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A long-standing open conceptual problem has been the
Jollowing: How does “information” interact with
control of a system, in particular feedback control,
and what is the value of “information” in achieving
performance objectives for the system through the
exercise of control? In answering this question we have
10 remember that in contrast to a variety of commu-
nication settings, the issue of time-delay is of primary
importance for control problems, especially control of
systems which are unstable. We discuss various issues
arising from these fundamental questions.
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1. Introduction

A long-standing open conceptual problem has been
the following: How does “information” interact with
control of a system, in particular feedback control,
and what is the value of “information” in achieving
performance objectives for the system through the
exercise of control? In answering this question we have
to remember that in contrast to a variety of communi-
cation settings, the issue of time-delay is of primary
importance for control problems, especially control
of systems which are unstable.

The theoretical basis for modern digital communi-
cations is undoubtedly Information Theory as devel-
oped by Shannon. This theory tells us in a precise way
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the fundamental limitation to reliable communication
over a noisy channel. The crowning achievement of
this theory is the Noisy Channel Coding Theorem,
which identifies the channel in terms of the invariant
quantity, called capacity of the channel, and reliable
communication can take place if transmission occurs
at a rate below capacity and cannot if it occurs at a
rate above capacity. This theorem links the input
side of the communications problem via the notion
of capacity with the output side, namely, the ability
to decode with arbitrarily small probability of error.
This theorem can be extended to the rate of distortion
context as Shannon himself did. One can do no better
than quote Shannon to illuminate this situation:

Duality of a Source and a Channel. There is a curious
and provocative duality between the properties of a
source with a distortion measure and those of a
channel. This duality is enhanced if we consider
channels in which there is a “cost” associated with
the difference input letters, and it is desired to find
the capacity subject to the constraint that the ex-
pected cost not exceed a certain quantity. Thus input
letter i might have cost a; and we wish to find the
capacity with the side condition ¥, Pia; < a;, say,
where P; is the probability of using input letter i.
This problem amounts, mathematically, to maxi-
mizing a mutual information under variation of the
P; with a linear inequality as constraint. The solu-
tion of this problem leads to a capacity cost function
C(a) for the channel. It can be shown readily that
this function is concave downward. Solving this pro-
blem corresponds, in a sense, to finding a source that
is just right for the channel and the desired cost.
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In a somewhat dual way, evaluating the rate
distortion function R(d) for a source amount,
mathematically, to minimizing a mutual informa-
tion under variation of the ¢,(/), again with a linear
inequality acts as constraint. The solution leads|to a
function R(d) which is convex downward. Solying
this problem corresponds to finding a channel that
is just right for the source and the allowed distortion
level. This duality can be pursued further and is re-
lated to a duality between past and future and| the
notions of control and knowledge. Thus, we may
have knowledge of the past and cannot contral it;
we may control the future but have no knowlgdge
of it.

One of the many fundamental contributions which
Shannon made which in fact renders the enunciation
of the Noisy Channel Coding Theorem possible, is to
think “digitally” (to use the work of a modern {age
of Media technology), that is, to reduce everything
to bits, a common currency in which everything can
be evaluated. As we shall see later whether all bits
are identical is an issue that we will have to face when
dealing with the development of an Information The-
ory for sources which are decidedly non-stationary
and non-ergodic.

A corresponding all embracing theory for control in
the presence of uncertainty does not exist. The issug of
fundamental limitation is far more complicated here
since it is unclear that the dynamical systems which
we wish to modify to behave in prescribed ways
through control can be characterized through a simple
invariant quantity like capacity. Even the invariants of

a linear multivariable time-invariant system are the

Knonecker invariants which tell us what Jordan fo:
we can reach through coordinate changes and linear
constant feedback [24]. The nearest thing to fundamen-
tal limitation of control systems analogous to Shanpon
theory are the Bode inequalities, the irreducible etror
in the linear Quadratic Gaussian problem and charac-
terization of performance limitations of control of
linear time-invariant systems where the performance
measure is sensitivity and this can be characterized
through an H*-norm. '
Nevertheless, control systems, even complex systems
are being built where sensors, actuators and control-
lers are being linked through noisy communications
channels and a theory which unifies systems theory

this is a far more complex problem than point to poi
communications, It is totally unclear whether |the

ture, namely, what information is available
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Fig. 1. Closed-loop system. Note: Dashed arrows show spme of the
potential feedback paths. Controller may be viewed as|a c

control part of the problem can be “separat
the communications part of the problem.
blem is distributed and the issue of informati

his. pro-
n struc-

where, is actually a design issue and
understood.

