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Perceptual organization provides an intermediate representation
of data by means of object- and goal-independent information. The
lack of complete information makes perceptual organization an in-
trinsically ambiguous process which invalidates the uniqueness as-
sumption and requires instead the generation of multiple solutions.
This raises the issue of eliminating redundancies which, in a recur-
sive algorithm, might otherwise cause combinatorial explosion of
the search space. These aspects of perceptual organization are illus-
trated in the context of cycle detection in a contour graph. A provab-
ly correct algorithm for this problem is proposed. c© 1999 Academic Press

1. INTRODUCTION
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An important component of many vision systems consist
organizing image descriptors into collections which are lik
to originate from the same source in the scene (e.g., from
same object). To a certain degree, the computation of these
lections can be accomplished by means ofgeneric(i.e., object-
independent) information so that this process can be use
an intermediate step toward object recognition [21]. Sev
decades ago Kanizsa [19] observed that generic properti
collections of contours, such as proximity, continuity, simil
ity, closure, and symmetry, are used by the human visual sy
to organize contour fragments into collections which give ris
the perception of objects. These properties have also been
ied by many computer vision researchers and are used in se
computer vision algorithms. The grouping of image descrip
according to the above properties is often referred to asper-
ceptual organizationand is based on the statistical assump
that these properties are more likely to occur among fragm
arising from the same source (nonaccidentalness principle)
21]. A good review and classification scheme for percep
organization work in computer vision can be found in [29].

Providing a mathematical formulation for the problem of p
ceptual organization has proven to be a very elusive task. A
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representation should be. In fact, by restricting the available
formation to being generic, i.e., independent of what objects
in the scene, there remains a substantial intrinsic ambiguit
the interpretation of the data which can not be resolved with
artificial assumptions. Thus the goal of perceptual organiza
should be to enumerate all interpretations which are consis
with the data and the available information, leaving the task
eliminating intrinsic ambiguities to higher levels of processin

Instead, many approaches to perceptual organization are b
on optimizationof a suitable cost functional and therefore a
sume that a unique solution exists and is obtainable by me
of the available generic information. For instance, some gra
based formulations of contour grouping seek an optimal p
between every pair of points [12], thus assuming that there
ists at most one contour between any two pointsand that this
unique contour can be recovered unambiguously by mean
the generic information available at the perceptual organiza
level. Figure 8 in Section 5 shows an example of an imag
which multiple contours exist between two points.

An alternative to optimization which overcomes the uniqu
ness assumption consists of exhaustive enumeration of a
terpretations (e.g., contour groupings) which satisfy a cer
criterion. For example, in the specific problem of graph-ba
contour grouping, one can seek all the paths between any pa
points which have nonnegligible probability of being near a t
contour. In the context of perceptual organization, one restr
this probability to depend only on object-independent featu
such as proximity, colinearity, and similarity.

A major difficulty in this approach is that the cardinality o
the sets of entities satisfying the criterion can become expo
tially large as their spatial extent grows. In our contour gro
ing example, it is possible to argue that, due to the prese
of multiple responses to the same object, the average num
of “good” paths between two points depends exponentially
the number of vertices on the path. Roughly speaking, thi
because the number of paths betweenp1 and p2 is given by
N(p1, p2)= N(p1, p3)N(p3, p2) if p3 is a point on the path
1077-3142/99 $30.00
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FIG. 1. The clustering condition in theR2 domain (forε given by the diameter of the dashed circles). (left) A set of ten points satisfying the condition. For
for any three pointsp1, p2, p3 in the set, ifd(p1, p2)≤ ε andd(p2, p3)≤ ε thend(p1, p3)≤ ε. (right) a set which does not satisfy the condition. The cluster
condition allows one to prune a finite setSby using only local tests. Consider for instance the following algorithm. Order the setSarbitrarily; i.e.,S={p1, . . . , pn}.
Let S0= S. Fork= 1, . . . , N check whetherSk−1\{pk} contains a point in theε-neighborhood ofpk (this is a local test). If yes, then letSk= Sk−1\{pk}, otherwise

let Sk= Sk−1. If S is ε-clustered then this procedure yields a setSN whichε-covers the original setS= S0 and whose points are separated by a distance of at least
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ε. Notice that on the set on the right this greedy procedure prunes all point

from p1 to p2 andN(p,q) denotes the number of paths betwe
p andq. The phenomenon of multiple responses to the sa
object, illustrated in Fig. 3, seems to arise in many domains [
4, 5, 2].

Whereas optimization methods deal with multiple respon
in a quite natural way by simply retaining a unique respon
the more general enumeration approach pursued here has to
with the combinatorial redundancy problem in a more expli
way. We suspect that the issue of eliminating redundancie
a fundamental one when one is attempting to represent am
guities explicitly. Granted that the information available at t
perceptual organization level is insufficient to resolve cert
ambiguities, it is natural to ask whether this information is at le
sufficient to represent these ambiguities efficiently. A way to
swer this question affirmatively is to assume that the availa
information makes it possible to enforce aclusteringcondition
(see Fig. 1) on the set of all possible interpretations. This c
dition ensures that redundant interpretations can be prune
means of local computations without compromising the co
pleteness of the computed representation. Here, complete
refers to the requirement that all viable interpretations be (
proximately) represented.

This paper presents a provably correct algorithm for the
tection of salient cycles with the intent to illustrate the abo
issues both theoretically and experimentally. Here “salient
cles” refers to cycles with certain geometric properties for wh
the probability of beingε-near to ascene contour(i.e., a contour
in the image which corresponds to a boundary in the scene
sufficiently high, as encoded by a certain functionPε(π ). It is
not our goal to demonstrate that this specific function captu
the human perception of saliency.

The paper is organized as follows. Some previous rela
work is reviewed in Section 2. Section 3 describes the gr

data-structure on which the algorithm operates, and Sectio
describes the algorithm and states the main theoretical res
except for one (p8).
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Experiments are shown in the next section, which is follow
by the conclusions. The appendices contain formal definitio
and the proof of the main theorem.

