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Stabilization of Linear Systems With Limited
Information

Nicola Elia and Sanjoy K. Mitter

Abstract—In this paper, we show that the coarsest, or least by the lack of fundamental understanding of how to do system-
dense, quantizer that quadratically stabilizes a single input atic design of complex systems.

linear discrete time invariant system is logarithmic, and can be
computed by solving a special linear quadratic regulator (LQR)
problem. We provide a closed form for the optimal logarithmic

base exclusively in terms of the unstable eigenvalues of the system.

We show how to design quantized state-feedback controllers, and
quantized state estimators. This leads to the design of hybrid
output feedback controllers. The theory is then extended to
sampling and quantization of continuous time linear systems
sampled at constant time intervals. We generalize the definition
of density of quantization to the density of sampling and quan-
tization in a natural way, and search for the coarsest sampling
and quantization scheme that ensures stability. We show that the
resulting optimal sampling time is only function of the sum of the
unstable eigenvalues of the continuous time system, and that the
associated optimal quantizer is logarithmic with the logarithmic
base being a universal constant independent of the system. The
coarsest sampling and quantization scheme so obtained is related
to the concept of minimal attention control recently introduced by
Brockett. Finally, by relaxing the definition of quadratic stability,
we show how to construct logarithmic quantizers with only finite
number of quantization levels and still achievepractical stability

of the closed-loop system. This final result provides a way to
practically implement the theory developed in this paper.

For example, many hybrid phenomena (interaction
between continuous dynamics and logic) are effects of in-
formation quantization [14], [16], [18], [22], [23]. In order

to derive systematic design methods for hybrid systems,
we need to understand how to systematically quantize
information without losing stability and/or performance.
Inthe hierarchical organization of systems, itis evident that
higher levels in the hierarchy manipulate only quantized
information about the dynamics at lower levels [21]. It is
important to understand what is the minimum information
needed in order to complete a given task.

Complex systems are often spatially distributed aggrega-
tions of many subsystems. The coordination and control
of such systems is achieved through communication
channels. The number of the subsystems together with
bandwidth limitations of the channels limit the informa-
tion about the state of each subsystem available at the
controller [9], [19].

In other words, we consider quantization useful, if not essential,
instead of undesirable.

Itis also worth mentioning that we are interested in the design
of quantized closed-loop systems which are implicitly verified.
This is in contrast with traditional stability analysis results ob-
N THIS PAPER, our main goal is to develop a theory of sta@ined foragiven qugntizer already in place [6]-{8], [15], [17],
bilization of linear time-invariant (LTI) systems using only aand more a'o.”g the "T‘e of [10]. . .
finite number of fixed control values and finite number of mea-. The Paper1s organized as fO"QWS' W.e begin our study with
surement levels. The quantization of controls and measurem q{%crete-ume_ systems and quantizers with countable numb_er of
induces a quantization, or partition, in the system state-spac e_vels. As a first st_ep we allow for .coun.table quantizers, which

akes the analysis and the notation simpler, captures the fun-

We want to point out that our view fundamentally differs fro al | dal ides i tant tofi It
the traditional view where the effects of quantization are seg mental laws, and aiso provides important asymptotic results.
first solve the full-state feedback problem where the con-

as undesirable, either as noise, or state uncertainty, and must €al tak tabl ber of (to be determined
reduced by often complex controllers [1][5]. rol values can take a countable number of (to be determined)

In this paper instead, we seek to quantize the state of tfl%ed }/?rl]ues. This 'deon? n Stc;ctlon .” ‘.’;h'Ch 'S ;he melltmfse;]
system as coarsely as possible while maintaining the stabilft§" ©" the paper and contains the main ideas and results for the

(and the performance) of the system. This problem is motivatg te-fegdback case. In particular, assuming that _the gystem IS
quadratically stabilizable, we show that the quantizer is loga-
rithmic (the fixed levels follow a logarithmic law). Further, we
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Section IV we consider sampled-quantized systems. We asssueh thatf(xz) = — f(—=x), and such that forany € X,z # 0
that the discrete-time system of the Sections I-lll are obtained
from constant sampling in time of a continuous-time system. AV(z)=V(Az + Bf(x)) - V(z) <O0.

We extend the definition of density of quantization to the den-

sity of sampling and quantization in a natural way, and sear¥gith a slight abuse of terminologgis called the quantizer. No-

for the coarsest (least dense) sampling and quantization schetice.that the range of induces a partition in the state-space of
We show that the resulting optimal sampling time is only a funthe system, where equivalence classes of states correspond to
tion of the unstable eigenvalues of the continuous time systetime same adopted control value, i;,= {z € X|f(z) = u;}.

and provide a formula for it. The associated optimal quantizerAdso, by requiring the quantizer to be a function we are implic-
logarithmic with the logarithmic base being a universal constaitify assuming that to eachthere corresponds only one element
independent of the system. Finally, in Section V, we show that Z/. Notice finally that we consider only quantizers that are
the system can be stabilized by finite logarithmic quantizers okymmetric with respect to the origin and with an infinite count-
tained by truncating the countable logarithmic quantizers. Théle number of levels. The first is not a restriction given the nat-
reader should review the result of Section IV in the light of theral symmetry of the system and the Lyapunov function. The
result of Section V. In Section VI, we present an applicatiopecond is also not a restriction since, as will see in the develop-
of the theory to an example, and construct a finitely quantizexent, such quantizers are required to solve Problem 2.1. By con-
output feedback discrete controller, which stabilizes a contisidering directly infinite countable quantizers we avoid need-
uous time system. Finally, in Section VII, we present some coless, more elaborate, definitions that include quantizers with fi-

clusions and discuss future directions of research. nite levels.
We assume that the values in thelgatre ordered as follows
Il. QUANTIZED STATE FEEDBACK u; <wjfori>j,4,5€ 2.