ceived inadequate attention in Information
In light of the above discussion, I wish to rai
questions:
I. Isthere a role for Informétion Theory in a
theory of Control and Communications?
I1. €an Systems Theory contribute to Co:
tions and Information Theory in some non-trivial
way?
In my view, the answers to both questions are a
Qualified Yes.
This is not the first time that these two guestions
have been posed. A successful interaction |between
Systems Theory and Coding Theory is through the
work of Willems on the behavioral view of |systems
[18] and Forney, Massey, Trott, Loeliger, Mittelholzer
on codes on Finite Groups (see e.g. [11]).
also attempts at using rate distortion theory
lower bounds on estimation error for non-linear filter-
ing (see [12,25]). Nevertheless we must | proceed
with caution. This is best captured by quoting from
Hans Witsenhausen [22] who thought deeply about




124

these issues:

The infimum expected cost achievable in a problem
depends upon the prevailing information pattern.
Changes in information produce changes in optimal
cost. This suggests the idea of measuring informa-
tion by its effects upon the optimal performance.
Such a measure of information is entirely depen-
dent on the problem at hand and is clearly not addi-
tive. The only general property that it is known to
possess is that additional information, if available

free-of-charge can do no harm though it may be use-

less. This simple monotonicity property is in sharp
contrast with the elaborate results of information
transmission theory. The latter deals with an essen-
tially simple problem, because the transmission of
information is considered independently of its
use, long periods of transmission and use of
channel are assumed and delays are ignored. H.S.
Witsenhausen: 1971.

In light of the above there is a methodological and
theory formation issue which must be addressed.
Simply stated, we must pose control questions in an
appropriate informational sense and we must situate
information theory in a dynamical framework. An
elaboration of this viewpoint has been undertaken in
the recently completed doctoral thesis of Sekhar
Tatikonda [22], Anant Sahai [22] and several papers
[4,5,14,19,21].

2, Control in an Information Setting

To make the above ideas more concrete let me consider
the following question:

What is the minimal information needed about
the current state of a single-input, discrete time,
linear time-invariant unstable system in order to
stabilize it?

The question we are asking is really about the optimal
coding of the state, that is, coarsest vector quantlza-
tion, to achieve stability.

This problem is mathematically formulated in
terms of the construction of Controlled Quadratic
Lyapunov Functions (Quadratic for explicit computa-
tions). That is given

x(t+ 1) = Ax(¢) + bu(), t=0,1,..., 1)
where x(f) € X =R" is the state of the system and
u(t) € U =R is the control, 4 is an n x n matrix, b is
an n-vector and we assume that (4, b) is a reachable
pair, we are required to find the coarsest quantized

feedback control which stabilizes the system. The idea
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of coarseness (minimal mformatxon) is captured as
follows:
Given a controlled Lyapunov funct; on

V(x) = (x, PX)gs, P >0 ()

find a set |
U={ueRlicz) 3)

and a quantizer f: X — U, with ‘
Ax) = =f-x) (3a)

and |

AV(x) = V(dx + bf(x)) — V(x) < 0,

VxeX, x#0. (3b)

JSnaturally induces a partition on the state space X and
we assume that the values of fin U are ordered in the
sense that w; < w;,i> j, i, j € Z. Let Q(V) =set of all
quantizers which solves the stabilization problem.
Forge Q(V)and0<e< 1, let N(gle]) denote the num-
ber of levels that g assumes in the mtErval [e, (1/€)].
Define the quantization density ‘

Y N(gle])
and - ‘
[* = ArgMinge o1 ] (3

S* is defined to be the coarsest quantizer ¢orrespondmg
to V(x). |

It turns out that the quantization problem can be
confined to one preferred direction (one-dimensional),
and the optimal quantization is logarithmic with the
optimal scaling law p* being given by ‘

s MegickN] -1
ni’(€<k[/\[] +1

and X, £ < i<k < n are the strictly unstable eigen-
values of 4.