2. PREVIOUS WORK

The problem of representing salient contours by search
paths in a graph has been approached by means of dynamic
gramming methods in [32, 34, 12, 31]. The algorithm propos
here provides a technique which overcomes the limitations of
namic programming methods. First, multiple paths between
vertices can be represented; second, the cost function doe
need to be decomposable into a sum over the vertices of the p
The structure of the proposed algorithm is quite different fro
dynamic programming and is based on recursive path concat
tion. The price for removing these restrictions is that more me
ory resources are needed since paths need to be stored expl

An approach to perceptual organization similar to ours, i
where the goal is to detect all grouping satisfying a certain cr
rion, has been proposed in [18]. The algorithm described th
provably recovers all convex sets of line segments in which
length of the line segments accounts for at least some given
portion of the length of the convex hull. Our work places mo
emphasis on the elimination of the combinatorial redundanc
caused by multiple responses to the same contour (see als
5]). Similar issues have also been studied in the context of ob
recognition [2].

Other graph-based grouping algorithms have been propo
in the context of figure–background separation [1, 33, 27]. Th
algorithms compute a bipartition of the graph which minimiz
some measure of the similarity between the two partitions re
tive to the similaritywithin each partition.

Recursive composition of contour descriptors, which is

n 4
ult.
important ingredient of the algorithm described here and of
the more general approach of which it is part [3, 5, 6], is a
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well-known methodology for visual interpretation [22, 30, 1
23]. Usually, these descriptors are organized into hierarc
of boundary representations of increasing complexity, ed
points, contour fragments, regions, etc. (see, for instance, Fig
The contour models underlying these descriptors become m
general as one moves up in the hierarchy. For instance
low level might contain only smooth and high contrast conto
whereas higher levels model also illusory contours and sin
larities (corners and junctions). In this hierarchical approa
uncertainties which can not be resolved at one level are pr
gated to the higher levels, where more contextual informatio
available to resolve them.

Typically, perceptual organization cues are employed at
ferent levels of the hierarchy according to their scale. Proxim
and smoothness occur at a small scale and are utilized a
lowest levels of the hierarchy. Colinearity and cocircularity o
cur at different scales depending on the size of the gap betw
contour fragments and on the curvature of contours. Many a
rithms exploit colinearity and cocircularity [26, 24, 25, 16, 1
20]. A semilocal convexity constraint can significantly simpli
the search for contours [18], and convex contours can be
as primitives to construct more complex contours. Closure [
and symmetry [8, 9] are global properties of contours. Still a
higher level, the occlusion relationship between sets of cont
[24, 25, 37, 13, 36] can be exploited.

The strategy of deferring hard decisions (if any) until sufficie
“soft” information has been processed is widespread in perc
tual organization algorithms. For instance, the Hough transf
and similar methods collect votes in a suitable contour par
eter space and then detect the most voted contours [15]. Vo
methods can also be used to detect sets of contour fragm
with similar attributes [30]. Some approaches estimate exp
itly the probabilities of contour hypotheses and use these
mates to focus the search [28, 10, 8, 14, 12]. Relaxation labe
is a powerful iterative technique to propagate and accumu
soft information [26]. Convolution with suitable kernels is
biologically motivated approach for accumulating evidence
contours [16, 20]. Spectral graph methods use the weight
the arcs of a graph to encode the similarity between image
gions in a “soft” fashion, before a segmentation of the imag
computed [33, 20]. Approaches motivated by statistical phy
represent relationships between contour fragments by mea
coupling constants and then formulate perceptual organiza
as a combinatorial optimization problem which can be solved
using techniques borrowed from statistical mechanics [17,
A combinatorial formulation by means of integer programmi
has also been proposed [35, 36].

3. THE CONTOUR GRAPH

The input to the proposed algorithm consists of a tri
(C, A, Pε), where (C, A) is a directed graph whose verticesC
are contour fragments andPε, ε >0, is a family of [0, 1]-valued

functions defined on the family of paths in (C, A). For every
pathπ, Pε(π ) represents the probability that there exists a sc
ENESS ASSUMPTION 21
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contourε-near the pathπ . The algorithm also requires the spe
ification of two thresholds,ε >0 andδ >0. Paths with the sam
end-vertices and which are less thanε apart are considered t
be generated by the same scene contour. A pathπ for which
P2ε(π ) is less thanδ will be neglected and pruned out by th
algorithm.

An example of a contour graph employed by the proposed
gorithm is illustrated by Figs. 2 and 3. The multistage algorit
used to compute contour graphs is illustrated by Fig. 4 wit
16× 16 subimage (this image contains only simple edges
therefore does not really motivate the need for contour gra
see Figs. 2 and 3 for this purpose). The vertices of the con
graph (Fig. 2, top right, and Fig. 3, middle panels) consis
smooth fragments of contours where the brightness contra
large enough to ensure reliable and efficient estimation by me
of local operators. Here, “smooth” contour fragments refers
portions of contours away from singularities such as corn
(includingcurvaturediscontinuities) and junctions.

To complete contours it is necessary to hypothesize sev
hiddencontour fragments (see Fig. 2, bottom, and Fig. 3, ri
panels). These hidden contours represent portions of con
with low or zero brightness contrast and contour fragme
near singularities such as corners and T-junctions. Hidden
tours are represented by the arcs of the contour graph (C, A).
An arca= (c1, c2) represents the hypotheses that the two c
tour fragmentsc1 andc2 are consecutive segments of the sa
contour.

In order for the contour graph to contain, with high probabili
at least one path for every scene contour, it is necessary to
pothesize many hidden contours, which results in a large num
of arcs in the graph. Most of the hypothesized hidden conto
do not correspond to a scene contour (as most of the ver
do not). Moreover, it often occurs that contour fragments c
taining hidden portions are represented more than once.
is illustrated by the a-b-c-d and m-n-o-p portions of the la
boundary (Fig. 3). Thus the challenge faced by the propo
algorithm is to compute a small number of paths in the gra
(small relative to the total number of paths) in such a way t
each scene contour is approximated by at least one path i
computed representation.

