA———>: re—< SA_>:
d - ° o 4
to to + Sa t; tatwy, 2 s
Fig. 18. Lemma 18: existence af such thatéa(t)) < é2(z).
To prove the second part, let us fitx, € {¢1,£2} = [13] J. H. Elder and S. W. Zucker, “Local scale control for edge detection

{s1(a),s2(a)}. If k = 1, then let¢] be the point in{¢},t5}
where the functiony; is greater or equal toé;(z) (one of
the two points has this property because [t/ ¢,]; notice
that ¢; is the point in{t|,t5} furthest away from¢,). Thus
81(z) < 61(t)) < 61(#) + Sa (the second inequality follows
from (92) and|z — ¢;| < |1 — t2| < Sa). Then, from (90) we
have that; (¢)) is in the intervaljw; — Sa, w2 + Sal.

Let now £ = 2. From (91) and (3) we havés(z) =
z—tz| > w1 > Sa. Thus sincez € [, ¢,] and|t] —t5| < Sa,
by moving on the real axis from toward ¢> so that 6,
decreases, eithef or ¢, is reached before,. Let ¢; be this
point. Clearly,8>(#;) < &(z). Hence, fromz € [t],t,] and
[t1 — t5] < Sa, it follows that 82(z) — Sa < 82(¢)) < ba2(2).
Thus from (91),62(¢)) € [w1 — Sa, w2 + Sal. O

Corollary 19: If (83) and (84) hold and’ }fsc aVa fsc
a’ then

Vie {1,2},35 € {1,2}

|s;(a) = si(a)| € [wEE(a,a’) — Sa,

(14]

(18]

[16]

[17]

(18]

[19]

[20]

[21]

wed (a,a’) + Sal-
[22]

[23]
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