In the above formation, we have allowed quantizers
with a countable number of levels. An equivalent for-
mulation of the problem leads to a method for design-
ing finite quantizers leading to practical stability. For
contiffuousstime. systems there is a relation hetween
the optimal samplmg time T* and the oﬁtlmal quanti-
zation scaling law p*:

(6)

Z)\“(F) In(1 +v?2) (M

i1
and

p(T") =

Vi-1, i (®)
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where M\/(F) are the unstable eigenvalues of the contin-
uous-time systemn matrix F.

Note that p* - T* is an invariant of the class of
single-input, continuous-time linear time-invariant
systems. We may think of the quantized, stabilized
feedback system as a symbolic description of the stabi-
lized linear feedback system. It is also an example of a
source-coding problem with a non-standard criterion
function. For details of above see [10].

- The stochastic version of this problem where the
quantized stabilization problem is posed for

x(t+1) = Ax(t) + bu(t) + w(t), t=0,1,... (9)

w(?) being white Gaussian noise, is even more interest-
ing. Here one can exhibit the non-linear effects of
quantization as a desirable effect as opposed to a
source of noise which is undesirable and should be
guarded against. A little bit later we shall see the desir-
able effects of quantization in a different context.
The generalization to the stochastic case of the above
quantization results can be obtajned by invoking the
notion of a storage function in the stochastic case.

Definition, A measurable function ¥ : RY — R is said
to be storage function associated with a supply rate
g € C(R" x R; Ry if it is bounded from below and

t
VX)) + ) g(X(s),u(s), t>0
5=
is a positive F,-super-martingale for all (X(-); u(-)),
satisfying (9), where

Fi=0(X($)0<s <)

For our problem the function g is a quadratic
function, and. the control w(s) is of the form
u(t) = k'x(r). The deterministic résults can be general-
ized using the above definition and exploiting the con-
nection of this to value. functions for etrgodic. control
problems [8].

3. Distributed Control and Quantization

To demonstrate how quantized controllers may have
important advantages, consider the following Stochas-
tic Control problem originally posed by Witsentiausen
[14,23]:
The time horizon T'= {0, 1, 2}. All random variables
are scalar. X is a Gaussian random variable with
mean zero and variance o®. The state transition
equations are
X1 =Xo +u, (10)
(11)

X2 = X + w.
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Here u; and u, denote control values. The output
equations are

Yi=X (12)
Y, =X+ W,

where W is a zero-mean, unit variance, Gaussian
random variable independent of X,. The cost func-
tion to be minimized is

oy I + K] (13)
where the control policies have the information
structure Uy =+(Y)) and U, = 7(Y3) w
and 7, are measurable functions of ¥; and
that this is an example of a distributed con
cause the controller at stage 2 does not have full ac-
cess to the past information. Note that if 4, coul
a function of (¥, Y, u;), then the choi
Y1(Y1) =0and 5(Yy, Y2, u;) =Y gives us ze
The best affine controller

(M) =aYi=aXy and v(Y2)=>Y;

can be computed, and the expected cost where b is
chosen optimally is:

2 (1+a)20'2
Ka 02+-——-————-—1+(1 el

To compute the optimal q, if we define ¢ = o(l + ),
we see it is given implicitly by the equation for #:

t — B2
m—i—‘k (0’ l)‘

For k=0.1, o= 10; gives us an a= ~ 0.010] with
optimmal cost=0.99,

Now consider the folléwing control

(Y1) =-Y; + osgn(Y;)
73(¥2) = osgn(Ya).

This control strategy which uses quantization, may be
thought of as doing 1-bit quantization followed by

where P, is the probability of decoding error at the sec-
ond stage. But P, obviously dies off as e~/ si
the integral of a tail of a Gaussian random variable. No
integrals need to be computed. Furthermore, we see that
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we only needed one simple non-linear element (the sgn
function - a comparator) for each controller, making
the practical significance of these results clearer. This
phenomenon is not something that we need “compli-
cated” non-linearities to take advantage of.