4. DESCRIPTION OF THE ALGORITHM

The strategy of the algorithm is to generate increasingly lon
paths and to use the functionPε(·) to prune out implausible path
(the assumption being that more global information is availa
to test longer paths so that most of the long spurious paths
be eventually pruned out). Moreover, whenever two paths w
the same end-vertices are less thanε apart from each other
one of the two paths is pruned out to eliminate redundanc
The ε-clustering condition is invoked to ensure that this do
not compromise the completeness of the final representa
ene
Figure 5 illustrates why nearby paths with different end-vertices
should not be compressed down.
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FIG. 2. Contour graph. (top) A brightness image (left), a 160× 160 subimage of it, and the 196 polygonal contours extracted by the algorithm described
These contours are segmented into “smooth” primitives, which form the vertices of the contour graph (there are 1448 of them in this example). Moese
contours have very low brightness contrast (encoded into the gray level of the contours) and do not belong to any significant part of the scene. Noticowever,
that some of the vertices on the contour of the lamp (“d,” “h,” top right) have low contrast too. (bottom-left) The arcs of the graph, which corresponthe
hypothesized hidden contours. For instance, notice the six arcs leaving from the lower end of the vertex “a” (more clearly visible in the bottom-rightpanel and in
o
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Fig. 3). (bottom-right) Fourteen vertices (“a” through “p”) forming the cont
also shown.

One component of the algorithm organizes the construc
of increasingly longer paths in a systematic fashion. To this
pose, the set of verticesC is given an arbitrary “raster” orde
represented by the integer-valued functionρ: C→ [1, . . . , N],
whereN is the cardinality ofC. This function specifies the ord
in which vertices are “visited” by the algorithm. Right befo
the kth step of the algorithm, 1≤ k≤ N, only paths travers

ing vertices with raster indices less thank are allowed. Then,
thekth iteration concatenates paths terminating at thekth ver-
ur of the lamp. For each of these vertices, all the out-arcs and the relative vertices are

tion
ur-
,

r
re

tex with paths starting at thekth vertex so that paths travers
ing the firstk vertices are allowed at the end of thekth itera-
tion.

To simplify the presentation of the algorithm we only consid
the representation of closed contours. This assumption el
nates the problem of testing whether a contour is maximal. T
the objective of the algorithm is to generate a sampling of

set of cycles in the graph so that every cycle corresponding to
a scene contour is approximated by a cycle in the computed
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FIG. 3. Three enlargements from Fig. 2. The panels in each enlargement illustrate the subimage, the vertices of the graph, and the arcs, respectively. Iniddle

panels the gray level encodes the contrast of the contours. In the right panels vertices are black and arcs are gray. Thicker contours are those belonging to the lamp
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of
boundary in Fig. 2, bottom-right. The circled numbers denote the out-degre
equivalent paths (“multiple responses to the same contour”): ad≡ abcd≡ acd; m

sample (with high probability). Furthermore, we restrict o
selves to simple cycles, that is, cycles with nonrepeating verti
The set of simple paths in (C, A) is denotedS(C, A).

It should be noted that once the raster order functionρ has
been fixed, each cycle can be recursively decomposed in a un
way by splitting paths at the vertex with highest raster index. T
decomposition can be represented by aparsing tree(see Fig. 6).
Conversely, each cycle can be uniquely composed by mea
l − 1 concatenations by traversing the parsing tree in the othe

rection (bottom-up). Notice that the nodes of the parsing tree
pathsπ for which the raster indices at the extremities, denot
e of a vertex. The arrows indicate the location of an illusory contour. Notice the multiple
nop≡mop≡mnp.

r-
es.
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his
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ρfi(π ) andρla(π ), are larger than the maximum raster index
the internal vertices, denotedρ(π ):

ρfi(π ) > ρ(π ), ρla(π ) > ρ(π ). (1)

Simple paths satisfying (1) will be said to beρ-regular(or simply
regular).

PROPOSITION 1. Given a raster orderρ, every pathπ ∈

are
ed
S(C, A) has a unique recursive decomposition intoρ-regular
paths, specified by its parsing tree.
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FIG. 4. The hierarchical algorithm used to compute contour graphs. The numbers between parentheses indicate the number of descriptors in each repreon.
(1) The brightness gradient is estimated at every location in the image. Gradient vectors whose magnitude is small compared to the estimated noiselitude
are discarded. (2) A cubic brightness model is used to estimate the contour location to subpixel accuracy and to perform more model-based pruning. (Edgels
are composed into edgel-arcs (pairs of edgels). Only sufficiently aligned pairs of edgels are retained. (4) Some edgel-arcs are removed to eliminateivergent
bifurcations (see [4, 5, 7]). (5) The polygonal contours consist of arbitrarily long chains of edgel-arcs. (6, 7) The polygonal contours are decomposed into contour
primitives. (8) Pairs of contour primitives are composed into contour-arcs to bridge gaps due to lack of contrast along the boundary and contour singlarities,
such as corners and junctions. Several features (such as proximity, colinearity, and good continuation) are evaluated and used to discard unplausible contour-arc

hypotheses. Compare with Figs. 2 and 3, which provide a more illustrative example of a contour-graph. (9) The algorithm proposed in this paper is used to detect
salient cycles in the contour graph.
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FIG. 5. The pathsπ1 andπ2 represent multiple responses to the same ed
(left) Both π1 andπ2 can be concatenated withπ3. Therefore, either path can
be safely compressed out. (right) Here,π2 can not be concatenated withπ3.
Therefore, compression can not be done unless more complicated nonloca
are carried out to ensure that the surviving path yields a “maximally long” pa

The detailed description of the algorithm is in Table 1. F
1≤ r, s≤ N, Fr , Ls, Xr,s denote arrays of regular paths with firs
vertexr , last vertexs, and first, last verticesr, s, respectively.
For simplicity, vertices will be identified with their raster indice
The following proposition can be easily proved by induction
k. Let Fr [k], Ls[k], Xr,s[k] denote the set of paths in each of th
arrays at the end of thekth iteration (assumeρ(π )= 0 if π does
not have internal vertices).

PROPOSITION2. For all 0≤ k≤ N and1≤ r , s≤ N the fol-
lowing hold.