. . ) . ~ the immediate predecessor@f, ;.
discrete-time system with a possibly countable number of fixe Definition 2.1: A quantizer taking the valug, € R, 3, > 0

control values tp be determined. ' . N if such thati; = 4, € U for somey.
The system is assumed unstable, single input, stabilizab € emma 2.1: Let f : X — U be a quantizer that solves

. . . . u,;4+1 IS called the immediate successorgfand; is called
In this section we consider the problem of stabilizing an LT|a

and governed by the following equation: Problem 2.1, and ie®; = {z € X|f(z) = w), i € Z.
+ Given any real numbes > 0, definefstf = {fu; : u; € U},
a" = Az + Bu ) andp = {y = Be : « € Q). Theng : X — AU with

A g(x) = pu, for z € pQ;, andi € Z, also solves Problem 2.1.

wherez € R* = X, xt denotes the system state at the next Proof: If f solves Problem 2.1, then, for ahye Z, u; is
i i nxn nxl ) bl ’ y Wy

discrete-timeA € R**", andB € R™". suchthal/ (Ax+Bu;)—V(z) < 0forallz € ;, z # 0. Form

Since the system is stabilizable and linear, it is quadratically, linearity of (1), it follows tha¥/ (Az + Bpw;) — V(z) < 0
stabilizable, i.e., there is a control inpuf function ofz, that 5. 411 .. ¢« 8. ' ' m

makes a quadratic function of the state a Lyapunov functionThe above lemma implies that there is no loss of generality
for the closed-loop system. Such Lyapunov functions are callﬁ.pomy considering quantizers with valy = 1, and, unless
control Lyapunov functions (CLFs). For LTI systems, given Btherwise specified, value 1 will always bé assumed.
CLF, itis always possible to find a stabilizing controlin the form \yia measure the coarseness of a quantizer by measuring its
of a linear static state-feedback control. density defined next.
L Definition 2.2: GivenV (z) = 2’ Pz, P > 0, a CLF for (1),

A. Approach and Problem Definition let Q(V') denote the set of all quantizers that solve Problem 2.1.

Given a quadratic CLA/(z) = #/Pr with P > 0, Pis Forg € Q(V)and0 < ¢ < 1, let #g¢ [¢] denote the number of
always assumed to be symmetric in this paper, we proposdeeels thatg has in the intervale, 1/¢]. Define
select a set of fixed control values such thatx) is still a

Lyapunov fu.nctior.1 for the system, i.e., it decreases along the 1, = lim sup #g [6].
system'’s trajectories. In particular, we ask that for anyg 0 em0 —lIne
AV(2) 2 V(@) - V(z) <0 74 is called the quantization density (¢§. A quantizerf is

said to becoarsestfor V(z) if it has the smallest density of

More precisely, we want to solve the following problem. ~ duantization, i.e.,

Problem 2.1: For a given CLFV (z) = ' Pz, P > 0, we

want to find a set f=arg gcig(fv) Mlg-
U={u, €Riie Z} A quantizer which igoarsesfor V'(x) need not be unique since,
different setg/ may satisfy the asymptotic property, and for the
and a function samel{, there may be different ways to define the functjpn

mappingX intol{. Moreover, a quantizer which &arsesfor
X —-U V(z) may not be an element @@(V). At any rate, since the



1386 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 9, SEPTEMBER 2001

quantizer induces a partition o¥i, the density of quantization V' (x), has fixed control values that follow a logarithmic law, and
induces a measure of coarseness on the partitions in the stiitis-characterized as follows:
spaceX. ]

It is worth pointing out that the definition of density we are U = {Fui,: tip1 = pui, uo = Pu, @ € Z} U {0}
adopting in this paper aII_ows us to measure q_ua_n?izers for whigly, constane < p < 1is given by the following expression:
the number of quantization values, although infinite, grows log-

arithmically, rather than linearly, with the length of the interval [B'PAQ'APB 4
that includes them. Under this measure, the density of any uni- p= BB (3)
form quantizer is infinity, and the density of any finite quantizer  BLAG AT |
is zero. .
The main result of this section is the characterization ¥fith
a quantizer which icoarsestfor V(x). As we will describe 2
presently, the main idea in the derivation @fand f is to = n (;)
consider the CLF as a robust Lyapunov function where, for a ,

given fixed control value, we are interested in finding the set gig
all states for whiclAV () is negative enough.

We want to emphasize that the idea of using robust Lyapunov flz) =~ f(-=z)
functions to design nonlinear control strategies, in particular flz)=u; Vze Qj, ieZ
guantizers, for linear systems is new and has great advantages Flz)=0 VzeQ
- zero

with respect to traditional approaches based on optimal control
which even in the case of a given fixed quantizer would oftemhere
lead to intractable integer programming problems.
Qj— I{J} € X|Oéi+1 < Kapzr < oy, Qi1 = poy
B. Problem Solution: Logarithmic Quantizer a0 = Pa, i €Z},

In this section, we derive one of the main results of this paper.  Q,.., ={x € X|Kgpz =0}
We show that, for a given CLF, there is a natural quantization of
the control values and a partition of state-space which follow$gd
logarithmic law. This result captures in a precise way the intu- 3, = 1+p
itive notion that, the farther from the origin the state is, the less T2

precise the control action and knowledge about the location Iﬂforeover ivenang < € < 1—p, letp. = p-+¢, and construct
the state in the state-space need to be. 9 y P = pe = PTG

Before we present the results, we need to introduce some llmtb?sf’ butwithp. instead op. Thenf. & Q(V)), and therefore

; . R . solves Problem 2.1.
tation. Given a CLFY(z) = 2’ P (_P > 0), for (1), AV(z)is - = proving this Theorem, we will actually prove a stronger
given by the following expression:

result. First, we need the result stated in the following Lemma.