Building on the intuition given above, consider
the following family of “quantizing” controllers,
parameterized by a single number B.

#00 = + 8541, (15)
20n) = 5|%+] (16)

The first stage takes the input and “quantizes” it into
bins of size B. The decoder then just looks to see which
bin the value is in. Consider now a series of problems
(k, o), and non-linear controllers as follows:

kn :n2’ (17)
On =1, (18)
B, =n. (19)

For our purposes, the analysis of the performance of
these controllers is also simple. The first stage cost is
k2 E((vf(x0))?) which by inspection can certainly be
bounded by k°B%/4 since the absolute value of the con-
trol is clearly bounded above by BJ2. Since,
kiBZ(1/n?), the first stage cost tends to zero in this
sequence.
For the second stage, we notice that since the bin size

B grows as n while the variance of the observation
noise w stays fixed at 1, the second stage cost is zero,
unless the noise w has magnitude greater than B/
2=n/2. But since w is Gaussian, this tail event
happens with a probability that tends to zero as
¢™"'/8, So, in the limit of large n, the second stage cost
is zero as well. Thus

lim E(J,|v%) =0. (20)

R—00 .
But what happens to the affine cost? Examining
Equation 13, and substituting, we have:

1 +a)?
E(Ju|Vatfine) = 2+—~———~(———-——————. 21
(Jn|Yattine) = a /M +a +a) (21)
Clearly,

Jim E(Jalvathne) = @ + 1. (22)
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And so, we can see that the minimum cost is achieved
by setting a to zero, giving us
nlgg) E(Jnh’bestafﬁne) =1, (23)

So, the ratio ——-~—————————-——E(J"]%°"am"°)

EUn) tf‘:nds-‘to n‘mﬁmty‘

Discussion

We have seen that in the case of this particular infor-
mation pattern, a non-linear controller ¢an be superior
to the best linear one. Can we get any intuition as to
why this situation arose? 1

It seems that since the cost of control in stage 2 is
zero, all that mattered at the second stage was how well
it could predict x,. Also, by not penalizing the state
and keeping the cost of control in stage' | low, we were

 effectively giving the first stage a lot of freedom in set-

purely as a way to communicate over a Gaussian chan-
nel with the second stage about the state. This coinci-
dence of the message! and the messenger? is what is
causing this seemingly strange behavior,

Ideally, what we would like is for the{nessage to be

ting x; and a strong incentive to view{he output x,

simple (i.¢. low entropy = informative rior’) so that
there is less-information for the decoder to try and
extract from the signal. However, to get the message
across intact, we would like the messehger to have
high-energy so that the signal-to-noise ratio is favor-
able (high mutual i:nformation:infotfative likeli-
hoods®). Unfortunately, when we restrict ourselves
to affine controllers for this problem, t/zése two objec-
tives are in direct opposition. An afﬁlte controller
implies Gaussian state and for a Gaussian random
variable, high energy implies high entr opy and low
entropy implies low energy. g

4. LQG and its Variants (see [4,2&),21])

In this section we examine the LGQ problem under
communication constraints. In Section 4.1 we state
the problem. In Section 4.2 we state a lower bound
in terms of the sequential rate distortion function
defined.in Section 4.2. Tn' Section 4.3 we state upper
bounds. Finally we conclude in Section 4.4.

|

Yy is exactly what we want to communicate to the|second stage.
2xy is also the input to the “channel” i
3The intuition involved is ‘that low entropy implies |less unpredict-
ability. Less unpredictability means that our prior knowledge is

uite strong. ) f
gl‘he intuition for the case of signalling is that weiyant to reduce
the effect of the noise. We do this by having 4 large mutual
information between the input and output of the ‘channel. Using
the terms of hypothesis-testing, ‘this means that we would like our
“likelihood” terms to be strongly discriminating.
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4.1. Problem Setup

Throughout this section we consider the following
time-invariant system:.

Xor1 = AXy + BU, + W,, Yn 20, (24)
where {X,} is a R%valued state process and {U,} is a
R™-valued control process. The sequence { ¥,} is 11D
Gaussian ~ AN(0,Ky). And the initial position
Xo ~ N(0,Ky).