1. If π ∈ Fr [k], thenρ(π )≤ k and r= ρfi(π )>ρla(π )> k.
2. If π ∈ Ls[k], thenρ(π )≤ k and s= ρla(π )>ρfi(π )> k.
3. If r 6= s then Fr [k]=⋃sXr,s[k] and Ls[k]=⋃r Xr,s[k].
4. The paths in Fr [k], Ls[k], Xr,s[k] are regular.
5. If π1, π2∈ Xr,s[k] then d(π1, π2)≥ ε.
Notice also that the construction of a path of lenghtl requires

exactly l − 1 concatenations andl − 1 probability evaluations
(l if the path is a cycle).

The main theoretical result which characterizes the repres
tation computed by the algorithm is that, with high probabili
(which can be made arbitrarily large by changingδ), every closed
contour in the scene implicitly represented by a cycle in the gra
(C, A) is explicitlyapproximated by one of the computed cycl
in the arraysXr,r [N]. It should be noted that by including a
sufficiently large number of vertices and arcs in (C, A) one can
guarantee with high probability that all scene contours are
, 7, 4, 5.

y

plicitly represented in (C, A) and, therefore, that they are also
explicitly represented by the computed cycles (by virtue of the

FIG. 6. The parsing tree (center) and the sequence of concatenations (right) associated with a simple cycle with five vertices (left) with indices 1, 2

THEOREM 3. Let (C, A) be anε-clustered graph. Letπ ∈
Sε(C, A) be a cycle and let l be its length. Then, with probabilit
Notice that the root of the tree is the sequence of vertices obtained by ope
from its arcs by traversing the tree bottom-up and by concatenating paths a
NESS ASSUMPTION 25
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TABLE 1
The Cycle Detection Algorithm

1. Initialization . k= 0. For every 1≤ r, s≤ N, let Xr,s contain the length-one
path with verticesr ands if (r, s) is an arc of the graph; otherwise letXr,s be
empty. Ifr > s, append the content ofXr,s to Fr , else ifs> r append it toLs.
2. Main loop. At time k, 1≤ k≤ N, do the following steps.

3. Concatenation. Concatenate all the paths inLk with all the paths inFk.
Let Zk= Lk ◦ Fk denote the resulting set of paths.
4. Pruning. Remove fromZk all nonsimple paths and all paths for which
P2ε (π )<δ.
5. For allπ ∈ Zk do the following. Letr = ρfi(π ) s= ρla(π ).

6. Update. Appendπ to Xr,s. If r > s, appendπ to Fr , else ifs> r
appendπ to Ls.
7. Compression. Let Ur,s⊂ Xr,s be the set of paths with the same end-
vertices asπ and which have distance fromπ less thanε. If Ur,s is not
empty then purgeπ (i.e., removeπ from the arraysFr , Ls, Xr,s to which
it belongs).
7′. Compression′. If π has higher probability than all the paths inUr,s

then purge all the paths inUr,s.
8. Return the set

N⋃
r=1

Xr,r .

Note.Step7′ is a possible refinement of7 which makes it possible to replace
theε-clustering condition in Theorem 3 with a decay condition onPε (·). (See
discussion in Section 6.)

main theorem). Of course, there is a trade-off between com
tational resources and the size of (C, A), which translates into a
trade-off between computational resources and the miss rat

The following notation is used in the theorem (see the a
pendices for precise definitions and a proof). The set of sce
contours is denoted0. The graph (C, A) isε-clusteredif the clus-
tering condition (informally introduced in Fig. 1) is satisfied b
the paths in (C, A). A cycleπ isε-simple, denotedπ ∈Sε(C, A),
if none of its proper subpaths contains a contour which isε-near
a cycle in the graph.Xε,δ

r,r [k] denotes the cycles computed by th
algorithm with thresholdsε andδ after thekth iteration. Let us
assume thatδ < (l̄ − 1)−1, wherel̄ is the maximum length of a
cycle in (C, A).
ning the cycle at the vertex with the highest raster index. The cycle can be composed
t vertices with increasing raster indices.



26

FI
th
CASADEI AND MITTER
e

a

h
f

s

-

le

l-
ur

ur-
f

FIG. 7. A contour-arca= (c1, c2). Its probabilityPε (a) dep

at least1− (l − 1)δ, if there exists a scene contourγ ∈0 such
that d(γ, π )≤ ε then there exists a cycle

π̂ ∈ Xε,δ
ρ(π ),ρ(π )[k], k ≥ ρ(π )

such that d(π, π̂ )≤ ε and d(γ, π̂ )≤ 2ε.

5. EXPERIMENTAL RESULTS

5.1. The Probabilistic Saliency Function

The log-probability of paths, logPε(π ) is modeled as the sum
of two terms, one local, given by a sum over the arcs of the p
and one global, which depends on global features of the pa

− log Pε(π ) =
l∑

i=1

farc(ai )+ fgl(π ),

wherea1, . . . ,al denote the arcs ofπ . The functionsfarc and fgl

are nonnegative, with large values indicating unlikely hypot
ses. The global term takes into account global features oπ ,
namely, self-intersection of the path (in which casefgl(π )=∞)

and a measure of convexity of the path. The local term has been
constructed by using a model very similar to the one proposed

andα2 but small values of|b(c1)− b(c2)| and of the length of
T(c1, c2).
G. 8. An image (left) in which multiple closed contours pass through the
e vertical axis) are perceptually salient. The algorithm described in this p
nds onl1, l2, α1, α2, and the brightness valuesb(c1) andb(c2).

th,
th

e-

in [12]. Each local contributionfarc(a),a= (c1, c2), depends on
the following features (see Fig. 7):

• The lengthsl1 andl2 of the longest straight-line segment
which can be fitted to the polygonal linesT(c1) andT(c2) with
a given upper bound on of the fitting error (see Fig. 7).
• The length of the straight-line interpolantT(c1, c2).
• The two orientation changesα1 andα2 induced by the in-

terpolation.
• The difference|b(c1)− b(c2)|of the estimated image bright

ness on the foreground side of the two polygonal descriptorsc1

andc2.

