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A b s t r a c t  

The role of information in the context of control is a deep issue. To 
get at this, we review Witsenhansen's notions of information patterns 
for control problems. While staying in that basic framework, we then 
use ideas from traditional information theory as we re-examine Wit- 
senhausen's famous "counterexample". In the process, we construct a 
family of nonlinear "quantizing" control laws that can perform infinitely 
better than the best linear policies. 

1 I n t r o d u c t i o n  

In t radi t ional  information theory, a technical notion of information is devel- 
oped tha t  is independent from the actual  use of tha t  information.  Aside from 
its considerable aesthetic appeal,  this body of ideas has proven itself to be 
quite useful in the context of information transmission. However, fundamen-  
tal to most  of the results in information theory is the use of long block lengths 
and letting sequence lengths tend to infinity as a way of gett ing the laws of 
large numbers  to work to reduce uncertainty. In a control context,  the focus 
is on the present. While there is a sense in which all of feedback control is 
about  t rying to reduce uncertainty, a control action must  be applied now and 
we can not afford to wait forever. 

In this report ,  we will a t t empt  to get a handle on the role of information 
in control by revisiting two classic papers.  The  first of these is Witsenhausen ' s  
1971 survey paper  [4] on the "Separat ion of Es t imat ion  and Control  for Dis- 
crete T ime Systems." Here, we will give the essentials of Witsenhausen ' s  
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framework for talking about  stochastic control problems. The key idea is tha t  
of information patterns - -  a formal way of talking about  the issue of "who 
knows what and when do they know it." Using this, we will restate his main 
assertions on the various forms of separation between estimation and control. 
Though the language is general, we will quickly find ourselves talking about  
linear systems with quadratic costs and Gaussian distributions for primitive 
random variables - -  the LQG problem. 

With the basics behind us, we next consider Witsenhansen's 1968 "Coun- 
terexample In Stochastic Optimum Control" [3] which shows how impor tant  
the information pat tern  really is to the control problem. It details a deceptively 
simple 2-stage LQG problem and shows that  when you restrict to memory-  
less control, affine I controllers are no longer sufficient to minimize cost. The  
paper does this by computing the best affine controller and then exhibiting a 
nonlinear control law which does better.  

We then present a simpler family of nonlinear control laws and use them to 
get something much stronger - -  a demonstrat ion that  the ratio of the cost of 
the best affine controller and a nonlinear controller can go to infinity! Then,  
we t ry  to use ideas from information theory to give some intuition as to why 
the affine controllers are suboptimal. At its heart,  the problem seems to boil 
down to one of communication between stages 1 and 2. We argue tha t  the 
restriction to affine controllers is suboptimal because it forces a tension between 
the complexity of the message and the reliability of its transmission. We show 
how the nonlinear controller is able to circumvent this tension, achieving bet ter  
performance. 

2 Separat ion of Es t imat ion  and Control  

In Witsenhausen's classic survey paper [4], he sets out to elucidate the rela- 
tionships between estimation and control for discrete time, Bayesian 2 systems. 
The fundamental  issue stems from the distinction between the control laws and 
the actual realizations of the control variables applied to the system. The de- 
signer chooses the laws to fulfill some objective, and until that  choice is made, 
the control variables are still "random variables to be of yet uncertain status." 

2 . 1  P r o b l e m  F r a m e w o r k  

Witsenhausen considers a general finite-horizon distributed discrete t ime con- 
trol problem. Time goes from 1 to T, there are M observation posts 3 , and K 
control stations 4 The causal sequence is as follows: 

1 Linear plus constant 
2 All "uncertainty" in the system is modeled probabilistically 
3 For example, consider geographically distributed sensors 
4 These usually represent distributed controllers 
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1. Generation of random initial state x0. 

2. Observations of outputs  y~ , . . . , yM = (g~ ( xo , w~ ), . " , gM ( xo, w M  ) ) 

3. Application of controls u~ , . . - ,  u~  

4. Transition to state Xl = f l ( x 0 , v l , U l , - ' '  , u f )  

and then this continues until the final s tate  2~T is reached. 

The uncertainty in the system is modeled by a basic set of independent  
primitive random variables: Xo;Vt ,W'~( t  = 1 , . . . , T ; m  = 1 , . . . , M ) .  The  vt 
enter into the state transition functions ft  and the w~ into the observation 
functions g~ in the obvious ways. 