Our goal is to minimize the long-term average cost

N-1
ﬁ?sﬁp%E[Z X,0X,+ U,TU, (25)
- n=0

where Q is positive semidefinite and T is positive
definite.

Under full state observation it is well known that the
optimal steady state control law is a linear gain of the
form U, = LX, where

127

digital channel we have b, = a,. And the additive white

Gaussian noise channel with power constrajr
which A =B =R’ For this channel B,=4
where ¥, is a zero mean Gaussian with cov

—

Ky. The rate is R = Llog,(1 + P).

We now quickly define the encoder, decod

the controller.
Encoder: The encoder at time n is a map
En i RN 5 A" x B X R™ — A
that takes
L W) > a,,

Note that the encoder is allowed to be a functio
past controls and past channel outputs.

Decoder: The decoder at time n is a map
Dy : B! x R* x R™ — R?

that takes

= —(B'PB+T)"'BPAX (26)
(T A  Cot P
where P satisfies the Riccati equation
» The output of the decoder is some estimate of the state.
P=A(P-PB(B'PB+T) " BP)A+Q. (27) In the sequel the output will be the conditional expec-
i X tation of the cutrent state given the channel putputs
Furthermore the optimal cost is and controls.
E(W'PW) = tr(PKw). (28)  Controller: The controller at time n is a map
These standard results can be found in [2]. Cy:RY —R™
Our problem differs from the standard LQG result
because we have a communication channel between . that takes
the sensor and the controller. See Fig. 2. The channel
has an input alphabet .4 and an output alphabet B. R > Uy
The channel is defingd by a- sequence of stochastic ; '
kernels {@(dB,|a",b"!)}72,. In this seétion we treat  Note that the encoder has available to it Etﬂ the
two channels. The digital noiseless channel with a rate  information that the decoder has. This is called equi- .
R in which A = B = I for some finite set T. For the = memory.
Plant Xn »{ Encoder
U,
Controller |« < Decoder
Xn
Fig. 2. System.

n of the
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Note also that the controller is a function of the state
estimate. Thus we are imposing a certainty equivalent
structure on the controller. 1

Define X, = E(X,|B", X", Um1). And define

en =X, — X,.

Lemma 4.1. The error e, is independent of all control
choices U"~! for all n.

Proof. This is known. See [2]. First note that
entl = Xpyy — Xy
= AX, + BU, + W, — E(4X, + BU,
+ W B X Uy
= AX, + BU, + W, — E(4X,, + de, + BU,
+ W B X, Uy
= dey + W, ~ E(de, + W,| B+, & Um).

We prove this by induction. First note that

e = Xy — E(Xo'Bo). Now ¢ = Aey + Wy — E(Aeo-l-
Wy|BY, Xy, Up). This is independent of Uj,. Assume
that e, is independent of U ~!. Then by the induction
hypothesis e,y = Ae, + Wn — E(de, + W,| B! X",
U™) must be independent of U/ ' 0

Lemma 4.2. If the error is independent of the controls
then the certainty equivalent controller is optimal.

Proof. This can be found in [22].

The following steps follow from Borkar-Mitter [4].

The running cost can be written as

E(X,QX, + U,TU,) = E(X,QX, + U'TU,)
+ E(¢,Qe,).

Furthermore the evolution of X, can be written as
Y,H.l = AX’;; +BUn + I/i/m

where W, = Ae, + W, ~ eyy,.
But in this case we have a full state observation LQG
pro}:;lem with state process X, and running cost

E(X,0X, + U,TU,). Thus the optimal control law is

n

given by (26). (]

Assume-that var(e,) = D for all . Then the opti-
mal cost for the original problem is

N-1
lim sup %E [Z X,0X, + U! TU,,}

n—00 h=0
l N—-1 " . ,
= lim sup NZ E(X,0X, + U,TU,) + E(,Qe,)
N0 n=0
= tr(TKy) + te(QD)

= tr(TKw) + tr((A'PA — P + Q)D).

