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son for this difficulty is that the information used by perceptual
Perceptual organization provides an intermediate representation ~ Organization is not sufficient to define uniquely what the image
of data by means of object- and goal-independent information. The  representation should be. In fact, by restricting the available ir
lack of complete information makes perceptual organizationanin-  formation to being generic, i.e., independent of what objects ar
trinsically ambiguous process which invalidates the uniqueness as-  in the scene, there remains a substantial intrinsic ambiguity i
sumption and requires instead the generation of multiple solutions.  the interpretation of the data which can not be resolved withot
This raises the issue of eliminating redundancies which, inarecur-  aptificial assumptions. Thus the goal of perceptual organizatio
sive algorithm, might otherwise cause combinatorial explosion of g}, 14 he to enumerate all interpretations which are consiste
the sea_rch space. These aspects of perc_eptual organization are illus- with the data and the available information, leaving the task o
trated in the context of cycle detection in a contour graph. A provab- R o . .
ly correct algorithm for this problem is proposed.  © 1999 Academic Press eliminating intrinsic ambiguities to higher levels (_)f processmg.
Instead, many approaches to perceptual organization are ba:s
on optimizationof a suitable cost functional and therefore as-
1. INTRODUCTION sume that a unique solution exists and is obtainable by meal
of the available generic information. For instance, some grapt
An important component of many vision systems consists based formulations of contour grouping seek an optimal pat
organizing image descriptors into collections which are likelyetween every pair of points [12], thus assuming that there e»
to originate from the same source in the scene (e.g., from tises at most one contour between any two poants that this
same object). To a certain degree, the computation of these ealiqgue contour can be recovered unambiguously by means
lections can be accomplished by meangerfieric(i.e., object- the generic information available at the perceptual organizatio
independent) information so that this process can be usede#l. Figure 8 in Section 5 shows an example of an image il
an intermediate step toward object recognition [21]. Severghich multiple contours exist between two points.
decades ago Kanizsa [19] observed that generic properties of\n alternative to optimization which overcomes the unique-
collections of contours, such as proximity, continuity, similataess assumption consists of exhaustive enumeration of all i
ity, closure, and symmetry, are used by the human visual syst@rpretations (e.g., contour groupings) which satisfy a certai
to organize contour fragments into collections which give rise titerion. For example, in the specific problem of graph-base
the perception of objects. These properties have also been stghtour grouping, one can seek all the paths between any pair
ied by many computer vision researchers and are used in sevpaihts which have nonnegligible probability of being near a true
computer vision algorithms. The grouping of image descriptoc®ntour. In the context of perceptual organization, one restrict
according to the above properties is often referred tpexs this probability to depend only on object-independent feature
ceptual organizatiorand is based on the statistical assumptiosuch as proximity, colinearity, and similarity.
that these properties are more likely to occur among fragmentsA major difficulty in this approach is that the cardinality of
arising from the same source (nonaccidentalness principle) [88 sets of entities satisfying the criterion can become exponel
21]. A good review and classification scheme for perceptuddlly large as their spatial extent grows. In our contour group:
organization work in computer vision can be found in [29]. ing example, it is possible to argue that, due to the presenc
Providing a mathematical formulation for the problem of pewsf multiple responses to the same object, the average numb
ceptual organization has proven to be a very elusive task. A reé+“good” paths between two points depends exponentially ol
the number of vertices on the path. Roughly speaking, this i

* This research is supported by MURI grant DAAH04-96-1-0445, Foundg)-ecause the number of paths _bEtWE_Fﬁmnd _p2 IS given by
tions of Performance Metrics for Object Recognition. N(p1, p2) = N(p1. ps)N(ps, p2) if ps is a point on the path
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FIG.1. The clustering condition in th&2 domain (fore given by the diameter of the dashed circles). (left) A set of ten points satisfying the condition. Forms
for any three pointgs, p2, ps in the set, ifd(p1, p2) <€ andd(pz, p3) <€ thend(ps, p3) <e. (right) a set which does not satisfy the condition. The clusterin
condition allows one to prune a finite &by using only local tests. Consider for instance the following algorithm. Order ti&ssbttrarily; i.e.,.S={pa, ..., Pn}-
LetS$=S. Fork=1,..., N check whethe&_1\{pk} contains a point in the-neighborhood ofy (this is a local test). If yes, then I1& = S_1\{p«}, otherwise

let S = S—1. If Sise-clustered then this procedure yields aSgtwhich e-covers the original sé8= S and whose points are separated by a distance of at lea
€. Notice that on the set on the right this greedy procedure prunes all points except f@gpne (

from p; to p, andN(p, q) denotes the number of paths betweeBxperiments are shown in the next section, which is followe
p andg. The phenomenon of multiple responses to the sarhg the conclusions. The appendices contain formal definitior
object, illustrated in Fig. 3, seems to arise in many domains [28)d the proof of the main theorem.
4,5, 2].