Finally, the preferences between outcomes are expressed consistently through 
an additive cost function on the state and the controls: ~-']~T= 1 h t (x t ,  u l ,  . . .  , u K ) .  
The goal of the designer is to pick a design 7 specifying control laws "/7 tha t  
select the u~ to minimize the expected cost. F~rthermore,  once all the 77 
are selected, all the variables in the closed loop system become well defined 
random variables. More technically, given a complete design 7 and a pair of 
sets of values for some arbi t rary sets of the output  and control variables, Y 
and U, we have a clearly defined a-field ~'(Y, U; 7) in probabili ty space and 
thus conditional distributions s for all the variables in the system ~ . 

2.2  I n f o r m a t i o n  P a t t e r n s  

As stated above, the problem is still incompletely specified. We need to know 
the sets from which we are allowed to pick the functions 77. Stated informally, 
the key questions are "who knows what when" and "what are they allowed to 
do with that  information?". To formalize the first of these questions, the notion 
of in format ion  pat tern  is defined. This assigns to every control variable u~, 
two sets Yt,k and Ut,k of pairs of indices specifying which observation variables 
y~ and control variables u~ the control law 77 has access to 7 . Generally, 
no restriction is put  on the functional form or range of 77, except the trivial 
one of saying that  it should be measurable over the a-field generated by its 
arguments. However, sometimes it is interesting to  restrict a t tent ion to jointly 
affine 77" 

For the idea of in format ion  pat tern to be useful, we need a notion of equiv- 
alence over it. So, pat terns (Yt,k, Ut,k) and (~,k, /) t ,k)  are equivalent if for any 
design 7 feasible with the first, there is a design ~ feasible with the second 

The underlying probability space and measure are determined by the primitive random 
variables. 

o For example, the conditional probability P(y~ 6 [-1, 1][y~ ---- 7, Y33 ___ 5,u~ = 0.5,7) 
should be defined and make sense 

7 To be precise, "),~ takes as arguments all the y~ and u~ where (T, ~) 6 Yt,k and (0, ~) 6 
Ut,k 
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such tha t  every system variable agrees under  the two designs almost  surely, s 
Witsenhausen next defines some classifications of information patterns. A pat -  
tern is said to have perfect recall if Yt,k C_ Yt+l,k and Ut,k C Ut+l,k. A pa t t e rn  
is said to be classical if it has perfect recall and moreover  Yt,k and  Ut,k are 
independent  of k. ~ We define two related te rms  tha t  will also be useful. A 
pa t t e rn  is said to be perfectly classical if every s ta t ion has knowledge of all 
pas t  outputs  and controls. For the common case when the observation posts  
have a natural  identification with the control s tat ions 1~ , a pa t t e rn  is said to 
be locally classical if every stat ion can remember  all of its past  inputs  and 
outputs .  

Now, the point of these definitions is to begin to get at  the notion tha t  
as long as we have information about  the relevant pas t  control variables and 
outputs ,  we might not need to know all the control laws in order to have well 
defined random variables. Let L be a set of indices (8, k). We use 7L to refer 
to the restriction of design 7 to just  the laws ")'ok. Now, call a triple (Y, U, L) a 
field basis if for any two designs 7, "Y, 7L = "~L implies 5r(Y, U; 7) = ~'(Y, U; "~). 
So, knowledge of the values of these part icular  Y and U together  with knowing 
the laws 7L is sufficient to understand the underlying probabil i ty  space. 11 

2.3 R e s u l t s  

With these definitions in hand, Witsenhausen proceeds to s ta te  11 distinct 
"Assertions" in the paper.  Rather  than  going through all of them, we res ta te  
4 of them tha t  seem most  important .  

This first assertion is perhaps  the most  fundamental ,  and is the basis for 
many  of the separat ion results for linear systems. 

A s s e r t i o n  1 If, for every (t, k), (Yt,k, Ut,k,O) is a field basis, then the given 
feedback control problem is equivalent to a feedforward control problem. 

A feedforward control problem is defined as one in which the observat ion 
functions depend only on the primitive random variables, and not on the ac- 
tual  control variables applied. Let (4, 9, 5, ] , ~ )  be the suitably constructed 

s With respect to the probability measure defined by the basic set of independent random 
variables. 