S.K. Mitter

Note that the optimal cost decomposes into two
terms. The first term is the full state cost and the second
term depends only on D the state e timation error
covariance. Thus we have reduced jme problem of
computing the optimal cost to that of minimizing
tr ((4'PA~ P+ Q)D) over a given chaiﬁnel.

|

4.2, Lower Bound

We can lower bound the tr((4'PA — P +Q)D) term by
treating the problem as a sequential rate distortion
problem for the source X,,,= AX,+ W, with
squared error distortion metric and a ‘%veight matrix
APA-P+Q=M.

Lower bounds can be determined by the sequential
rate distortion calculation. y

Sequential rate distortion theory (se¢ }[1,17] and the
references cited there) has a key role to play in this
problem. In our situation, we consider the process

Xk+1) = A~X(k) + W(k)

with (W(k)) white Gaussian noise, the sjiéquential rate
distortion problem is defined as follows:|

/N
DN,Seq. (Ra M) = Ian(,?ﬁX{”) X %E<Z[(X(k)
SN\ k=1
~X(k), M(X(k) - £(R))])

where M is fpositiv% definite, subject%toﬁ Ahe rate
constraint (1/N)I(X, ;XV) < R, whe e I(X, ; XV) is
the’mutual information between X, and X7, and
where the minimization is carried out over all
P(X, |XY) which are causal, that is of the form
Hzg‘,P(/élek). The rate distortion function is

|
DSeq.(R, M) = lim Dy, seq, (R, M )i

For simplicity, consider the scalar case. A surprising
result is that there is.a minimum rate, R'> log, 4, re-
quired to stabilize the system. In this casjq

MKy
DSeq.(R,M)=2~2~'§-‘—_-_—%, S

where Ty is the variance of W. For special channels,
including the AWGN with equi-memory, DSeq.(R,M)
can be achieved. The structure of the minir izing con-
ditional law suggests that the optimal structure of the
encoder is predictive. ;

Note that this lower bound holds completely inde-
pendent of the encoder, decoder and controller. The
question then becomes when can we achieve the se-
quential rate distortion lower bound. We can achieve
itif the channel we are given is “matched” to the source.
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4.3. Upper Bound

If the channel is matched to the source
Xn+1 = AX, + W, then we can achieve the sequential
rate distortion value. If the channel is a digital channel
then tr((4'PA — P+ Q)D) will equal the operational
sequential rate distortion bound.

4.4. Conclusions

Equi-memory is a strong condition and generally
requires at least one noiseless link. One needs a way
for the decoder to comimunicate to the encoder. Now,
in a general way, we can consider the plant as a chan-
nel. Consider the scalar case and change the quadratic
cost on Uy to a hard constraint: E(U}) < P;. Assume
that the encoder has noisy observations of Uy. Let
1 B*P,
Ry = 210g2 (1 +~E-W—)

A necessary condition for well-posedness is that
R; > logz A.

Returning to the original average cost problem, if
there is no cost on control, then the equi-memory
assumption can be dispensed with. Otherwise, there
is a fundamental tradeoff between control energy
and capacity required from the encoder to the decoder.
Sub-optimal schemes which are optimal in the high-
rate regime can be designed when the equi-memory
assumption cannot be justified.

A more general view of this problem where the state
process is a controlled Markov Chain has been consid-

ered in [6]. In other work, we have shown how the op- -

timal sequential quantization of Markov sources can
be viewed as a partially observed stochastic control
problem [6].

5. Towards a Dynamical View
of Information Theory

The discussion in the previous section raises a new pro-
blem in Information Theory:

How can one reliably transmit an unstable source
over a noisy channel through appropriate source
and channel coding and decoding at the receiving
end?

More precisely, given a scalar discrete-time finite-state
Markov source (X(¢)) given by

X(@+1)=aX(@®)+ W(t), a>1,t=0,1,...

and (WA(1)),>¢ is additive white Gaussian noise or
bounded noise with finite support and a memoryless

cal operational definition of capacity. The exponent o
is related to the error exponents correspondi
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channel (or additive white Gaussian noise channel) is
it possible to design encoders and decoders within a
specified finite end to end delay constraint so tha
output of the decoder (X(z)) achieves a desired
squared performance Sup .o E(X(f) — X(1))* < K?