AV (z) = 2/(A'PA — P)x + 22/ A PBu + v B PBu. Lemma2.2:LetV(x) = 2’ Px, P > 0, be a CLF for system
(1). For anyx € X z # 0, denote byl/(x) the following set:

B

" denotes transpose. For a giverthe control that make&V ()

the most negative is given by Uz) ={v € RIAV(z) < 0}.
B'PA . Then,U(x) is equivalently characterized by the following open
U=- = Kgpw. interval:
B'PB :
Notice that the control is given in terms of a linear static feed- U(z) = {u € Rju® < u< u(2)}

back K¢ p whereGD stands for gradient descent, since it rep-
resents the controller that maké$z) decrease the most alongwhereu(*) and«(® are the roots of the second order equation
trajectories. inu

Let A. = A + BKgp be the resulting closed-loop state-

/ / ! oAl / /
transition matrix. The resultingV () is given by @ (A'PA = P)x + 20" A'PBu+u'B'PBu =0

AV(z) =o' (ALPA. — P)x and is given by the following expression:
1,(2) _ ' Qx
For future reference, let @ = Kopr 4 /m.
! !
Q=P—-APA, =P—-APA+ % @) Proof: See Appendix. [ |
bB'PB U(z) is nothing but the set of control valuesthat can be
Note that@ > 0 sincez’ Px is a CLF. selected (for the givem) to ensure that the Lyapunov function

We are now ready to state the first main result of this sectiois.still decreasing along trajectories.
Theorem2.1:LetV(z) = &' Pz, P > 0be a CLF for system Proof of Theorem 2.1:U(x) has the following important
(1). A quantizerf : X — U, f(x) = u, which is coarsest for properties whose verification is immediate:
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P1) scalingl/(«z) = al/(z) for o > 0; We see that the smallest, or worst-case, intef¥at, 3) is ob-
P2) symmetryu(t) = —u(? for all z such thatK;px = tained by settingd = 0. In other words, the worst direction of
—B'PAxz/B'PB = 0. quantization, the one with the most restricted choice of control

From Property P2), it follows thatu = 0 can be used for all values, is the one parallel ¥’ p, and, for any3 > 0, U(«, 8)
x L K, to ensure that the Lyapunov function decreases aloggows symmetrically arountf (v, 0).
trajectories. This also implies that, in searching for a quantizerNote that the change of variable implies th&t, px =
which is coarsest, we can restrict our attention to the partitie{ B’ PAQ*A’PB/B'PB) for somea € R, with the
induced by the quantizer in the directiéf},, as explained by right-hand side being a more convenient representation to

the following argument. handle.
LetYszp C X denote the subspace &f generated by</. , We can now use the scaling prope(ty1) to show that the
. . . . == . .
, coarsest covering in the directidi, follows a logarithmic
Yop = {x EX:z=y Kep Ly € R} ] law. Consider without loss of generality the $&t1,0). Define
KapKgp .
p= inf .
Given any quantizey : X — U, g € Q(V), consider the U(e,0)nU(1,0)#0
restriction ofg onYgp In other words tells us what is the maximum range of states

along the directiorf_(/GD for which there is a common control
value that still decreases the Lyapunov function in the next step.
h(z) ={g(z)|r € Yep} From Property P1) we have that

h: YGD —>UYGD

and the extensiop©? of h given by p= inf a.
alU(1,0)nU(1,0)£0

gGD : X —Uy,

Since the boundary points correspondingid, 0) are
gGD(x) =h(Kapx).

W _ B'PAQ'A'PB \/B’PAQ—lA’PB
us = —

From Property(P2) it follows that g € Q(V). Note that B'PB B'PB
Uy, € U, therefore and
#9°P [ < #g[e] forall0 < e < 1. 2y _ B PAQ'A'PB \/B’PAQ—lA’PB

o YT T BPB B'PB

Thus, we only need to look for the coarsest quantizer in the

direction K7, ,, or equivalently it turns out that

inf = inf e p= .o
sean) T gancony 07 aul? >uth

or
To simplify the derivations ahead, it is more convenient to do

; . B'PAQ-'A'PB
the following change of coordinates. Let w5 — -1

P=u® "~ [mrigiars

z=QY?g. ~—3srs  T1

Note that'/2 is well defined since) > 0. In this new coordi- Note thatd < p < 1. '
nate system, the boundary pointd)-(® of U(z) are given by ~ The relationship betweens, and j, can be derived

the following expression: as follows. vy = g, is the common value of: to

be used for all the values oaKgpz € (pag, o). Let

W@ Z K O-Y2, & [ 2% o = fla = o (B'PAQ™' A'PB/B'PB) for somea. Then
i B'PB’
_ B'PAQT'A'PB \/ , ,B'PAQ-LA'PB
Note thatk ; pQ~1/? £ K p isthe gradient descent controller to =ap B'PB Ty B'PB
in the new coordinate system. This suggests the following nat- B'PAQ~'A'PB B'PAQ-1A'PB
ural decomposition of the state-space in theoordinates. =*——©®pp QW
z2=Q YV?APBa+wl wlQ V2APB. Substituting in the last equality far we obtain
The boundary points(}-(?) of U(z) in terms of« and 3 are _s {4 1
given by the following expression: U0 = fPa " [BpagaPB
B'PB
! —1 4/

u(l):@) — aw and since

B'PB
o [ 2BPAQTAPE L, 1 \/B’PAQlA'PB _1+4p
“ P P mrE B'PB 1—p
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we have that

_1+p 1+p

Ba

By Or g = u9.

Now, from the previous derivation we know that = 3,, guar-
antees the non increasing B{z) for all = € ﬁé’ ={zreX:
pao < Kgpz < ag}. Moreover, we know thz;\ﬁ_lar NYap D
Qo N Yap, for any Qg which can be associated tg by any
quantizer inQ(V'). Thus, from Lemma 2.1, of which the scaling AT -
Property( P1) is a consequence, we have that= puo guar-
antees the non increasing6{z) for all z € pQ2y = Q. Fur- P ’
thermorey = v, is the smallest value that can be animmediate -~
predecessor afy. Fig. 1 gives a visual proof of this statement -~
and helps seeing thatif; < puo then there is gap in the cov- Fig. 1.
ering of K p, that cannot be covered by any $eassociated
with any value of control: which is eitheru > ug or u < uy.
The same argument can be repeated:foand by induction for
anyu,;. Qj in the theorem statement are derived from the cor-
respondingﬂ_;r by replacing the nonstrict inequalitg with a O
strict one, so thaf is a well defined function, anf2,... is the
natural closure of the partition. Thus, we have that the sequence u
for both positive and negative control values is given by Olis1
\
\\
5
N

Logarithmic partition in the, « plane.

g |
K
A GD

@ [Gng vt

and the resulting quantization in the state-space is given by

©)

:|:U,7;_|_1 = :|:U,7jp 1€ Z with Ug = /3“,

Uiy

=
J

:|:Oéi_|_1 = :|:Oéip 1€ Z with g = /3a.