Whereas optimization methods deal with multiple responses 2. PREVIOUS WORK
in a quite natural way by simply retaining a unique response,
the more general enumeration approach pursued here has to deghe problem of representing salient contours by searchir
with the combinatorial redundancy problem in a more explicgaths in a graph has been approached by means of dynamic y
way. We suspect that the issue of eliminating redundancieggimmming methods in [32, 34, 12, 31]. The algorithm propose
a fundamental one when one is attempting to represent antiere provides a technique which overcomesthe limitations of d
guities explicitly. Granted that the information available at theamic programming methods. First, multiple paths between tw
perceptual organization level is insufficient to resolve certaiertices can be represented; second, the cost function does
ambiguities, itis natural to ask whether this information is at leastéed to be decomposable into a sum over the vertices of the p¢
sufficient to represent these ambiguities efficiently. A way to aithe structure of the proposed algorithm is quite different fror
swer this question affirmatively is to assume that the availaldgnamic programming and is based on recursive path concate
information makes it possible to enforcelasteringcondition tion. The price for removing these restrictions is that more men
(see Fig. 1) on the set of all possible interpretations. This coory resources are needed since paths need to be stored explic
dition ensures that redundant interpretations can be pruned byAn approach to perceptual organization similar to ours, i.e
means of local computations without compromising the comahere the goal is to detect all grouping satisfying a certain critt
pleteness of the computed representation. Here, completen@ss, has been proposed in [18]. The algorithm described the
refers to the requirement that all viable interpretations be (gprovably recovers all convex sets of line segments in which tt
proximately) represented. length of the line segments accounts for at least some given p

This paper presents a provably correct algorithm for the dgertion of the length of the convex hull. Our work places mort
tection of salient cycles with the intent to illustrate the abovemphasis on the elimination of the combinatorial redundanci
issues both theoretically and experimentally. Here “salient cyaused by multiple responses to the same contour (see also
cles” refers to cycles with certain geometric properties for whicti). Similar issues have also been studied in the context of obje
the probability of being-near to ascene contoui.e., a contour recognition [2].
in the image which corresponds to a boundary in the scene) ither graph-based grouping algorithms have been propos
sufficiently high, as encoded by a certain functiu{r). It is  inthe context of figure—background separation[1, 33, 27]. The:
not our goal to demonstrate that this specific function capturalgorithms compute a bipartition of the graph which minimize
the human perception of saliency. some measure of the similarity between the two partitions rel

The paper is organized as follows. Some previous relatége to the similaritywithin each partition.
work is reviewed in Section 2. Section 3 describes the graphRecursive composition of contour descriptors, which is a
data-structure on which the algorithm operates, and Sectiofimdortant ingredient of the algorithm described here and ¢
describes the algorithm and states the main theoretical restiie more general approach of which it is part [3, 5, 6], is
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well-known methodology for visual interpretation [22, 30, 11¢ontoure-near the pattr. The algorithm also requires the spec-
23]. Usually, these descriptors are organized into hierarchiéisation of two thresholds; > 0 ands > 0. Paths with the same
of boundary representations of increasing complexity, edgelrd-vertices and which are less thaapart are considered to
points, contour fragments, regions, etc. (see, forinstance, Fig.l#9. generated by the same scene contour. A patbr which
The contour models underlying these descriptors become mé¥e(rr) is less thans will be neglected and pruned out by the
general as one moves up in the hierarchy. For instance, #igorithm.
low level might contain only smooth and high contrast contours An example of a contour graph employed by the proposed a
whereas higher levels model also illusory contours and singgerithm is illustrated by Figs. 2 and 3. The multistage algorithm
larities (corners and junctions). In this hierarchical approachsed to compute contour graphs is illustrated by Fig. 4 with :
uncertainties which can not be resolved at one level are proi#-x 16 subimage (this image contains only simple edges an
gated to the higher levels, where more contextual informationttgerefore does not really motivate the need for contour graph:
available to resolve them. see Figs. 2 and 3 for this purpose). The vertices of the contol
Typically, perceptual organization cues are employed at digraph (Fig. 2, top right, and Fig. 3, middle panels) consist o
ferent levels of the hierarchy according to their scale. Proximigmooth fragments of contours where the brightness contrast
and smoothness occur at a small scale and are utilized at ldrge enough to ensure reliable and efficient estimation by meat
lowest levels of the hierarchy. Colinearity and cocircularity omf local operators. Here, “smooth” contour fragments refers t
cur at different scales depending on the size of the gap betwgentions of contours away from singularities such as corner
contour fragments and on the curvature of contours. Many alg@cluding curvaturediscontinuities) and junctions.
rithms exploit colinearity and cocircularity [26, 24, 25, 16, 15, To complete contours it is necessary to hypothesize sever
20]. A semilocal convexity constraint can significantly simplifyhiddencontour fragments (see Fig. 2, bottom, and Fig. 3, right
the search for contours [18], and convex contours can be ugathels). These hidden contours represent portions of contol
as primitives to construct more complex contours. Closure [12jth low or zero brightness contrast and contour fragment
and symmetry [8, 9] are global properties of contours. Still atreear singularities such as corners and T-junctions. Hidden coil
higher level, the occlusion relationship between sets of contotwsirs are represented by the arcs of the contour gr@plii).
[24, 25, 37, 13, 36] can be exploited. An arca= (¢, C;) represents the hypotheses that the two con
The strategy of deferring hard decisions (if any) until sufficiertour fragments; andc, are consecutive segments of the same
“soft” information has been processed is widespread in percegpntour.
tual organization algorithms. For instance, the Hough transformin order for the contour graph to contain, with high probability,
and similar methods collect votes in a suitable contour paraat-least one path for every scene contour, it is necessary to h
eter space and then detect the most voted contours [15]. Votpmthesize many hidden contours, which results in a large numb
methods can also be used to detect sets of contour fragmenftarcs in the graph. Most of the hypothesized hidden contour
with similar attributes [30]. Some approaches estimate explide not correspond to a scene contour (as most of the vertic
itly the probabilities of contour hypotheses and use these estd not). Moreover, it often occurs that contour fragments con
mates to focus the search [28, 10, 8, 14, 12]. Relaxation labelitagning hidden portions are represented more than once. Th
is a powerful iterative technique to propagate and accumulageillustrated by the a-b-c-d and m-n-o-p portions of the lamg
soft information [26]. Convolution with suitable kernels is doundary (Fig. 3). Thus the challenge faced by the propose
biologically motivated approach for accumulating evidence aflgorithm is to compute a small number of paths in the grapl
contours [16, 20]. Spectral graph methods use the weights (small relative to the total number of paths) in such a way tha
the arcs of a graph to encode the similarity between image esach scene contour is approximated by at least one path in t
gions in a “soft” fashion, before a segmentation of the image é@mputed representation.
computed [33, 20]. Approaches motivated by statistical physics
represent relationships between contour fragments by means of
coupling constants and then formulate perceptual organization
as a combinatorial optimization problem which can be solved byT
using techniques borrowed from statistical mechanics [17, 1ga