The scorefarc(a) is computed by considering three possib
reasons a gap occurs in a contour:

• The contour was originally connected at the polygona
contour level and was split during the computation of the conto
primitives (stages 6 and 7 in Fig. 4). In this casefarc(a) is set to
zero.
• The contour is split because of a sharp orientation or c

vature change (corner). We expect potentially large values oα1
same two points. Three of these contours (those which are symmetric with respect to
aper computes the nine contours shown on the right.
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FIG. 9. Dependency on the compression parameterε. Cycles produced forε= 3.0, ε= 15.0, andε= 50.0. In the last row, the output does not depend onε. In

will
d by
first row, the convexity constraint in the cost function was switched off.

• The contour is split because of a loss of contrast. The len
of T(c1, c2) can be large but the anglesα1 andα2 should be
small.
A probability estimate is computed for each of the hypothe
and farc(a) is set to the largest of these values.
gth5.2. Experiments

First, some controlled experiments with synthetic images
be described. Figure 8 illustrates the representation obtaine
sesthe algorithm on an image which contains contour fragments be-
longing to several closed contours. The middle panel shows the
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FIG. 10. Pear image, obtained from Lance Williams’ web site. The algorithm generates 31 cycles. Five of the cycles are shown in the top right panel. Tw
of the remaining ones are shown below. The polygonal lines from which the vertices of the contour graph have been obtained is shown in the top middl.

FIG. 11. Onion image, obtained from Lance Williams’ web site. The algorithm generates 34 cycles. Four of the cycles are shown in the top right pane

of the other ones are shown below. The polygonal lines from which the vertices of the contour graph have been obtained are shown in the top middle panel.
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eight vertices of the contour graph. The two short horizontal co
tour fragments (top and bottom of the image) belong to all of t
nine cycles computed by the algorithm (right panel). Numbe
indicate the cost of each cycle, defined as minus log probabi
(conveniently scaled). An optimization algorithm would hav
produced only one interpretation (the one with lowest cost).

To illustrate how compression affects the representation co
puted by the algorithm, experiments with three different valu
of ε have been carried out on three different synthetic imag
(Fig. 9). The cost function was not changed asε varied. Re-
call that the compression stage removes a newly created
whenever an existing path with the same end-vertices exist
its ε neighborhood. The first column contains the three imag
used for the test. The other three columns show the conto
computed forε= 3.0, ε= 15.0, andε= 50.0 (in pixel units).

For the image in the first row, three contours are produced in20–120. Each contour graph contains a few hundred vertices and

ses
the first two trials. Notice that the largest contour shares severalapproximately the same number of hidden contour hypothe
FIG. 12. (top-right) Fourteen of the computed cycles. (center-left) Twelve o
of the 19 remaining spurious cycles. (bottom row) Three cycles sharing ver
NESS ASSUMPTION 29
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vertices with each of the two other contours. Whenε= 50.0 the
largest contour is not produced. This is an indication that
distance between the largest contour and the smaller ones i
tween 15.0 and 50.0. For the second image (the same use
the first experiment) nine contours are produced forε= 3.0 and
only one for larger values ofε. Finally, in the last row, the nine
lowest-cost contours do not share more than one vertex so
they are never compressed out. Notice that three of the cont
(third, fourth, and eighth) are very close to each other.

The remaining experiments have been carried out on th
natural images. (See Figs. 10–13.) The thresholdδ has been
set by trial and error so that the algorithm terminates in a f
minutes. The compression parameterε has been varied betwee
3.0 and 12.0 while the cost function has been kept unchang
The number of cycles produced by the algorithm is in the ran
f the 21 spurious cycles corresponding to uniform image patches. (center-right) Eight
tices.
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FIG. 13. Twelve redundant cycles corresponding to the lamp boundary

(contour arcs). The number of paths constructed and evalu
by the algorithm is a few thousand. A significant portion
these paths (between a quarter and a half, approximatel
removed by the compression step. At the end, almost half of
connected pairs of vertices have two or more paths connec
them.

The cost of the computed cycle does not carry much inform
tion about their saliency. Therefore, the most significant cyc
have been selected manually and shown separately from the
rious ones. In this regard, we would like to stress that the purp
of these experiments is not to show that the proposed algori
is able to assess the relative saliency of contours. Rather
goal is to generate a small set of contours which contains w
high probability all the desired contours. More suitable salien
functions can be used to rank the computed cycles accordin
human saliency.

6. CONCLUSIONS AND FUTURE WORK

The problem of eliminating redundancies when computing
intrinsically ambiguous representation has been discussed i
context of the detection of salient cycles in a contour graph.
have argued that these redundancies can lead to combina
explosion of the search space if not quickly removed.

A critical assumption needed to perform redundancy co
pression reliably is theε-clustering condition. We believe tha
this condition can be replaced by a decay condition on the pr
ing function Pε(π ) similar to the decay conditions introduce
in [5, 7]. Roughly speaking, such a decay condition would
quire the functionPε(π ) to attain a local maximum (in a nois
robust sense) in the vicinity of scene contours. If such a con
tion holds, and if the variant7′ is used to perform compressio
(Table 1), we believe that one can prove the main result with
requiring theε-clustering condition.

The proposed algorithm reconstructs each cycle with a m
imal number of concatenations, and in this sense, it requ

a minimal number of primitive operations to explore the s
of cycles in the graph. The formalism used here can be
obtained withε= 3.0. Forε= 12.0, these paths are compressed down to two paths
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tended to detect open paths by introducing one special ver
c∞, and by connecting it to every other vertex. An open pathπ =
〈c0, . . . , cl 〉 is then represented by the cycle ˜π =〈c∞, c0, . . . ,

c1, c∞〉 in the extended graph. However, unless the exten
pruning function Pε(π ) encodes information about maxima
paths, there might be an increase in computation proportiona
the length of the open maximal paths. To see why this might
the case, notice that an open maximal pathπ of lengthl contains
l (l − 1) subpaths which might have to be explicitly reconstruct
if the end-vertices ofπ are not known.

In the experiments carried out with the current impleme
tation, the introduction of the convexity constraint in the co
function was essential to control the complexity of the sear
This suggests that more general shapes might need to be m
eled as piecewise-convex contours and be reconstructed fro
layer of convex components.