A similar question was posed by Berger [1]
Wiener process and an information transmission|theo-
rem for this case has been an open problem for many
years. In Anant Sahai’s thesis [19] a solution to this
problem is presented. The solution.requires a dynami-
cal view of Information Theory, since the message, the
Markov Source, is not givenat time — 1, but unf olds in
time and a little thought will make it clear that| block
coding of any kind will not work in this situation. In-
deed, all coding and decoding operations must be cau-
sal, causality suitably defined. In this problem, the
separation of source and channel coding is no E» nger
obvious and separation has to be imposed by a new
definition of channel capacity.

C;mytime(a-)
= Sup{R|3(K >0, Rate(e, D) = R) Vd|> 0

‘ Pe"vor(e, Damd) S K‘ 2-0‘0} .

In the above e denotes the:encoder, D? the anytime
decoder and d the prescribed-delay.
This definition should be contrasted with the

assi-

g to
block coding and convolutional coding. Approriate
source and channel coding theorems for this probl
with the above definition of capacity are prove

and the dynamical view which I have referred to i
essential element in the solution to this problem

tion provides evidence as to why the sequentigl
delay) rate distortion problem is an important
blem. Although it would be too much to expec
a Shannon-like rate distortion theorem would be
in this causal situation (see [17], for example), it is
impottant to. charactetize in a precise way the
between the nomscausal rate distortion function
the causal rate distortion function. This has
carried out in 7].

6. Control and Communication as
Interconnection of Probabilistic Systems

In [18], Willems has proposed a definition
Dynamical Systems and a methodology for con:
which consists of interconnecting two dynamical sys-
tems to obtain a desired behavior. We propose he
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generalization of this view to Probabilistic 'Syé'tems.
This methodology has been exploited in the thesis of
Tatikonda [20].

Let Q be a finite set and Q7 be the set of sequences
thought of as a compact, metrizable space. Let
P(Q?) be the convcx, weak* compact set of all prob-
ability measures on Q7. .

The shift

o S5
induces a continuous affine transformation
G : P(2%) — P(QZ).

Definition 6.1. A random system is a convex subset
S C P(Q?).1f 65 C S, we say that S is a shift-invar-
iant random system.

We have a natural embedding.
Jj: 9% — P(Q7),
: X 8y
Definition 6.2. A random system S is said to be com-

plete iff 1 € P(QZ) with ul, € S|, VI finite intervals
of Z=pes.

Definition 6.3. A random system & is said to be L-com-
plete iff in the above deﬁmtlon we can restrict [ to be
I=[s, t+ L}.

Proposition 6.4. (Topological Characterization). Let §
be a random system over 0%, The following are
equivalent:

(i) S iscomplete and S|, is closed in P(Q) VI finite
interval.
(ii) S is closed in the weak*-topology.

This is a natural generalization of the work of Willems
for deterministic systems. )
Jj is a continuous map. We use the notation:

Ps(F) = j(Q).

Definition 6.5 (Fagnani). A random system S is said to
be deterministic if 38 C QF s.t.

8 = Conv.(;S).
If I C Z, wehave a projection

H[ : QZ - Ql
s xe= T (x) = x|,

If S is a random system, we let

S|, = {flplu € 8}

convex subset of P(QF).

where IT; is the pro_ycctmn (induced) o
Let § C P(Q?) be a complete cr~1r£

S.K. Mitter
1 P(Q%). 8|, isa

ariant random

system. S is therefore completcly determined by a con-

vex set

Sl S PR x Q)R

In the deterministic case S| po,1; 18 essentially equivalent

to specifying a directed graph, consis

along the arcs.
Definition 6.6, Given two random syste;
and S; C P(Q%) its interconnection
system

Si1NS; € PO9).

The problem of control is-then the foll

ting of 0'and 1

88 € P(Q?)
s the random

owing: Given a

random system S, € P(%) and-a de
S84 € P(92%), find a controller S, T P({

d(S4,8u N Se)

is minimized, where dis an appropriate

sureé between two weak*-closed convex
of all probability measures P(0Z).

7. Conclusions

In this paper I have suggested that a
Control and Communication is bad!

are.to make progress towards a science

systems, where subsystems are linked

cation channels. I have given examples
ked in a control

informatjonal questions need to be as
context and how control questions nee
an informational ¢context. The subject
infancy and much needs to be done.
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