4. DESCRIPTION OF THE ALGORITHM

he strategy of the algorithmis to generate increasingly longe
ths and to use the functi®(-) to prune out implausible paths
he assumption being that more global information is availabl
to test longer paths so that most of the long spurious paths wi
3. THE CONTOUR GRAPH be eventually pruned out). Moreover, whenever two paths witl
the same end-vertices are less tkaapart from each other,
The input to the proposed algorithm consists of a triplene of the two paths is pruned out to eliminate redundancie:
(C, A, P.), where C, A) is a directed graph whose vertic€s The e-clustering condition is invoked to ensure that this does
are contour fragments ar®}, € > 0, is a family of [0, 1]-valued not compromise the completeness of the final representatio
functions defined on the family of paths i€,(A). For every Figure 5illustrates why nearby paths with different end-vertice:
pathrm, P, (rr) represents the probability that there exists a scesbrould not be compressed down.

A combinatorial formulation by means of integer programmin
has also been proposed [35, 36].
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c

contour graph subgraph

FIG. 2. Contour graph. (top) A brightness image (left), a 26060 subimage of it, and the 196 polygonal contours extracted by the algorithm described in
These contours are segmented into “smooth” primitives, which form the vertices of the contour graph (there are 1448 of them in this example)esost
contours have very low brightness contrast (encoded into the gray level of the contours) and do not belong to any significant part of the sceneeMetijce,
that some of the vertices on the contour of the lamp (“d,” “h,” top right) have low contrast too. (bottom-left) The arcs of the graph, which corraspond
hypothesized hidden contours. For instance, notice the six arcs leaving from the lower end of the vertex “a” (more clearly visible in the bgttmelrégtd in
Fig. 3). (bottom-right) Fourteen vertices (“a” through “p”) forming the contour of the lamp. For each of these vertices, all the out-arcs ande¢hesrétats are
also shown.

One component of the algorithm organizes the constructitex with paths starting at thieth vertex so that paths travers-
of increasingly longer paths in a systematic fashion. To this pung the firstk vertices are allowed at the end of tkih itera-
pose, the set of verticeS is given an arbitrary “raster” order, tion.
represented by the integer-valued functigrC — [1, ..., N], To simplify the presentation of the algorithm we only conside
whereN is the cardinality ofC. This function specifies the orderthe representation of closed contours. This assumption elin
in which vertices are “visited” by the algorithm. Right beforenates the problem of testing whether a contour is maximal. Th
the kth step of the algorithm, £k <N, only paths travers- the objective of the algorithm is to generate a sampling of tt
ing vertices with raster indices less thiarare allowed. Then, set of cycles in the graph so that every cycle corresponding
the kth iteration concatenates paths terminating atktiiever- a scene contour is approximated by a cycle in the comput:
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FIG.3. Three enlargements from Fig. 2. The panels in each enlargement illustrate the subimage, the vertices of the graph, and the arcs, respeciielg. In tt
panels the gray level encodes the contrast of the contours. In the right panels vertices are black and arcs are gray. Thicker contours arerigdedtozlamp
boundary in Fig. 2, bottom-right. The circled numbers denote the out-degree of a vertex. The arrows indicate the location of an illusory caetiue. iNoliiple
equivalent paths (“multiple responses to the same contours: @otd= acd; mnop= mop= mnp.

sample (with high probability). Furthermore, we restrict ouresi () and pa(rr), are larger than the maximum raster index of
selvesto simple cycles, thatis, cycles with nonrepeating verticé®e internal vertices, denotedr):
The set of simple paths itC( A) is denotedS(C, A).

It should be noted that once the_raster order funcp_dms _ pi(m) > p(), pa(r) > p(r). (1)
been fixed, each cycle can be recursively decomposed inaunique
way by splitting paths atthe vertex with highestrasterindex. T
decomposition can be represented Ipagsing treg(see Fig. 6).

: regfular).

Conversely, each cycle can be uniquely composed by means
| — 1 concatenations by traversing the parsing tree in the other diProPosiTion 1. Given a raster orderp, every pathrz €
rection (bottom-up). Notice that the nodes of the parsing tree &€C, A) has a unique recursive decomposition intaegular
pathsz for which the raster indices at the extremities, denoteghths, specified by its parsing tree.

héslmple paths satisfying (1) will be said to peegular(or simply
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FIG. 4. The hierarchical algorithm used to compute contour graphs. The numbers between parentheses indicate the number of descriptors in eacmrepr:
(1) The brightness gradient is estimated at every location in the image. Gradient vectors whose magnitude is small compared to the estimatétideise
are discarded. (2) A cubic brightness model is used to estimate the contour location to subpixel accuracy and to perform more model-basedfuigeiag. (
are composed into edgel-arcs (pairs of edgels). Only sufficiently aligned pairs of edgels are retained. (4) Some edgel-arcs are removed tivalgaintate
bifurcations (see [4, 5, 7]). (5) The polygonal contours consist of arbitrarily long chains of edgel-arcs. (6, 7) The polygonal contours areegticoonpmstour
primitives. (8) Pairs of contour primitives are composed into contour-arcs to bridge gaps due to lack of contrast along the boundary and cdatii@ssing
such as corners and junctions. Several features (such as proximity, colinearity, and good continuation) are evaluated and used to discErdamplaaiic
hypotheses. Compare with Figs. 2 and 3, which provide a more illustrative example of a contour-graph. (9) The algorithm proposed in this papeleiteased
salient cycles in the contour graph.
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) . T . TABLE 1
e The Cycle Detection Algorithm
o T