From the structure of it follows that:

and from the construction we have that for gng Q(V") (with

valueug)

Fig. 2. Logarithmic partition in thé«, 3)-coordinate.

#£[6] < #g[6] forall0 < 6 < 1.

Finally, since for any0 < ¢ < 1 —p, andp. = p + ¢, f.
constructed ag but with p. instead ofp belongs toQ(V) (left
to the reader), we have th#tis coarsesfor V(). |

Fig. 2 shows the resulting logarithmic partition in theoor-
dinate system.

that other partitions could be associated to the same set of con-
trol values. For example, assume that the system dimension is
n > 2, and consider the new patrtition defined as follows. Let
Qyero = {z € R"|2/(A’PA — P)z < 0}. This is a cone in the
state space that includ€s.,. as defined in Theorem 2.1. Itis

left to the reader to verify that the inclusion is usually strict. Let
+

Remark 2.1: Several remarks are in order. First, this theorefl, = Qj\ﬁzero, where\ means set exclusion. Then, the re-
is the first to capture in very precise terms the intuitive argumesiilting quantizer will still be coarsest f&f(x) by construction.
that when the system is far from the equilibrium we do not neddhis new partition could be preferable to the one of Theorem
precise knowledge of the state and, therefore, we can use im@d- since the zero control value is used for a larger set of states.

cise controls to steer the system in the right direction.

However, it is more complex to implement than the one of the

Second, the scaling property at the basis of the logarithmtweorem. Clearly the two quantizers are the same if and only if
law of quantization is not only a requisite of quadratic contrdl,.,, = ... This will be the case for the coarsest quantizer
Lyapunov functions but also of any seminorm, and therefoower all quadratic Lyapunov functions characterized in the next

extends to more general CLFs.

Third, requiring the Lyapunov function to be strictly de-

chapter.
Corollary 2.1: If system (1) is stable, then there exists a CLF

creasing along trajectories has the critical role of regularizirigr which p = 0.
the problem and drastically reduces the complexity of finding Proof: Immediate and left to the reader. |
the right partition. This would have been otherwise intractable The next corollary has important implications that will be ex-

even in the single input case considered here.
Finally, we want to remind the reader that quantifezon-

ploited later on in this paper.
Corollary 2.2: p is invariant under linear coordinate trans-

structed in the theorem is in general non unique in the serfsemations.
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Proof: Left to the reader. PSS . (Q—l/QA’PB(B’PB)—1B’PAQ—1/2) < A2

C. Optimal Quantization Over All Quadratic CLF &Q YV2APB(B'PB)*B'PAQ™Y? < 421

In this section, we characterize the coarsest quantizétA'PB(B'PB) 'B'PA<+*Q (substituting forQ)
(smallestp) by searching over all quadratic CLFs. The optimals A’ PB(B'PB)~'B'PA

quantizer is related to a special LQR problem. <42 x (P _APA+ A’PB(B’PB)—lB’PA)
Define -
2 -1
/ / " B'PB /
V=e/Pa
P>0
verr By a simple rearrangement it follows that we have to find the
Theorem 2.2:Assume that system (1) is unstable, and letmallesty such that there is a quadratic CLF,= 2/ Px with
A¥ i =1,....k < n denote the eigenvalues of the matrix P > 0 for which

with magnitude greater or equal than 1. Then B PE\-!
i) The optimal quadratic Lyapunov function corresponding P — A’PA + A'PB <B’PB + 5 1) B'PA>0 (9)
to p* is given by the positive—semidefinite solution of the 7

following Riccati equation: Notice thaty? must be strictly greater than 1, otherwise there
A'P*BB'P*A is no way that this last expression can be positive—semidefinite,
Pr=APA-"———— (6) given that the systems is unstable, tiat- 0, andV = z/ Pz
B'P*B+1 >
is a CLF for the system.
which is also the solution to the special LQR problem  Now, let
> B'PB
min Z ui B== .
@hp1=A,+Buy stable k=0 v -1
HO Inequality (9) becomes

corresponding to the minimum energy control that stabi-

lizes the system. P—-A'PA+ APBB'PB+p3) 'B'PA>0. (10
i)y Ktp = —(B'P*A/B'P*B) and it is parallel to . ' o L

Kigx = —B'P*A/B'P*B+1 the LQR optimal For a given fixed3 > 0, the above expression is a Riccati in-

equality. Since the inequality is not affected by positive scaling
of P, we can, without loss of generality assume that 1. It
is well known [25] that any” > 0 satisfying (10) is such that

controller.
iii) p* is given by the following equation:

o _ Thag N1 % P > R whereR is the solution to the corresponding Riccati
re m equation
Proof: Let R—ARA+ ARB(B'RB+1)7'B'RA=0.  (11)
BPAQA'PE SinceB’' PB/(v? — 1) = 1, this also implies that the smallest
2 _
-~ BPB v is obtained byR.