APPENDIX A: DEFINITIONS AND NOTATION

1. CONTOURS. A contour cis an oriented one-dimensiona
manifold embedded in the real planeR2. A contour isclosedif
it is homeomorphic to a circle and isopenotherwise (i.e., if it
is homeomorphic to a straight line segment). See Fig. 14.
T(c)⊂R2 be the set of points of the manifoldc. The setT(c) is
called thetraceof c.

2. CONTOURGRAPH. A graph (C, A) whereC is a set of con-
tours is called acontour graph. For any arca= (c1, c2)∈ A, let
T(a)= T(c1, c2) be the straight line segment which connec
the “head” ofc1 to the “tail” of c2. A path in (C, A), called a
contour path, is denotedπ =〈c0, . . . , cl 〉, wherel is the length
of the path. The trace ofπ is

T(π ) = T(c0) ∪ T(c0, cl ) ∪ · · · ∪ T(cl−1, cl ) ∪ T(cl ).

The contour pathπ is said to besimpleif T(π ) is the trace of
a contour, namely, ifT(π ) is the set of points of an embedde

et
ex-
manifold inR2. Let S(C, A) be the set of simple paths in the
contour graph (C, A). The contour pathπ is a simple cycleif
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FIG. 14. Different types

T(π ) is homeomorphic to a circle and is asimple openpath if
T(π ) is homeomorphic to a straight line segment (see Fig.
For any set of pathsX letκ0X denote the subset of simple path
κ0X= X ∩ S(C, A). If π =〈c0, . . . , cl 〉 andπ ′ = 〈c′0, . . . , c′l ′ 〉
are contour paths such that the last vertex ofπ1 is the same as
the first vertex ofπ2, cl = c′0, then the concatenationπ ◦π ′ is
given by:

π ◦ π ′ = 〈c0, . . . , cl = c′0, . . . , c
′
l 〉.

A contourγ is said to beembeddedin a pathπ if T(γ )⊂ T(π );
it is embedded in (C, A) if it is embedded in a path of (C, A).

3. DISTANCE FUNCTION. For any two contoursc1, c2, let
H (c1, c2) be the set of all homeomorphisms betweenc1 and
c2. For anyµ∈ H (c1, c2), define

dµ(c1, c2) = dµ(T(c1), T(c2)) = max
p∈T(c1)

‖p− µ(p)‖

and let

d(c1, c2) = min
µ∈H (c1,c2)

dµ(c1, c2).

It can be proved thatd is a metric and thatd(c1, c2) is greater or
equal to the Hausdorff distance betweenT(c1) andT(c2). If π1

andπ2 are simple contour paths, then letd(π1, π2)= d(T(π1),
T(π2)).

PROPOSITION4. Let c1, c2 be contours and let c′2 be a sub-
contour of c2. Then there exists a subcontour of c1, denoted c′1,
such that
d(c′1, c
′
2) ≤ d(c1, c2).
f contours and contour paths.

4).
s:

Proof. Let µ∈ H (c1, c2) be the homeomorphism which
achieves the distanced(c1, c2) and letc′1 be the subcontour ofc1

defined byµ(T(c′1))= T(c′2). We have

d(c′1, c
′
2) ≤ max

p∈T(c′1)
‖p−µ(p)‖≤ max

p∈T(c1)
‖p−µ(p)‖ = d(c1, c2).

PROPOSITION 5. Let π1, π2, π
′
1, π

′
2 be simple contour paths

such thatπ1 ◦π2 andπ ′1 ◦π ′2 are defined and simple. Then,

d(π1 ◦ π2, π
′
1 ◦ π ′2) ≤ max(d(π1, π

′
1), d(π2, π

′
2)). (2)

Proof. Let µ1∈ H (π1, π
′
1), µ2∈ H (π2, π

′
2), and letµ1 ◦

µ2∈ H (π1 ◦ π2, π
′
1 ◦ π ′2) be defined in the obvious way. The

we have

dµ1◦µ2(π1 ◦ π2, π
′
1 ◦ π ′2) = max(dµ1(π1, π

′
1), dµ2(π2, π

′
2)).

Sinceµ1 ◦µ2∈ H (π1 ◦π2, π
′
1 ◦π ′2) for allµ1∈ H (π1, π

′
1),µ2∈

H (π2, π
′
2), we have

d(π1 ◦ π2, π
′
1 ◦ π ′2)

= min
µ∈H (π1◦π2,π

′
1◦π ′2)

dµ(π1 ◦ π2, π
′
1 ◦ π ′2)

≤ min
µ1∈H (π1,π

′
1),µ2∈H (π2,π

′
2)

dµ1◦µ2(π1 ◦ π2, π
′
1 ◦ π ′2)

= min
µ1∈H (π1,π

′
1)

min
µ2∈H (π2,π

′
2)

max
(
dµ1(π1, π

′
1), dµ2(π2, π

′
2)
)

= max(d(π1, π
′
1), d(π2, π

′
2)).

4. SCENE CONTOURS. Let I be the observed image and le

(CI , AI ) be the contour graph computed on inputI by some de-
terministic algorithm. The information which we wish to extract
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from the observed image will be assumed to be a set of conto
calledscene contours, and will be denoted0. The set0 will be
assumed to contain all the subcontours of its elements.

γ ∈ 0, T(γ ′) ⊂ T(γ )⇒ γ ′ ∈ 0.

Thus,0 is really the set of all the contour fragments in the sce

5. PROBABILITIES OF PATHS. The imageI and the image con
tours0 will be assumed to be joint random variables. Since
contour graph (CI , AI ) is a function ofI , (CI , AI ) is also jointly
distributed with0 andI . For any pathπ in (CI , AI ) andε >0 let
Pε(π | I ) be the conditional probability that there existsγ ∈0
such thatd(γ, π )<ε. SinceI will be fixed once and for all, we
will also use the notationPε(π )= Pε(π | I ). For anyε >0 and
0≤ δ≤ 1, let κε,δ be the pruning operator which removes no
simple paths and paths for which the probabilityPε(π ) is less
thanδ:

κε,δX = {π ∈ X : Pε(π ) ≥ δ} ∩ S(C, A). (3)

6. RASTER ORDER FUNCTION ρ. Let ρ: C→{1, . . . , N} be a
bijective map. For simplicity, a vertexc∈C will be identified
with its raster indexρ(c). If π is a simple path, then letρ(π ) be
the maximum raster index among its internal vertices. Thu
π is a simple cycle, thenρ(π ) is the maximum index of all its
vertices because all its vertices are internal. Ifπ =〈c0, . . . , cl 〉
is open, then

ρ(π ) =
{

max
1≤ j≤l−1

ρ(cj ) if l ≥ 2

0 if l = 1.
(4)

If π =〈c0, . . . , cl 〉 is open letρfi(π )= ρ(c0), ρla(π )= ρ(cl ). If
π is a simple path, letc∗π (1) be the internal vertex ofπ with
maximum index; that is,ρ(c∗π (1))= ρ(π ). Similarly, c∗π (2) is
the unique internal vertex with second highest index.