1. Initialization . k=0. For every k<r,s< N, let X, s contain the length-one

FIG. 5. The pathsr; andx> represent multiple responses to the same edggath with vertices andsiif (r, s) is an arc of the graph; otherwise It s be
(left) Both 1 andw, can be concatenated witty. Therefore, either path can empty. Ifr > s, append the content of; s to F, else ifs>r append it toLs.
be safely compressed out. (right) Here, can not be concatenated withy. 2. Main loop. At time k, 1<k < N, do the following steps.
Therefore, compression can not be done unless more complicated nonlocal tesgs Concatenation Concatenate all the pathslin with all the paths irFy.
are carried out to ensure that the surviving path yields a “maximally long” path. Let Zy = Lk o Fx denote the resulting set of paths.

4. Pruning. Remove fromZy all nonsimple paths and all paths for which

Poc () < 8.

. Lo . L. 5. For allr € Z do the following. Letr = psi(r) S= pja().
The detailed description of the algorithm is in Table 1. For g ypdate Appendr to Xr.s. If r > 5, appendr to F;, else ifs > r

1<r,s<N,F, Ls, X, sdenote arrays of regular paths with first  appendr to Ls.
vertexr, last vertexs, and first, last vertices, s, respectively. 7. Compression LetUy s C X, s be the set of paths with the same end-
For simplicity, vertices will be identified with their raster indices. ~ vertices asr and which have distance fromless thare. If U5 is not

The following proposition can be easily proved by induction on ~ €MPY then purger (i.e., remover from the arrays., Ls, Xr.s to which

: it belongs).
k. Let Fr[K], Ls[K], X s[k] denote the set of paths in each ofthe 77 compression. If = has higher probability than all the pathsins
arrays at the end of tHeh iteration (assumg(rr) =0 if = does then purge all the paths I s.
not have internal vertices). 8. Return the set
ProposiTion2. Forall 0<k<N andl<r, s<N the fol- L_Jle-'-
lowing hold. =
o Note.Step?7’ is a possible refinement @fwhich makes it possible to replace
Llftrek [k]’ then,o(rr) <kandr= pii (n) = ,0|a(7'r) > k. the e-clustering condition in Theorem 3 with a decay conditionR). (See
2. If w e Lg[K], thenp(r) <k and s= pja(r) > p1i() > K. discussion in Section 6.)
3. If r #s then F[K] = X s[K] and Ls[K] = U, X s[K].
4. The paths in HK], Ls[K], X; s[K] are regular. main theorem). Of course, there is a trade-off between compt
5. If my, mo € X, 5[K] then Ay, m2) > €. tational resources and the size 6f (A), which translates into a

trade-off between computational resources and the miss rate.

The following notation is used in the theorem (see the ap
pendices for precise definitions and a proof). The set of scer
contoursis denoteld. The graphC, A)ise-clusteredfthe clus-
?erlng condition (informally introduced in Fig. 1) is satisfied by
Yhe pathsinC, A). Acycler ise-simple denotedr € S¢(C, A),

Notice also that the construction of a path of lengtgquires
exactlyl — 1 concatenations anld- 1 probability evaluations
(I if the path is a cycle).

The main theoretical result which characterizes the repres
tation computed by the algorithm is that, with high probabilit

(which can be made farbit_rgrily large by chang&)ugevery closed if none of its proper subpaths contains a contour whiehngar
contour inthe scene implicitly represented by a cycle inthe grag Lycle in the graphx<[k] denotes the cycles computed by the
(C. Ayis explicitlyapproximated by one of the computed CyCleslgonthm with thresholds and$ after thekth iteration. Let us

in the. arraysX; [N]. It should pe noted that by including Aassume that < (I 1)1 , wherel is the maximum length of a
sufficiently large number of vertices and arcs@ @) one can :
.r%)_/cle inC, A).

guarantee with high probability that all scene contours are i
plicitly represented in@, A) and, therefore, that they are also Thveorem 3. Let (C, A) be ane-clustered graph. Letr €
explicitly represented by the computed cycles (by virtue of thgf (C, A) be a cycle and letl be its length. Then, with probability

- ""_4>x (1.4,5.1,27) (5,10 (1,2) = (5,1,2) k=0
/ (7,4,5) (5,1,2,7) 5,1,2)0(2,7) = (5,1,2,7) k=1
\ 5 N T k=2

T4 4.9) (5,12 @0 (7,4) 0 (4,5) = {7,4,5) k=3
8 - 5,1y {1,2) (7,4,5) 0 {5,1,2,7) = (7,4,5,1,2,7) k=4
/ . cycle composition
contour cycle parsing tree

FIG. 6. The parsing tree (center) and the sequence of concatenations (right) associated with a simple cycle with five vertices (left) with indices 1, 2,
Notice that the root of the tree is the sequence of vertices obtained by opening the cycle at the vertex with the highest raster index. The cycleposade ci
from its arcs by traversing the tree bottom-up and by concatenating paths at vertices with increasing raster indices.
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FIG. 7. A contour-arca=(cy, C). Its probability Pc(a) depends offy, |2, a1, a2, and the brightness valubéc;) andb(cy).