9 Independence of k means that all the control laws at any given time have access to the 
same information. 

lo In block diagrams for example, for each block there is a natural identification of the 
input arrows with the output ones. 

11 This is not enough to know all the conditional distributions for all the random variables 
in the system. To understand this, consider the following example. For a simple single-input 
single-output scalar system, suppose Y ---- (1, 1), U ---- (1, 1), L ---- 0. Now this is a field basis 
because knowledge of the control law does not tell us anything more about the underlying 
probability space than what we already know by seeing Yl, ul. However, unless we have a 
control law in hand, we can not talk about the conditional distribution of u2. 
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feedforward control problem depending on the same primitive random vari- 
ables as the original problem. The  systems are equivalent if V73 ~ such tha t  
P(u  = ~) = 1 and similarly V~3~/such tha t  P(u  = f~) = 1. 

A s s e r t i o n  2 Consider a problem with perfectly classical information pattern. 
Let Ft be the conditional distribution for xt-1 given all the past outputs and 
applied controls. Then, there is no loss if  we restrict our control laws 7t to 
be of the form: 7t = r where Ct is a function defined over the (possibly 
infinite dimensional) space of distributions for xt-1.  

This second assertion states tha t  the conditional law for the  s ta te  is a 
sufficient statist ic for the purpose of control. Thus,  for a perfect ly classical 
information pat tern ,  a clear separat ion exists between filtering (es t imat ing Ft) 
and control. Although Witsenhausen does not point this out, it is impor tan t  
to note tha t  this assertion rests on the assumpt ion tha t  the pr imit ive r andom 
variables are all independent.  Wi thout  tha t ,  we must  first explicitly augment  
the s ta te  to capture  the dependence before this most  basic separat ion can hold. 

I t  is also impor tan t  to notice tha t  any nontrivial  distr ibuted sys tem will 
not have a perfectly classical information pat tern .  This  will be  brought  out  
sharply in the discussion of the "counterexample" in the next section. 

Assert ion 3 For a perfectly classical linear Gaussian system, the conditional 
distribution of Xt--1 has a Gaussian version with covariance independent of the 
data and mean affine in the data. 

The above assertion tells us tha t  in the case of linear Gaussian systems,  the 
filtering problem can be solved (since Gaussian random variables have their 
distributions parameter ized by the mean and covariance) even if we restrict  
ourselves to t ime-varying affine functions to do the filtering. However, notice 
tha t  no assertion is made about  the form of the control law Ct. For tha t ,  we 
need some ex t ra  assumption on the cost function. 

A s s e r t i o n  4 For a perfectly classical linear system with quadratic cost criteria 12 
consider the same system, except with perfect state observation and setting all 
the primitive random variables vt to their mean values. 13 Let r (xt-1)  be the 
(obviously affine) optimal control law for this simpler system except thinking 
of it as starting at time t with the initial distribution for the state xt-1 being 

12 By quadratic cost we mean that the incremental cost functions ht should be quadratic 
in state xt and in the individual controls u~. 

13 Witsenhausen states this assertion subtly incorrectly in his paper. He says to use the 
same system except "fixing all the primitive random variables at their mean values." This 
is too much of a restriction. To see this, suppose that all the primitive random variables, 
which includes x0, had zero-mean. Then, identically zero control laws r would be optimal 
for this system since everything would be zero. Clearly, this need not be optimal for the 
original problem! 
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a point  mass  at Xt--l. Then, 7t = Ct (Ft) is an optimal control law fo r  the 
original sys tem where $'t is the mean  of  the conditional distribution for  x t - 1 .  

This assertion represents a phenomenon often called "certainty equiva- 
lence". Here, the mean of the conditional distribution is sufficient to determine 
the optimal control action. The variance just  contributes to the expected cost. 
Notice that  here, only the r part  is affine. But for LQG problems with per- 
fectly classical information patterns,  we can combine this assertion with the 
previous one, and so both the r and the $'t are affine. Thus, so are the 
optimal 7t. This is the separation result tha t  we are all most familiar with. 

3 Counterexample 

The natural  question that  arises is whether Witsenhausen is being overly con- 
servative in his separation assertions. For affine control laws to be opt imum, 
do we really need all four of the properties: linear systems, Gaussian prim- 
itive variables, quadratic cost, and perfectly classical information pat terns? 
Tha t  the LQG part  is critical seems clear, but  one may have a doubt  when it 
comes to the perfectly classical information patterns.  To see this, we consider 
Witsenhausen's famous "counterexample" [3]. 