Equation (11) is the same Riccati equation associated with

Then, (3) becomes the solution of the following LQR problem

v—1
P=""1 ® =
g min Z u;, = TRz
which is monotonically increasing for > 0. Thus, minimizing Pt =AetDu stable ; =
p is equivalent to minimizingy (or v?) overP > 0V = 2’ Px o . ) o
CLF for system (1). whereR is Riccati solution to the problem of minimum energy
Thus, we focus on the equivalent problem control to stabilize the system. This provgsvith P* = R. ii)
follows from the expression dk;p associated witlR, i.e.,
= inf .
K (RfPAQﬂn}l;}R/R’PR)g-«? K K B’'RA is parallel tok B’'RA
V=z'Pa = —— = -
¢x="prp P LR = T BRB 1
However, the following implications follow immediately, givenln order to prove iii), we use the invariance under transformation
thatQ—Y2A'PB € R™: of p* stated by Corollary 2.2. We already know that if the system
) Ny is stable,p* = 0. There is no loss of generality in assuming
B'PAQA'PB < A2 that all the eigenvalues ot are outside the unit disc. We can
- ransform the system into the following block diagonal form
B’P{B e transform the syst to the following block diagonal f
o Trace { B'PAQ~ A'PB } through a coordinate transformation
B'PB

u

s[4, 0 - [B,
= Trace{Q—l/QA’PB(B’PB)—lB’PAQ—l/Q} < A2 A= [ 0 AJ ; B= [B }
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where A, describes the dynamics of the unstable mod&ubstituting in the expression (13) fgt we obtain that

of the system (all its eigenvalues have magnitude greater

than 1, while A, describes the stable dynamics. Now, the ¥ = laol.

minimal energy controller, in these coordinates, has the form ) ) )

K& = [Kip. Kfp, with K2, =0, i.e., itwill not putany Note thatag is nothlng bu.t the product of the_e|genvalge34bf
effort stabilizing A,. This property will become useful in the Thus, we obtain the desired result by substitutingfoin the
extension of this theory to quantized estimators developed§Pression fop™

Section Ill. Thus, we can concentrate in designing the quantizer +_1
to stabilize A,, without affecting the stability ofd,. Having pr = ’y*
noticed this, we proceed by assuming for the rest of the proof 7+l
that all the eigenvalues oft have magnitude greater than 1 [}
(e.g., concentrating only on the pait.,, B.,)). Theorem 2.2 together with Theorem 2.1 provides a complete
We can also assume, without loss of generality, that th@aracterization of the coarsest quantizer that guarantees
system is in the controllable canonical form. quadratic stability of the closed-loop system in terms of the
unstable eigenvalues of the open-loop system. Stated more
0 0 e 0 formally, we have the following.
A— : . B— : Definition 2.3: GivenV(z) = z'P*z with P* satisfying
0 .0 1 ’ ol (6), the quantizer constructed according to Theorem 2.1 with
—ay —ay ... —@n_1 1 p = p* given by (7) is denoted by*, and is called theoarsest

guantizer (for quadratic stability).
From the property of the expensive control case of the LQR Given the structure of the coarsest quantizer, it is useful to
problem [24], we know that the optimal controlldfy.qr Will  introduce the following.
place the closed-loop poles in the mirror image of the unstableDefinition 2.4: Let f* be the coarsest quantizer. Thigh :
open-loop poles. This implies that the closed-loop state tran{y,, — I{ denotes the function with the property th&t(z) =

tion matrix has the following form: h*(Kapz).
Comment: Whenever we use nonlinear feedback, like
0 1 0o ... a quantizer, new equilibrium points may be created in the
A — A+ BKiop — : T closed-loop sy_stem, and we r_leed to be aware of their effects_on
¢ QR 0 0 1 the overall trajectory dynamics. Note however that quadratic
1 _en stability of the closed-loop system does not allow multiple
w0 w0 w0 equilibrium points to exist. This also gives an alternative
thus, K1.qr must have the following expression characterization ofp* as the largest value for which new
equilibria are generated by the quantizer in the closed-loop
1 Gp—1 ay system dynamics.
Kiqr = | a0 — w T Tw T T W (12) Perturbed Nonsingular ProblemOnce again, we want to

stress thap* may not be an achieved infimum over all quadrat-
From the previous derivations it follows that the optimé&lhas ically stabilizing quantizers. Although we can constriittac-

the following value cording to Theorem 2.1, anff can be shown to be stabilizing,
we want to describe another way of constructfiigwhich will
v =+vVB'RB+1=\/Rpn+1 (13) naturally extend to the construction of finite quantizers in Sec-
tion V.

whereR,,,, denotes the(n,n) element ofR. Thus, we need  In constructing a feasible (quadratically stabilizing) quan-
to computeR,,,, in order to find an alternative expression for  tzer the main issue is to provide a quadratic Lyapunov function

based on (8). V(z) = ' Pz, P > 0, and to guarantee that for amy+# 0,
Notice that from the expression &f; or we have that AV(z) < 0. A natural candidate would b&*, the Riccati
solution associated to the optimal logarithmic base,Unfor-
B'RA tunately P* is only positive—semidefinite if the system in not
Kror = "BRB+1 completely unstable, therefore is not a valid Lyapunov function.

Moreover, even in the cagé* > 0, guaranteed if the system is
By equating the first element df1.qr above with the first ele- completely unstable, the quadratic stability assumption is not

ment in (12) we obtain the following equation Ky, ,,: guaranteed by th& (x) = 2/ P*z sinceAV*(z) = 2/Q*z <
0. This happens because the matgx given by (2) is of rank
ao Ry, ai —1 1. In fact,Q* is a scalar multiple oK}, ;' K, 5. This is easy to
Ron+1 verify, and left to the reader, and implies thiat"*(x) = 0 for
all z orthogonal toK, ;.
which when solved fof,,,, gives Having noticed that, we only need to slightly perturb the

problem in order to achieve a feasible Lyapunov function. The
R, =al—1. singularity is due to the fact thdt* solves thexpensive control
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LQR problem, which is the limit as — 0 of the standard LQR ries have a decay rategiven by the optimaP which provides
problem. Thus, we just back up a little bit, and solve the Riccatie smallesp for the system
equation associated with the following problem:

00 zt = éa: + Bu. a7
min Z ex) Sz +ui = xhRro _ “ _

e1=Amy +Buy, StAblE 77 It also follows that, the optimal with a decay rater for system

(=20 (1) is given by the optimab for System (17).
whereS > 0, ande is a very small positive number.
The resulting Riccati equation is the following: lll. QUANTIZED STATE ESTIMATION
, A'PBB'PA In Section I, we saw that the optimal quantizer is closely

P=APA- " B'PB +eb. related to the optimatxpensive contrdlQR controller. Such

. . . ._.a controller has the property that, in closed loop, it places the
For ¢ small enough, the solution of this equation, the aSSOC'atSH.cstable onen-loo polez atytheir mirror ima. espandpleaves the
Kap, and the associatqﬁé o get arbitrarily close to those P PP ges,