at leastl — (I — 1)é, if there exists a scene contoure I' such in[12]. Each local contributiorf,(a), a = (c1, ¢;), depends on
that d(y, ) < € then there exists a cycle the following features (see Fig. 7):

e The lengthd; andl, of the longest straight-line segments
which can be fitted to the polygonal ling&gc;) andT (c,) with
a given upper bound on of the fitting error (see Fig. 7).

e The length of the straight-line interpolafn{c,, cy).

e The two orientation changes anda, induced by the in-
terpolation.

e Thedifferencégb(c;) — b(c,)| of the estimated image bright-

ness on the foreground side of the two polygonal descrigtors
The log-probability of paths, 08, () is modeled as the sum gndc,.
of two terms, one local, given by a sum over the arcs of the path,

and one global, which depends on global features of the path The Scoréfa(@) is computed by considering three possible
reasons a gap occurs in a contour:

7 € X5y oKl k= p(m)
such that dr, 7) <€ and dy, 7) < 2¢.

5. EXPERIMENTAL RESULTS

5.1. The Probabilistic Saliency Function

|
—log P(7) = Z fad@) + fqi(), e The contour was originally connected at the polygonal
i=1 contour level and was split during the computation of the contol

whereay, . . ., g denote the arcs of. The functionsfycandfg  primitives (stages 6 and 7 in Fig. 4). In this cagg(a) is set to

are nonnegative, with large values indicating unlikely hypotheero.

ses. The global term takes into account global features,of e The contour is split because of a sharp orientation or cu
namely, self-intersection of the path (in which cdgér) = o0) vature change (corner). We expect potentially large values of
and a measure of convexity of the path. The local term has bem«, but small values ofb(c;) — b(c,)| and of the length of

constructed by using a model very similar to the one propos&dc;, c,).
: 13 :;7 : 19
QS OE)Q OE)Z

- 1Q0.0

FIG.8. Animage (left) in which multiple closed contours pass through the same two points. Three of these contours (those which are symmetric with re
the vertical axis) are perceptually salient. The algorithm described in this paper computes the nine contours shown on the right.
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input image e=30 € =15.0 e = 50.0
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FIG. 9. Dependency on the compression parameté&ycles produced for = 3.0, € = 15.0, ande =50.0. In the last row, the output does not depend:om
first row, the convexity constraint in the cost function was switched off.

e The contour is split because of a loss of contrast. The lendit2. Experiments

2;;501’ Cz) can be large but the angles ande, should be some controlled experiments with synthetic images wil

’ be described. Figure 8 illustrates the representation obtained |
A probability estimate is computed for each of the hypothes#te algorithm on an image which contains contour fragments be
and f,(a) is set to the largest of these values. longing to several closed contours. The middle panel shows tt
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FIG.10. Pearimage, obtained from Lance Williams’ web site. The algorithm generates 31 cycles. Five of the cycles are shown in the top right panel. Twel
of the remaining ones are shown below. The polygonal lines from which the vertices of the contour graph have been obtained is shown in the topimiddle

FIG.11. Onionimage, obtained from Lance Williams’ web site. The algorithm generates 34 cycles. Four of the cycles are shown in the top right panel. T
of the other ones are shown below. The polygonal lines from which the vertices of the contour graph have been obtained are shown in the top middle pa
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eightvertices of the contour graph. The two short horizontal covertices with each of the two other contours. Wlea50.0 the
tour fragments (top and bottom of the image) belong to all of thargest contour is not produced. This is an indication that th
nine cycles computed by the algorithm (right panel). Numbedsstance between the largest contour and the smaller ones is &
indicate the cost of each cycle, defined as minus log probabilttyeen 15.0 and 50.0. For the second image (the same used"
(conveniently scaled). An optimization algorithm would havthe first experiment) nine contours are produced fer3.0 and
produced only one interpretation (the one with lowest cost). only one for larger values &f. Finally, in the last row, the nine
To illustrate how compression affects the representation cotawest-cost contours do not share more than one vertex so th
puted by the algorithm, experiments with three different valudisey are never compressed out. Notice that three of the contou
of € have been carried out on three different synthetic imagéhird, fourth, and eighth) are very close to each other.
(Fig. 9). The cost function was not changedeagaried. Re-  The remaining experiments have been carried out on thre
call that the compression stage removes a newly created paditural images. (See Figs. 10-13.) The thresliolchs been
whenever an existing path with the same end-vertices existsst by trial and error so that the algorithm terminates in a fev
its e neighborhood. The first column contains the three imagesnutes. The compression parametéias been varied between
used for the test. The other three columns show the conto@r® and 12.0 while the cost function has been kept unchange
computed fore = 3.0, ¢ =15.0, ande =50.0 (in pixel units). The number of cycles produced by the algorithm is in the rang
For the image in the first row, three contours are produced 20—120. Each contour graph contains a few hundred vertices al
the first two trials. Notice that the largest contour shares seveaglproximately the same number of hidden contour hypothese

w
E3
v

FIG.12. (top-right) Fourteen of the computed cycles. (center-left) Twelve of the 21 spurious cycles corresponding to uniform image patches. (3 &rggrt-right
of the 19 remaining spurious cycles. (bottom row) Three cycles sharing vertices.
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FIG. 13. Twelve redundant cycles corresponding to the lamp boundary obtained wi#h0. Fore = 12.0, these paths are compressed down to two paths.