3 . 1  P r o b l e m  

The problem is deceptively simple. Stated using the notat ion above, let us 
consider the problem (k, a) as: 

�9 T = 2  

�9 x is a scalar, with x0 Gaussian - zero mean, variance 0 -2 

�9 The state transition functions: 14 Xl = f l ( xO ,Ul )  = xo + Ul and x2 = 

f (xl, u2 )  = z l  - u2 

�9 The output  equations: Yl = g l (xo)  = xo and y2 = g2(xl) = xi + w  where 
w is a zero mean, unit variance Gaussian random variable. 

�9 The cost expressions: h i ( x ,  u) = k2u 2, h2(x,  u) = x 2 

�9 The information patterns: memoryless 15 : Y1 = {Yl}; U1 = 0 Y2 = 
{Y2}; U2 = @ 

14 We follow W i t s e n h a u s e n ' s  no t a t i on  here.  
15 Recall  t h a t  t he  perfect ly  classical  i n fo rma t ion  p a t t e r n s  for th i s  s y s t e m  would  have  been:  

Y1 = {y l} ;U1  = 0 and  Y2 = {yl,y2};U2 = {Ul} 



In format ion  and Control: Wi t senhausen  Rev is i ted  287 

Before we proceed to analyze the problem as given, consider what  would 
happen if we had a perfectly classical information pat tern.  In tha t  case, we 
could take advantage of the given cost function and achieve zero cost with the 
following affine control laws: ~/l(yl) = 0 and ~/2(y l ,y2 ,u l )  = yl .  

3 . 2  A f l i n e  C o n t r o l s  

We want to now find the best possible affine control laws under the specified 
information pattern.  By inspection, it is clear tha t  since everything has zero- 
mean, they will be linear. 

Let "h(Yt)  = ayl = axo and ?~(y2) = by2. Clearly, Xy will be Ganssian, 
with zero-mean and variance (1 + a)2a 2. So, since h2 is just x22, it is clear 
tha t  the optimal ~/2 = x l  = E(x l l y2 ) .  So, using the familiar propert ies of 

(l+a)2o "2 
sums of Gaussian random variables, b -- 1+(1+a)2~2. We can also compute  

(1+a)% 2 E(h2) = E ( x  2) = E ( ( x l  - s 2) -- 1+(1+~)2~2 Now, we have an expression for 
the expected total  cost: 

(1 + a)2a 2 
k2a2a2 + 1 + (1 + a)2a 2 (1) 

To find the minimum of this expression with respect to a, we take its 
derivative and set it equal to zero. After some simplification, we get the 
equation: 

2k2a2a(1 + a2(1 + a)2) 2 + 2a2(1 + a) = 0 (2) 

We divide through by 2k2a 2 and following Witsenhansen, we let t = a ( l + a )  
to get: 

t 
(t - a)(l + t2) 2 + ~-~ = 0 (3) 

Which we can rewrite as 

t 

(1 + 
- k 2 ( a  - t) (4) 

Now, let us compute them for the case k = 0.1, a -=- 10. We can see 
graphically where the solutions will be in Figures 1 and 2. Numerically, we 
find that  the optimal value for t is 9.899 which results in a = -0 .0101 and 
total  cost = 0.99. 
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Figure  1: Expec ted  cost  vs t pa r ame te r  

3.3 Nonl inear  Controls  

As an al ternat ive,  Wi t senhausen  suggests  t h a t  we t ry  the nonl inear  controllers:  16 

")'1 (Yl) = - Y l  + a sgn (y l )  (5) 

So, at  the  end of  the first stage, Xl is a two-point  d is t r ibut ion at  :t:a depend ing  
on the sign of  x0. 