7. ρ-DECOMPOSITION OFSIMPLE PATHS. If π =〈c0, . . . , cl 〉 is
a simple open path, then itsρ-decompositionis given by

π = 〈c0, . . . , c
∗
π (1)〉 ◦ 〈c∗π (1), . . . , cl 〉.

If π is a simple cycle, then itsρ-decomposition is given by

π = 〈c∗π (1), . . . , c∗π (2)〉 ◦ 〈c∗π (2), . . . , c∗π (1)〉.

The parsing tree of a simple path is obtained by applying
decomposition recursivelyl − 1 times (Fig. 6). A pathπ is reg-
ular if it is a simple cycle or if it is a simple open path suc

thatρfi(π )>ρ(π ) andρla(π )>ρ(π ). Note that all the paths in
a parsing tree are regular.
D MITTER
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FIG. 15. The pathπ =〈1, 3, 4, 2〉 is simple but notε-simple. In fact, its trace
T(π ) contains a subcontourε-near the cycle with vertices 2, 3, 4.

8. METRIC PROPERTIES OFSETS OF PATHS. Let X, X1, X2 be
finite sets of paths and letε≥ 0. The setX is ε-separatedif
for anyπ1∈ X, π2∈ X, we haved(π1, π2)>ε. The setX2 is an
ε-coveringof X1, if for everyπ1∈ X1, there existsπ2∈ X2 such
thatd(π1, π2)≤ ε. The setX2 is anε-samplingof X1 if X2⊂ X1

andX2 is anε-covering ofX1. An ε-sampling isminimalif it is
ε-separated.

The setX is ε-clusteredif for any three pathsπ1, π2, π3∈
X d(π1, π2)≤ ε andd(π2, π3)≤ ε imply d(π1, π3)≤ ε. A con-
tour graph isε-clustered if every set of paths with the sam
end-points isε-clustered.

9. COMPRESSED-UNION OPERATION. Let X1∪ε X2 denote an
arbitrary minimalε-sampling ofX1 ∪ X2. If X1 is ε-separated,
then such a set can be constructed as follows. InitializeX := X1.
Order the elements ofX2. Then repeat the following step fo
eachπ2∈ X2. If d(π1, π2)>ε for everyπ1∈ X1, then addπ2 to
X, X := X ∪ {π2}. Finally, defineX1 ∪ε X2= X. Notice that if
ε= 0, thenX1 ∪ε X2= X1 ∪ X2.

10. ε-SIMPLE PATHS. (See Fig. 15.) A simple open pathπ
in a contour graph (C, A) is ε-simpleif there exists no closed
contourγ ′ embedded in (C, A) ε-near a contourγ embedded
in π . That is, there exists no pair of contours (γ, γ ′), such that
T(γ )⊂ T(π ); γ ′ is closed and embedded in (C, A); d(γ, γ ′)≤ ε.
A simple cycle is said to beε-simple if all its strict subpaths areε-
simple. The set ofε-simple paths in (C, A) is denotedSε(C, A).

PROPOSITION 6. Let π ∈Sε(C, A) be open and letπ ′ be a
path such that d(π, π ′)≤ ε. Thenπ ′ ∈S(C, A).

Proof. For the purpose of contradiction, letπ ′ be not simple.
Then there exists a closed contourγ ′ embedded in (C, A) such
thatT(γ ′)⊂ T(π ′). Fromd(π, π ′)≤ ε and from Proposition 4,
there exists a contourγ , T(γ )⊂ T(π ), such thatd(γ, γ ′)≤ ε.
Sinceγ ′ is a closed contour embedded in (C, A), this contradicts
the fact thatπ is an openε-simple path.

PROPOSITION7. A subpath of anε-simple path isε-simple.

APPENDIX B: PROOF OF THE MAIN THEOREM
A compact way to characterize the cycle detection algorithm
of Table 1 is by means of the discrete-time dynamical system
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FIG. 16. Evolution of the representation of the cycle of Fig. 6 by means of the variablesXr,s[k]. At time k= 0, the cycle is represented by five paths of length

al

h

e

et
one. At all timesk≥ 5, the cycle is represented by one path of length five.

Xr,s[0] =
{{〈r, s〉} if 〈r, s〉 ∈ S(C, A)

∅. otherwise,
(5)

Xr,s[k+ 1]

=


Xr,s[k] ∪ε κ(Xr,k+1[k] ◦ Xk+1,s[k]), if min(r, s)

> k+ 1

Xr,s[k], otherwise,

(6)

whereκ = κ2ε,δ, as given by (3). For any set of pathsX, let
κ0X= X ∩ S(C, A). Let Är,s be the regular paths with end
pointsr ands:

Är,s = {π ∈ S(C, A) : ρfi(π ) = r >ρ(π ), ρla(π )= s>ρ(π )}.
(7)

Figure 16 illustrates the evolution of the setsXr,s over time.

PROPOSITION8. Let ε= 0 andκ = κ0 in (6). Then,

Xr,s[k] = {π ∈ Är,s : ρ(π ) ≤ k} ≡ X0
r,s[k]. (8)

Proof. The direction Xr,s[k]⊂ X0
r,s[k] is given by

Proposition 2 in Section 4. To proveX0
r,s[k]⊂ Xr,s[k], let π ∈

X0
r,s[k] so thatρ(π )<ρfi(π )= r, ρ(π )<ρla(π )= s, andρ(π )≤

k. Let us proceed by induction and let us assumeX0
r,s[ j ]⊂ Xr,s[ j ]

for all j ≤ k− 1. Since forε= 0, ∪ε =∪, we have from (6)
Xr,s[i ]⊂ Xr,s[k] if i ≤ k. Therefore, sinceρ(π )≤ k, it is suffi-
cient to proveπ ∈ Xr,s[ρ(π )].