. . . . stable ones in their original location in the closed-loop control.
associated with the expensive control case with the resulnpnqt . . . : .
Q" > 0 his section, we show how the properties and ideas described
e > U in Section Il apply to the problem of designingjuantized state
D. Stability With Guaranteed Decay Rate estimator. We claim that, in this framework, we need to quan-
_tize the estimator error rather than the measurements. This is

The result of the Section II-C-I can be generalized 10 iny g4 what is done in [9] for the problem of control with commu-
clude rate constraints on the convergence of the trajectories,{Qtion constraints.

the origin. This introduces some primitive performance measurec o sider a traditional linear state estimator for a discrete-time
into the framework. system.
It is well known that if the Lyapunov functiory/ () is such

that 2t = Az + Bu+ L(Cz — y).

V(et) < oV (x) (14)  We assume that the system is single outputyse Cz is a
scalar, and it is observable.
The estimator erroc = z — 2 follows the following dy-

lzxlly < & ||zoll, - namics:

for0 < o < 1then

We can now extend the results of the Sections 1I-A—-C by ap- et = Ae+ LCe.

plying the same arguments to Inequality (14). Here, we briefl1y o , .
summarize the development. he estimation error goes to zero as the discrete time progresses

Equation (14) implies that only if A 4+ LC has all the eigenvalues strictly inside the unit

disc.
#'(A'PA — &®P)x + 22’ A PBu 44/ B'PBu < 0 This clearly resembles the situation of the state-feedback
problem withe in place ofz, L in place of B, andC in place
must hold. o _ _ of K. However, before we were give and we had to find the
The analogoue of (2) is given by the following equation:  parsest quantizer, here denotedfgyz), for the system
A'PBB'PA
Q=a’P—- A PA, =a’P - APA+—"—""—" (15) zt = Az + Bu

B'PB
and the formula fop given by (3) is unchanged although thevhich turned out to have the structyfg(x) = h5 (K ), for

value ofp will depend on the different value @ and possibly someK¢ . Now, we need to find, over all feasible estimator
on a differentP. gainsL, the coarsest quantizer, denotedftjy¢), for the system

Finally, the derivation of Theorem 2.2 also follows in a
straightforward way. The reader, may verify that Inequality (9)
is changed into the following one: with fe(e) = h(Ce), and withC given.

B/PB>_1 The following theorem describes how to solve this problem.

et = Ac+ L¢ (18)

B'PAZ0. Theorem 3.1:Given A € R andC € R**™ with (4, C)
(16) detectable. Lef* be thecoarsestjuantizer for the system

Now dividing by o, we can rewrite the above inequality as
follows:
A A A B'PB\ ! ie,v = fY(w) = h*(LYw), LY = —(CS*A'/CS*C’, e
P——P—+—PB <B/PB toao 1) B/Pg 2 0. Rnxly s the optimal direction of quantization, aft is the
symmetric positive—semidefinite solution of
Following the development, we see that the optimal soluffon
which provides the smallegtand guarantees that the trajecto- ~ S* — AS* A’ + AS*C/(CS*C’ +1)7'CS*A' = 0.

2

o’P— APA+ A'PB <B’PB+ 7
y2 =

wt = Aw+ Cv (29)
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Then, the coarsest quantizer for the system does not affect stability, for any,, since ther,, corresponding
to the coordinates of the stable uncontrolled modes, will go to
et =Ae+ L¢ zero.

Thus, we only need to consider the unstable part of the
denoted byfj(c) is obtained by setting = L*, ithas the form system, and desigh,, so thatC%,,,, = C,,. We claim that such
fe(x) = hi(Ce) with " in place the optimal direction of gn 1, is L* in (20).
guantization, it has the optimal" given by (7), and it is con- Tg simplify the notation we sett = A,, L = L, andC =

structed according to Definition 2.3. C,,.
Proof: We first argue that there is no loss of generality in From Theorem 2.2 applied to system (19), we have fiat
considering the error system completely unstable. is the optimal direction of quantization associated withand

We can assume, without loss of generality, that System (1&)oreover thal.* is equivalently characterized as the static gain

through a coordinate transformation, has the following bloGjector that places all the eigenvalues of the closed-loop system
diagonal form:
wt = (A + 'L w

A, O L,
A= [ 0 AJ L= [LJ andC = [C;, G, at the mirror images of the eigenvalues 4f, i.e., \;(A’ +
C'L*) = (1/X(A47)). L* is unique from the detectability as-
where A,, describes the dynamics of the unstable modes of tkemption, and the fact that all eigenvaluesiafeed to be placed
system (all its eigenvalues have magnitude greater than 1), whiilea new location.
A, describes the stable dynamics. However, the eigenvalues @’ +-C’ L*') are the same as the
For any L, such that the system is stabilizable frégmthe eigenvalues of A + L*C), which means thaf is the unique
coarsest quantizgi* for quadratic stability is given by Theoremstatic gain vector that places the closed-loop eigenvalug$-ef

2.2, and has the form L*C) atthe mirrorimages of the eigenvaluesbfTherefore(”
must be the optimal LQR controller associated with the problem
f7(e) = K" (Cap(L)e). oo
: 2
We are usingC¢ , instead ofK(, , for obvious reasons, and FM:A%T,,I?% stable kzzog’“
showing its dependence dh C¢ (L) is the minimal energy c(0)=eq
controller, (measurement vector) for the givenand we have g,q thus, from Theorem 2.2/ is the optimal direction of quan-
already argued th&t;, ;, (L) must have the following structure: tjzation with optimal logarithmic base equal 6. m

The above theorem suggests the following estimator structure
where the estimator dynamics are driven by the logarithmically
guantized estimator error:

Cép(L) = [Céps(L) Copu(L)], with C&p (L) =0

i.e., no effort is exerted in stabilizing,.
At first sight, it seems that unless the given mattihappens it = A+ Bu+ L*h5,(C2 — ).
to make the stable modes unobservablg= 0, C’ can not be
an optimal direction of quantization. In this problem however .
we hgve to seledt. If weqselectL* as describepd in the theoremA' Quantized Output Feedback
statement, then We can now construct (under the assumptions of The-
orem 3.1) a quantized output feedback controller, based on
L* =[L:, L] (20) the separation of the estimator and the state-feedback. Let
fi(z) = RL(KE ) be thecoarsestjuantizer for the state feed-
will be such thatZ} = 0, which makes all the stable modes oback problem as defined in Definition 2.3, and Theorem 2.2,

the system uncontrollable. Let and fi(e) = hi(Ce) the coarsestyuantizer for the estimator
i} . problem as defined in Definition 2.3 and Theorem 3.1. Then
Cép = [0, C&p,l] we can obtain an output feedback controller by quantizing the

) o o state estimate by instead of the actual plant state. For the
denote the optimal direction of quantization tbr= L*, let g|go plant given by

fe(e) = b} (CE pe) be the resulting optimal quantizer, and let
xt =Ax + Bu

C* =[C,,CEp,] , for someC;. y =Cxz

The above argument implies that quantizing along the directigiie dynamic equations of the closed-loop system are the fol-
C¢& p, or along the directiod™, i.e., with lowing:

&= h5(C*e) xt =Ax + Bh (KEp)
27 =A% + BhL (K¢ p#) + LhE(C: — 7).
instead of
We will present a practical implementation of this controller in
£ =hp(Cép) Section VI.
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IV. SAMPLING AND QUANTIZATION 14,7 1S called the density of sampling and quantizatio(iBfg).

In this section, we consider both sampling and quantizationNOte that the order in which the limits are taken is immate-

of a finite-dimensional LTI system. In particular, we extend th@al in the above definition, and that the (linear) density of sam-

previous quantization results by studying the case of uniforprlning is equal tal /T, which is the sampling frequency, i.e., the

(or linear) sampling and derive a criterion for optimal samplinaumber of sample_s in the mterv[a} 1]; L
and quantization. We can now define the coup{&™, f*) of sampling time and

uantizer to be coarsest for quadratic stability if they minimize

We consider uniform sampling, i.e., a constant sampling i density of i d izati I dratic CLF
terval, since it is the only sampling strategy that retains t € density of sampling and quantization over all quadratic '
rmally, we have

time-invariance of the discrete-time system. Furthermore, it i§’D finition 4.2 Th | isti f ling ti d
what is used in practice. efinition 4.2: The couple consisting of sampling time an

In this section, we go back to the state-feedback case. wéantlzer(T , f*) is coarsest for quadratic stability if

assume that the state of the linear system T* %Y — are inf inf
(T, f7) = arg il Lt e
z=Fx+ Gu ) . .
For a giveril’, we know that the coarsest quantizer for quadratic
is sampled with sampling tim&, and that the control input is stability, denoted by7., is logarithmic with base* (7°), where
held in the intersampling interval with zero-order hold. This is* (1) is given by (22). Thereforef. gives the smallest density

the typical situation encountered in practice. Furthermore, ftsampling and quantization for the givéh or in other words

AY(F),i=1,...,k < n denote the eigenvalues of the matrix _ _
g with positive real part. Let the resulting discrete LTI system N1 < V(;I)lcfmp g IQan(V) g,T-
e
with
zy = Apzq + Brug (21) 9 .
T Nz T = T 1=~ D(T).
whereAy = 7 andBy = [ ¢**=") Bdr are functions of 7 (1)
T.

) S ) ~ Thus, in order to minimize the density of sampling and quanti-
In this section, it is implicitly assumed that the discretizedaiion we need to find the minimum &}(T), with the optimal

system is stabilizable, this is true for all but at most a countatgl,gmp"ng timel™ given byZ™ = arginf D(T), and the optimal
set of sampling times [26]. The critical sampling times Wher&uantizerf* = f£. being logarithmic with basg* (7).

there is a loss of stabilizability are not considered in what fol- g, 4 givenZ’, D(T') is nothing but the density of the grid of

lows. discrete points in the continuustate-spacex timethat guar-

~ From the results in Section II, we have that, for edGlthere  5niees quadratic stability (of the discretized system). It provides
is acoarsestuantizer that is logarithmic with bag&(1"). Since 5 measure of the complexity of the control action.

Ai(4) = AT, p*(T) must have the following expression: A yisual interpretation is obtained by looking & (T) —

) I11cicn exp (Re{XA(F)}T) — 1 D(T)1ne which is the number of boxes_ln the_r_eference box
p () = el (P =1 (22) [e,1/€] x [0, 1] which guarantees quadratic stability. Therefore,
ITi<i<n exp (ReiAf (£)}3T) + by minimizing D(T") overT we are minimizing the number of

This formula is saying that we need to quantize more fineRPXes inf¢, 1/¢] x [0, 1]. This will be an important criterion in

if we sample slower in order to maintain stability of a giveﬁ e derivation of finite logarithmic quantizers from infinite ones.
system. Since sampling is nothing but quantization in time, Set-Problem that will be addressed in Section V.

tion I11-A, we generalize the concept of density to measure theAS @ final note, we would like to suggest that the least dense
coarseness of quantizers in spacéme, and derive a criterion grid can be interpreted as the grid of minimum attention in the

for optimality of sampling and quantization. sense of [20].