")'2 (Y2) = atanh(ay2). (6) 

We analyze the result ing expected costs, t e rm by term. E(hl )  = k2E((xo - 
asgn(x0))2) .  Simplifying this, we get  2k2a2(1 - E ( [ ~ I ) ) .  But  since ~ is jus t  

a uni t -var iance Gaussian,  E(hl )  = 2k2~2(1 - y / 2 ) .  The  second term,  E (h2 )  = 

E(x~) ,  can no t  be evaluated symbolically. But ,  after  some simplifications: 17 
w 

/_ 4-o~ (1 - tanh(a 2 + a w ) )  2 ,~2 
E(h2)  = o 2 e---2-dw (7) 

Set t ing k = 0.1 and  a = 10 as before, we compu te  numerical ly  t h a t  the  
expected cost  is: 0.404. Compare  this with the  best  value possible with affine 

18 Witsenhausen motivates these controllers by showing that this form (with a replaced 
with an adjustable parameter a) is optimal if x0 had been chosen as being :~a with proba- 
bility �89 each. In this case, the first control pushes out the state, and the second control is 
the optimum response to the resulting two-point distribution. 

17 Witsenhausen simplifies this further, but since we were going to integrate it numerically 
anyway, there was no point in getting bogged down in additional unnecessary manipulations. 
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Figure 2: Graphical setting of the first derivative to zero 

controllers, 0.99! The nonlinear controller is more than twice as good as the 
best affine control law. Is 

3 .4  " Q u a n t i z i n g "  C o n t r o l l e r s  

We would like to point out that Witsenhausen's example non-linear controllers 
are unnecessarily confusing - -  the integrals and hyperbolic functions obfuscate 
the essential simplicity of what is going on. Consider the following controller 
pair that is much clearer and still close to Witsenhausen's pair: 

7 (y1) =-yl+asgn(yl) 

7 (y2)=osgn(y2) 
(8) 

(9) 

We can think of this as a 1-bit quantizer, followed by simple ML decoding. 
Now, by close inspection we can see that for large a, the expected cost at 
the second stage is nearly zero since it is equal to 4a2P~(a) where Pe is the 

i s  No c la im is m a d e  for the  op t ima l i t y  of  th i s  non l inea r  control ler .  In fact  W i t s e n h a u s e n  
says  t h a t  we can  numer ica l ly  cons t ruc t  even be t t e r  non l inea r  control lers  for th i s  p rob lem.  
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probability of decoding error at the second stage. But Pc obviously dies off 

as e - ~  since it is the integral of a tail of a Gaussian random variable. No 
integrals need to be computed. Furthermore, we see that we only needed 1 sim- 
ple nonlinear element (the sgn function - -  a comparator) for each controller, 
making the practical significance of these results clearer. This phenomenon 
is not something that we need "complicated" nonlinearities to take advantage 
of. 

Building on the intuition given above, consider the following family of 
"quantizing" controllers, parametrized by a single number B. 19 

1 
 B(yl) = -Y, + BL-  + 5J 

1 
7~(y2) = BI B + 5.l 

(10) 

(11) 

The first stage takes the input and "quantizes" it into bins of size B. The 
decoder then just looks to see which bin the value is in. Consider now a series 
of problems (k, a ) ,  and non-linear controllers as follows: 

1 
k. - n2 (12) 

a ,  = n 2 (13) 

B ,  = n (14) 

For our purposes, the analysis of the performance of these controllers is 
also simple. The first stage cost is k2E((71B(Xo)) 2) which by inspection can 

k 2 B  2 certainly be bounded by ---T- since the absolute value of the control is clearly 
bounded above by ~. Since, k ,B  n 2  2 = n~, the first stage cost tends to zero in 
this sequence. 

For the second stage, we notice that since the bin size B grows as n while 
the variance of the observation noise w stays fixed at 1, that the second stage 
cost is zero, unless the noise w has magnitude greater than ~ = ~. But since 
w is Gaussian, this tail event happens with a probability that tends to zero as 

. 2  
e - T .  So, in the limit of large n, the second stage cost is zero as well. Thus: 

lim E(J~I7 B-) -- 0 (15) 
n--+oo 

19 This  family has an impor tan t  role to play in another  si tuation as well. Consider the 
paramater ized pair (ct*71B(y), f l*(y--TB(y))) .  It can be shown [1] tha t  based on appropriate  
choices of (c~, fl, B)  this pair of joint source-channel encoders, together with suitable decoders, 
can achieve higher end-to-end distortion meeting a given power constraint  for a 2 dimensional  
AWGN channel than  is possible with the best linear encoding. In fact, as power tends to 
infinity, the non-linear encoder/decoder 's  distortion tends to zero faster t h a n t h e  best linear 
encoder/decoder 's  distortion. 
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But what  happens to the affine cost? Examining Equation 1, and substi- 
tuting, we have: 