Letπ1, π2 be theρ-decomposition ofπ . Then, sinceρ(π1)≤
ρ(π )− 1, ρ(π2)≤ ρ(π )− 1, we haveπ1∈ X0

r,ρ(π )[ρ(π )− 1],
π2∈ X0

ρ(π ),s[ρ(π )− 1], and therefore, from the inductive hy
pothesis,π1∈ Xr,ρ(π )[ρ(π )− 1], π2∈ Xρ(π ),s[ρ(π )− 1]. Then,

π = π1 ◦ π2 ∈ Xr,ρ(π )[ρ(π )− 1] ◦ Xρ(π ),s[ρ(π )− 1].

Hence, from (6) at timek= ρ(π )− 1,π ∈ Xr,s[ρ(π )].
The following theorem, which follows from Prop. 8, guaran
tees that the proposed algorithm, if no pruning or compressio
-

-

applied, visits each simple cycle exactly once by using a minim
number of concatenations.

THEOREM 9. Let π be a simple cycle in the contour grap
(C, A) and letε= 0 andκ = κ0 in (6). Then,

π ∈ Xρ(π ),ρ(π )[k], k ≥ ρ(π ).

Furthermore, the cycleπ is obtained by means of the l− 1 con-
catenations specified by the parsing tree ofπ .

The following result provides a sufficient condition for th
proposed algorithm to approximate allε-simple cycles in the
case in which compression is applied but pruning is not. L
Xε

r,s[k] be given by (6) withκ = κ0 and let X0
r,s[k] be given

by (8).

LEMMA 10. Let (C, A) be an ε-clustered graph. Letπ ∈
X0

r,s[k] ∩Sε(C, A). Then, there existŝπ ∈ Xε
r,s[k] such that

d(π, π̂ )≤ ε.
Proof. From π ∈ X0

r,s[k] and Proposition 8 we haver =
ρfi(π ) ands= ρla(π ). Let us proceed by induction. Fork= 0
the statement is true becauseX0

r,s[0]= Xε
r,s[0] as given by (5).

Let the statement be true for allj ≤ k− 1 and letπ ∈ X0
r,s[k] ∩

Sε(C, A). Letπ =π1 ◦π2 be theρ-decomposition ofπ ; that is,
ρla(π1)= ρfi(π2)= ρ(π ). Thus,

max(ρ(π1), ρ(π2)) ≤ ρ(π )− 1≤ k− 1.

Therefore, by the inductive hypothesis, there exist

π̃1 ∈ Xε
r,ρ(π )[ρ(π )− 1], π̃2 ∈ Xε

ρ(π ),s[ρ(π )− 1] (9)

such thatd(π1, π̃1)≤ ε and d(π2, π̃2)≤ ε. Let π̃ = π̃1 ◦ π̃2.
From Proposition 5,d(π, π̃ )≤ ε. Equation (6) fork= ρ(π )− 1
is

Xε
r,s[ρ(π )] = Xε

r,s[ρ(π )− 1] ∪ε κ0
(
Xε

r,ρ(π )[ρ(π )− 1]

-

n is ◦ Xε
ρ(π ),s[ρ(π )− 1]

)
. (10)
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From (9),π̃ ∈ Xε
r,ρ(π )[ρ(π )− 1] ◦ Xε

ρ(π ),s[ρ(π )− 1]. Sinceπ ∈
Sε(C, A) andd(π, π̃ )≤ ε, we have from Proposition 6 thatπ
is simple so that ˜π is not pruned out byκ0. Therefore, since for
any setsX1, X2, X1∪ε X2 is anε-sampling ofX1∪X2, there ex-
ists π ′ ∈ Xε

r,s[ρ(π )] such thatd(π̃ , π ′)≤ ε. Sinced(π, π̃ )≤ ε
and since (C, A) is ε-clustered, we haved(π, π ′)≤ ε. From
π ′ ∈ Xε

r,s[ρ(π )], by using (6) and theε-clustering hypothesis
from timeρ(k) up to timek− 1, it follows that there exists ˆπ ∈
Xε

r,s[k] such thatd(π ′, π̂ )≤ ε, and therefored(π, π̂ )≤ ε.
Proof of Theorem 3. Letπ1, . . . , πl−1=π , be the sequenc

of regular paths (with length greater than one) in the pa
ing tree of the cycleπ . We haveπi ∈Sε(C, A), 1≤ i ≤ l − 1.
From Lemma 10, the unpruned dynamical systemXε

r,s[k] ε-
approximates each of the pathsπ1, . . . , πl−1. That is, there exist
π̂1, . . . , π̂ l−1 such that ˆπ i ∈ Xε

ρfi (πi ),ρla(πi )
[ρ(πi )] and d(πi , π̂ i )

≤ ε.
If there existsγ ∈0 such thatd(γ, π )≤ ε then, from Propo-

sition 4, for eachi = 1, . . . , l − 1 there existsγi ∈0 such that
d(γi , πi )≤ ε, and therefore,d(γi , π̂ i )≤ 2ε. By the definition of
κ2ε,δ, if π̂ i is pruned out, then the probability that there exist
scene contour 2ε-near it is less thanδ. Therefore, the probability
is less thanδ that there existsγ ∈0 such thatd(γ, π )≤ ε and
thatπi is pruned out. Hence, by using the union bound, the pr
ability that there existsγ ∈0, d(γ, π )≤ ε, and that at least on
of the pathsπi i = 1, . . . , l − 1 is pruned out is at most (l − 1)δ.
Thus, with probability at least 1− (l − 1)δ, if there existsγ ∈0,
d(γ, π )≤ ε, none of the paths ˆπ1, . . . , π̂ l−1 is pruned out, and
therefore ˆπ ∈ Xε,δ

ρ(π ),ρ(π )[ρ(π )].
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