(contour arcs). The number of paths constructed and evaluatedded to detect open paths by introducing one special vert
by the algorithm is a few thousand. A significant portion of,,, and by connecting it to every other vertex. An open path
these paths (between a quarter and a half, approximatelyXds, ..., ¢) is then represented by the cyete="(C., Co, - . .,
removed by the compression step. At the end, almost half of thg c..) in the extended graph. However, unless the extende
connected pairs of vertices have two or more paths connectprgining function P.(z) encodes information about maximal
them. paths, there might be an increase in computation proportional
The cost of the computed cycle does not carry much informéne length of the open maximal paths. To see why this might &
tion about their saliency. Therefore, the most significant cyclése case, notice that an open maximal pathf lengthl contains
have been selected manually and shown separately from the $gdu- 1) subpaths which might have to be explicitly reconstructe
rious ones. In this regard, we would like to stress that the purpasthe end-vertices ofr are not known.
of these experiments is not to show that the proposed algorithmn the experiments carried out with the current implemen
is able to assess the relative saliency of contours. Rather, thion, the introduction of the convexity constraint in the cos
goal is to generate a small set of contours which contains witmction was essential to control the complexity of the searcl
high probability all the desired contours. More suitable saliendyhis suggests that more general shapes might need to be m
functions can be used to rank the computed cycles accordingted as piecewise-convex contours and be reconstructed fror
human saliency. layer of convex components.

APPENDIX A: DEFINITIONS AND NOTATION
6. CONCLUSIONS AND FUTURE WORK

Lo . , 1. ConTours A contour cis an oriented one-dimensional
The problem of eliminating redundancies when computing a0, itoid embedded in the real plaRé. A contour isclosedif

intrinsically ambiguous representation has been discussed init[l]g homeomorphic to a circle and @enotherwise (i.e., if it
context of the detection of salient cycles in a contour graph. Vl\ée_homeomorphic to a straight line segment). See Fig. 14. L

have argued that these redundancies can lead to combinatolr@) C R? be the set of points of the manifotd The sefT (c) is
explosion of the search space if not quickly removed. called thetraceof ¢

A critical assumption needed to perform redundancy com-
pression reliably is the-clustering condition. We believe that 2. ContourGraPH. A graph C, A) whereC is a set of con-
this condition can be replaced by a decay condition on the pruaurs is called @ontour graph For any ar@a = (¢, ¢;) € A, let
ing function P.(r) similar to the decay conditions introducedT (a) = T(cy, ¢2) be the straight line segment which connect:
in [5, 7]. Roughly speaking, such a decay condition would réhe “head” ofc; to the “tail” of c,. A path in C, A), called a
quire the functionP. () to attain a local maximum (in a noisecontour pathis denotedr = (co, . .., G), wherel is the length
robust sense) in the vicinity of scene contours. If such a con@ithe path. The trace of is
tion holds, and if the variarit’ is used to perform compression
(Table 1), we believe that one can prove the main result without T(x) = T(co) U T(Co, G)U--- U T(G-1,¢) U T(q).
requiring thee-clustering condition.

The proposed algorithm reconstructs each cycle with a mifhe contour pathr is said to besimpleif T (x) is the trace of
imal number of concatenations, and in this sense, it requir@gontour, namely, il () is the set of points of an embedded
a minimal number of primitive operations to explore the senanifold inR2. Let S(C, A) be the set of simple paths in the
of cycles in the graph. The formalism used here can be eentour graph@, A). The contour pathr is asimple cycldf
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open contour closed contour non-contour contour arc

‘ e

simple open path simple cycle

Ca

/

non-simple path
FIG. 14. Different types of contours and contour paths.

T(r) is homeomorphic to a circle and issample operpath if Proof. Let u € H(c, c;) be the homeomorphism which
T () is homeomorphic to a straight line segment (see Fig. 14ichieves the distanckc,, c,;) and letc] be the subcontour @}
For any set of pathX let«o X denote the subset of simple pathsdefined by (T (c;)) = T(c;). We have

koX=XNS(C, A). If m=(Cy,...,q) andx’=(cy, ..., )

are contour paths such that the last vertex pfs the same as d(c}, ¢;) < max lp—w(p)l< max|p—u(p)l = d(c, c).
the first vertex ofr,, ¢ =c;, then the concatenationo 7’ is peT(C PeT()

given by: .
ProposiTionS.  Let mq, 72, 77, w5, be simple contour paths
mon' =(Co...,0 =Cp...,C). such thatr, o 2 andr; o 5 are defined and simple. Then,
A contoury is said to bembeddeth a pathr if T(y) C T(x); d(y 0 72, 7wy 0 713) < max@(my, 1), d(mz, 73)).  (2)

it is embedded in@, A) if itis embedded in a path ofJ, A).
Proof. Let pye H(my, 1), pnoe€ H(mo, m5), and let o

3. Distance Function.  For any two contoursy, ¢y, let 12 € H(ry o 1, 7} o 7}) be defined in the obvious way. Then
H(cy, ¢2) be the set of all homeomorphisms betwegrand e have
Co. For anyu € H(cy, ©), define

Oyyop, (11 0 702, 77 0 5) = max@y, (1, 77),  dy, (2, 7).
d.(C1, €2) = A (T (ce). T(c)) = max |Ip — u(p)l
e Sincepy o o € H(my o mp, 71 o mh) for all g € H (e, 7)), 2 €
and let H (72, 75), we have
/ /
d(Cl, Cz) = min du(cla CZ)- d(nl O T2, O 772)
pneH(c,c2)

= min d, (1 0 2, 71 0 7))
weH (iomz, wyomy)

It can be proved that is a metric and thad(c,, ¢,) is greater or . .
equal to the Hausdorff distance betwelft,) and T (c,). If 71 = reH (o e  (ra) Gusona (71 0 772, 77 0 713)
ands, are simple contour paths, then titr, 7o) = d(T (1),

T (72)).