Clearly, 

E(J, ,17.m.,  ) = a 2 + 
(1 + a) 2 

1 + (1 + a) 2 (16) 

lim E(J.I%,~.~) = a 2 + 1 (17) 
n--~oo 

And so, we can see that  the minimum cost is achieved by setting a to  zero, 
giving us: 

lim E(J.17b~.t.m.~ ) = 1 (18) 
n-~oo 

So, the ratio E(Jr, l'ybe,t,rfln,) tends to infinity! E(J.I~,'-) 

3 . 5  D i s c u s s i o n  

We have seen that  in the case of this particular information pat tern,  a nonlinear 
controller can be superior to the best linear one. Can we get any intuition as 
to why this situation arose? 

It seems that  since the cost of control in stage 2 is zero, all tha t  mat te red  
at the second stage was how well it could predict xl .  Also, by not penalizing 
the state and keeping the cost of control in stage 1 low, we were effectively 
giving the first stage a lot of freedom in setting xl  and a strong incentive to 
view the output  Xl purely as a way to communicate over a Gaussian channel 
with the second stage about  the state. This coincidence of the message u~ and 
the messenger 21 is what is causing this seemingly strange behavior. 

Ideally, what we would like is for the message to be simple (ie low entropy 
= informative prior 22 ) so that  there is less-information for the decoder to t ry  
and extract  from the signal. However, to get the message across intact,  we 
would like the messenger to have high-energy so that  the signal-to-noise rat io 
is favorable (high mutual information = informative likelihoods 2s ). Unfortu- 
nately, when we restrict ourselves to affine controllers for this problem, these 
two objectives are in direct opposition. An affine controller implies Gaussian 
state and for a Gaussian random variable, high energy implies high entropy 
and low entropy implies low energy. If you look at the plot in Figure 1, you 
will see tha t  the two minima correspond to exactly these two cases. In the one 

2O x l  is exac t ly  w h a t  we want  to c o m m u n i c a t e  to  the  second s tage .  
21 x l  is also t he  i npu t  to t he  "channel"  
22 T h e  in tu i t ion  involved is t h a t  low en t ropy  impl ies  less unpredic tab i l i ty .  Less  unp re -  

d ic tabi l i ty  m e a n s  t h a t  our  pr ior  knowledge is qu i t e  s t rong .  
23 T h e  in tu i t ion  for t he  case of  s ignal l ing  is t h a t  we wan t  to reduce  t h e  effect of  t h e  

noise.  We do th i s  by hav ing  a large m u t u a l  i n fo rma t ion  be tween  t he  i n p u t  and  o u t p u t  
of  the  channel .  Us ing  the  t e r m s  of hypo thes i s - t e s t i ng ,  t h i s  m e a n s  t h a t  we would  like our  
"l ikelihood" t e r m s  to be s t rong ly  d i sc r imina t ing .  
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near  t = 0, the entropy of Xl is low. In the other  one near t -- a = 10, the 
power in xl  is high. 

The  nonlinear controllers have no such tension and they t ry  to achieve 
the best  of both.  The  resulting Xl has differential entropy equal to zero 24 , 
and still manages  to have significant power - -  allowing the messenger to be 
decoded over the noise with a low probabil i ty of error. So, the cost can be 
driven all the way to zero. 

4 Conc lus ion  

Fundamentally,  we can now say tha t  even through the general stochastic con- 
trol problem formulation gives us a single cost function for the control objec- 
tive, there seem to be intrinsically three distinct things going on natura l ly  in 
the closed-loop system. 

. The  first and most  obvious is the overt control-objective itself. We want 
to use information in order to keep the s ta te  and control small in some 
sense. 

. The  second is estimation. The  system needs to have good es t imates  of 
the t rue  s ta te  to be able to act.  This  can be viewed as aggregat ing 
information. 

3. The  third is communication. Different par ts  of the system need to share 
information. 

The  impor tance  of the first two is widely recognized (Dual control, etc.), 
but  the Witsenhausen counterexample effectively shows how a problem with 
non-classical information pa t te rn  really has a strong communicat ion aspect  to 
it. I t  also showed by example tha t  the class of affine functions may  not have 
sufficient freedom to do a good job in balancing the various factors involved 
and hence will not  lead to opt imal  solutions. We are currently looking a t  
control problems tha t  explicitly contain a communicat ions channel[2]. 
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