ProposiTion4. Let ¢, ¢, be contours and letche a sub-
contour of . Then there exists a subcontour @f denoted ¢,

such that 4. Scene Contours  Let | be the observed image and let
o (Cy, A)) be the contour graph computed on inpltty some de-
d(c;. &) = d(cy, ¢2). terministic algorithm. The information which we wish to extract

min min  max(d,, (1, 77), d., (72, 75)
u1€H (1,71) paeH (2, m5) X( - ! e 2)

— max(d(ry, 7). d(z, 73). m
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from the observed image will be assumed to be a set of contou 4

calledscene contoursand will be denoted'. The sefl” will be
assumed to contain all the subcontours of its elements.

yel, T()cCT(y) =y el.

CASADEI AND MITTER

e N =

Thus,I' is really the set of all the contour fragments in the scene.

5. PROBABILITIES OF PatHs.

The imagel and the image con-

FIG.15. The pathr = (1, 3, 4, 2) is simple but not-simple. In fact, its trace
T () contains a subcontodrnear the cycle with vertices 2, 3, 4.

toursT” will be assumed to be joint random variables. Since the

contour graphC,, A)isafunctionofl, (C,, A))is also jointly
distributed withl” andl . For any pathr in (C,, A;) ande > Olet
P.(7r | 1) be the conditional probability that there existe I'
such thad(y, ) < €. Sincel will be fixed once and for all, we
will also use the notatio.(7) = P.(r | | ). For anye > 0 and

0<é <1, letk. s be the pruning operator which removes no

simple paths and paths for which the probabil®y(r) is less
thans:

kesX ={m € X: P(n) >8}NS(C, A). 3)
6. RasTER ORDER FUNCTION p.  Letp:C—{1,..., N} be a

bijective map. For simplicity, a vertexe C will be identified
with its raster index(c). If 7 is a simple path, then let(rr) be

the maximum raster index among its internal vertices. Thus, ﬂe X
Order the elements oK. Then repeat the following step for

7 is a simple cycle, thep() is the maximum index of all its

vertices because all its vertices are internafr ¥ (Co, ..., )
is open, then
max_p(cj) ifl =2
plr) = == @
0 if | = 1.

If 7 =(Co, ..., q) is open letpii(7) = p(Co), pia(rr) = p(a). If
7 is a simple path, let: (1) be the internal vertex of with
maximum index; that isp(c’(1))= p(xr). Similarly, c(2) is
the unique internal vertex with second highest index.

7. p-DecomposITION oFSIMPLE PatHs.  If m =(Co, ..., q) iS
a simple open path, then itsdecompositioris given by

7 ={Cp...,CL(1)) o (Ci(1),...,q).
If r is a simple cycle, then its-decomposition is given by
T ={c@),...

€2 (2) 0 (c;(2). ... c; (1)).

n_

8. MeTrIC ProOPERTIES OFSETS OF PatHs.  Let X, X1, X, be
finite sets of paths and let> 0. The setX is e-separatedf
foranymr; € X, o € X, we haved(rr1, 2) > €. The setX; is an
e-coveringof Xy, if for everym; € X, there existsr, € X, such
thatd(wy, m2) < €. The setX; is ane-samplingof X; if X, C X3
andX; is ane-covering ofX;. An e-sampling isminimalif it is
e-separated.

The setX is e-clusteredif for any three pathsry, 7y, 73 €
X d(7r1, m2) < € andd(m,, 73) < € imply d(ry, 73) <€. A con-
tour graph ise-clustered if every set of paths with the same
end-points is-clustered.

9. ComprresseBUNION OperaTION.  Let X; U, X, denote an
arbitrary minimale-sampling ofX1 U X,. If X1 is e-separated,
then such a set can be constructed as follows. Initidize X;.

eachr;, € Xy. If d(7r1, 72) > € for everym; € Xy, then addr, to
X, X:= X U {m,}. Finally, defineX; U, X, = X. Notice that if
€ =0, thenX; U, Xo = X1 U Xo.

10. ¢-SivpLE Paths.  (See Fig. 15.) A simple open path
in a contour graphQ, A) is e-simpleif there exists no closed
contoury’ embedded in, A) e-near a contouy embedded
in . That is, there exists no pair of contouss §’), such that
T(y) c T(x),y isclosedand embedded @,(A); d(y, y’') <e.
Asimple cycleis said to be-simple if all its strict subpaths ate
simple. The set of-simple paths inC, A) is denoteds¢(C, A).

ProposiTion6. Let 7 € S¢(C, A) be open and letr’ be a
path such that ¢ir, 7') <e. Thenz’ € S(C, A).

Proof. Forthe purpose of contradiction, lketbe not simple.
Then there exists a closed contgtirembedded in@, A) such
thatT(y") Cc T(x'). Fromd(z, #") < ¢ and from Proposition 4,
there exists a contoyr, T(y) C T (), such thad(y, y’) <e.
Sincey’ is a closed contour embedded @ (A), this contradicts
the fact thatr is an opere-simple path.

ProposiTion7. A subpath of ar-simple path is-simple.

The parsing tree of a simple path is obtained by applying this

decomposition recursively— 1 times (Fig. 6). A pathr is reg-

APPENDIX B: PROOF OF THE MAIN THEOREM

ular if it is a simple cycle or if it is a simple open path such

that pfi () > p(7) and pa(r) > p(r). Note that all the paths in

a parsing tree are regular.

A compact way to characterize the cycle detection algorithi
of Table 1 is by means of the discrete-time dynamical system
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(1.4,5,1,2,7) (7,4) (4,5) (5,1) (1,2) 2.7) k=
o PR A
O S R T
<5’/1{:\‘(1\’2> (7,4,5,1,2,7) k=5
parsing tree evolution of X,

FIG. 16. Evolution of the representation of the cycle of Fig. 6 by means of the variablegfk]. At time k=0, the cycle is represented by five paths of length
one. At all timesk > 5, the cycle is represented by one path of length five.

{(r,s)} if (r,s) e S(C, A applied, visits each simple cycle exactly once by using a minime
X s[0] = {(?). otherwise (5)  number of concatenations.
THEOREM 9. Let s be a simple cycle in the contour graph
Xrslk +1] (C, A) and lete =0 and« = kg in (6). Then,
Xr s[K] Ue & (Xr kta[K] © Xkia,s[K]), if min(r, s)
_ ke1 © 7 € Xy pmlKl, k> p(m).
X s[K], otherwise Furthermore, the cycle is obtained by means of the1 con-

) catenations specified by the parsing treerof
wherex =k 5, as given by (3). For any set of paths let

koX =X N S(C, A). Let Q ¢ be the regular paths with end- The following result provides a sufficient condition for the

pointsr ands: proposed algorithm to approximate alsimple cycles in the
case in which compression is applied but pruning is not. Le

Qs ={m € S(C, A): pii) =1 > p(n), palm) =8> p(7)}.  Xe [K] be given by (6) withk =ko and let X0[k] be given

(7) by (8).
Figure 16 illustrates the evolution of the setss over time. OLEMMA 10. Let (C, A) be ane-clustered graph. Letr €
ProposiTIoNS.  Lete — 0 andk = ko in (6). Then, ()j((r;,[lg)ﬂiif'(c, A). Then, there existsr € Xf4[k] such that
Xrslkl ={m € Qrs:p(m) <k} = Xﬁs[k]. (8) Proof. From e ng[k] and Proposition 8 we have=

pii() ands= p;a(7r). Let us proceed by induction. Fér=0
Proof. The direction X;s[k] C xgs[k] is given by the statementis true beca%ES[O] = X ¢[0] as given by (5).
Proposition 2 in Section 4. To prow?[k] ¢ X s[K], let = €  Let the statement be true for gli< k — 1 and letr € XP[k] N
X0 [K] sothatp(rr) < psi() =T, p(7) < pia(w) =, andp () < S¢(C, A). Letr =1 o, be thep-decomposition ofr; that is,
k. Letus proceed by induction and letus assfid j] C X s[j] pra(r1) = pri(2) = p(). Thus,
for all j <k—1. Since fore =0, U, =U, we have from (6)
Xrslil € X, s[K] if i <k. Therefore, since () <k, it is suffi- max(o(ma), p(m2)) < p(r) -1 <k—1.
cient to prover € X, s[p(7)].
Let 1, 72 be thep-decomposition ofr. Then, sincep(r,) <  Therefore, by the inductive hypothesis, there exist
p(ﬂ)—l, 10(7[2)5/7(77)_11 we havenlexgp(ﬂ)[p(n)_l]i " B - c
2 € Xy.slp(w) — 1], and therefore, from the inductive hy- 71 € Xi ymlp(m) =11, 72 € X[y olo(m) =11 (9)
pothesisyy € Xyl () — 11, w2 € Xy slp(w) — 1]. Then, B B o
such thatd(my, 71) <€ and d(mp, 72) <e€. Let 7 =71 07>.
7w =mom € Xrpmlo(w) — 1] o Xpi).slo(r) — 1]. iFsrom Proposition 5(r, 77) < €. Equation (6) fok = p(r) — 1

Hence, from (6) attim&=p(n) — 1,7 € X, s[p(7)]. =

_ _ Xt slp(m)] = X [o() — 1] Ue ko(XF iy [o(7) — 1]
The following theorem, which follows from Prop. 8, guaran- .
tees that the proposed algorithm, if no pruning or compression is o Xim.slo(T) — 1])- (10)
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From (9),7 € X{ ,y[p() — 1] o X5y s[o() — 1]. Sincer €
S¢(C, A) andd(r, ) <€, we have from Proposition 6 that ~
is simple so thatr is not pruned out by,. Therefore, since for
any setsXy, Xs, X1 U, X5 is ane-sampling ofX, U X5, there ex-
ists " € X{ ([ p(7)] such thatd(7, 7) <e. Sinced(r, 7) <e
and since €, A) is e-clustered, we havé(r, 7’) <e. From
7’ € X{ s[p()], by using (6) and the-clustering hypothesis,
from time p(k) up to timek — 1, it follows that there exists &
Xf s[K] such thatd(r’, ) < €, and thereforél(, 7) <e. =

9.
10.
11.

12.

Proof of Theorem 3. Letny, ..., m_1 =m, be the sequence
of regular paths (with length greater than one) in the pars-
ing tree of the cycler. We haver; e S¢(C, A), 1<i<l—-1. 14
From Lemma 10, the unpruned dynamical syst&ml[k] e-
approximates each of the paths . .., m_1. That s, there exist
T, ..., —1 such thatrj € X;ﬂ(n.),ma(m)[p(”i )] and d(i, 7i)
<e.

If there existsy € I' such thad(y, =) < e then, from Propo- 16.
sition 4, for each =1, ...,1 — 1 there existg; €I such that
d(yi, mi) <€, and therefored(yi, 7i) < 2¢. By the definition of
k2.5, if 7 is pruned out, then the probability that there exists a
scene contournear it is less thad. Therefore, the probability
is less thar$ that there existy € I' such thad(y, 7) <e and 18.
thatr; is pruned out. Hence, by using the union bound, the prob-
ability that there existy €T, d(y, 7) <e¢, and that at least one 19.
ofthe pathsrj i =1,...,1 — 1is pruned outis at most £ 1)s.
Thus, with probability at least4 (I — 1)3, if there existy e T,
d(y, m) <e, none of the paths {; ..., 7,1 is pruned out, and
thereforer’e X50, | [p(r)]. =
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