A. Density of Sampling and Quantization B. Optimal Density of Sampling and Quantization

Under the condition that in time we sample uniformly with The question is now the following: what is the optimal “least

sampling time7’, the natural generalization of Definition 2.2 jsd€nse” grid needed? _ o
the following. Theorem 4.1: D(T) : Rt — R* has a unique minimum

Definition 4.1: GivenV(z) = 2/Pz, P > 0, a CLF for at T*. The optimal sampling tim@™* satisfies the following
System (21), letQ7 (V) denote the set of all quantizers thafduation:
solve Problem 2.1 for the givefi. Forg € Or(V) and0 <

k
e < 1, let #¢ [¢] denote the number of levels thahas in the T* Z MNA(FY=1n(1+2) (23)
interval [¢, 1 /¢]. Define i=1

s i s (# of samplese [0,]) (#¢ [€]) and the corresponding optimal quantizer is logarithmic with
oar =l sup lin sup ~tlne base
1 #49 [e] 1
=—limsu ") = =v2-1
€0 P Ine 1T 1+v2
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Fig. 3. Density versus sampling time for the cdSe= 4; G = 1.

which is independent of the system. which implies that
Proof: Letw = Tzf:l A¥(F), and consider the function

k
Dr) = 2 T YN E) =+ V)
2li1 A (E) ¢

Clearly D(T') and D(T') are minimized at the same point.
Rewriting D(T’) in terms ofw we have

and that the optimal density is equal to

D*=D(1") = S=—"—=
D(T) = 2 ) In*(1 +v/2)

€ p*(T*) is obtained by substituting™ in (22). |
Note that the above theorem says that the product of the op-
timal sampling time7™ and the sum of the unstable poles of the
system is a constant independent of the system, and in this sense,
universal Also note that al™*, p*(7*) = v/2—1isindependent
, , of the system. This indicates thgit(7™*) is the base of thani-
dg(w) _ <Gw + 1) _2we s h(w). versallogarithmic quantizer for a single input continuous time
dw e —1 et —1 linear system for which the density of sampling and quantiza-
) ) tion is minimizedZ™ is then appropriately selected from (23).
We argue that thls.functlg_n has only one zero as follows. Itis Fig. 3 shows the logarithm 61 /2)D(T") versus the sampling
easy to see thadt(w) is positive forw positive and close t0 0, time 7" for the first-order systent = 4z + .
while h(w) converges to 0 from the negative valuesias- oo.  \ve would like to point out that the optimization of the density
The second derivative af(w), given by seems also related to the optimal length of a block-code used to
code the control input levels needed for stabilizing the system.

which is minimized whery(w) = wln(e¢® + 1)/(c* — 1) is
maximized.
The derivative ofy(w) with respect tav is given by

dh(w) _ o 0 A (w —2) fw+2 This relationship is currently under investigation.
dw (e2w —1)2
changes sign only once far > 0. This is not difficult to show, V. FINITE QUANTIZERS

and left to the reader. Therefore(w) has only one minimum. It |y this section, we discuss how logarithmic quantizers with
cannot cross they axis more than once, because if it does theghuntable levels of the Sections IV can be replaced by loga-
it should also have a maximum sincew@s— oo, h(w) — 0 rithmic quantizers with finite number of levels and still maintain

from_ the negativg values. o o practical stability. The results are for discrete time systems but
~ Itis easy to verify by substitution that, the derivativeyéfu) can be extended to sampled data systems with minor modifica-
is equal to zero for tions.

Next, we define a finite symmetric quantizer, which with a
w=1In(l+ \/5) slight abuse of terminology we will simply call finite quantizer.
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Definition 5.1: A Finite Symmetric Quantizer (of orde€y) K<I3D
is a functionfy : X — Uy which takes values in the finite set 4
Uy ={u; €ER:i= —(N —1),...,0,....(N — 1), and S e
up = —u—i} ° Uy
e
A special class of finite quantizers is given by the following e i !
definition. \4\\; Coni® U
Definition 5.2: A Finite p-Logarithmic Quantizer (of order L TN A\
N) is a finite-symmetric quantizer where \ A\ \ Sz
y { N1y, o \ X ) \
N = %0, —pPUOy ..., —pP Uo, U,
N\ \

p™ Mo, ..., puo, uo, : up € R}
S,

where0 < p < 1. €

1
!
1
1
1
1
!
!
I

A. Relaxed Quadratic Stabilizability

We next define the notion of stabilizability we will use inFig. 4. Descriptive relation amor@., {2,, £, andS.. £ represented in the
this section. This is a relaxed version of quadratic stabilizabiliffu"® s the ellipsoid (in this case the segment) obtainedfer .
which we will call practical stabilizability. This concept is sim- . ) L .
ilar to that used in nonlinear system literature [11]-[13], an@d? iS the solution of a convex optimization problem (given
corresponds to what is called semiglobal practical quadratic s¥-(24)) which is a function of the problem data.
bility. We devote the rest of this section to proving this theorem.

The reason we need to abandon the notion of a trajectdi{pte that, in order to prove Theorem 5.1, we need to provide a
Uadratic Lyapunov functiol (z) = «' Pz, P > 0. We use the

asymptotically converging to the origin, is presented in [1EY X , ; g X
where it is shown that the set of initial conditions that give riseYPunov function obtained as in Section II-C-I by solving a

to trajectories converging to the origin asymptotically haveightly perturbedMinimum Energy Controproblem. We have

measure zero. Instead, most of the trajectories will wand&W @ countable-logarithmic quantizer and we need to de-

either in limit cycles or chaotically in a neighborhood of th&CIPe how to obtain a Finite-logarithmic quantizer out of it.
origin. The construction of such quantizer is a function of the given sets

Definition 5.3: System (1) is practically stabilizable, if there® 2nd<2. _ . .
exists a Lyapunov functiof («) = «’ Pz, P > 0, such that, 1) Construction of the Finite QuantizerGivenC we can al-

for any compact sef containing the origin, and ar, c ¢ Ways select, arbitrarily among those for which

with @, = {z € X : V(z) < 8;}, there is a state-feedback Q,DC.
controller f(z), function ofC andg3,, such tha¥’ (x) > V(x™) h
for all z € C\Q2,, and such that* € 2, whenever: € ©,. We plan to obtain a finite quantizer from the countable one as

By this definition,£2, is an attractor of. Trajectories starting follows: we start covering2, with the equivalence classes of
in C and outside?, will be attracted toward?,, and will even- States induced by the countable quantizer. As shown in Fig. 4
tually enter it after finite time, and, those startings¥y, never these classes are stripes orthogondi g, that get smaller and

leave it. smaller symmetrically with respect to the origin. Then, we stop
after someV, essentially truncating the countable levels into a
B. Stability With Finite Logarithmic Quantizers finite number of them, while the control value zero is used in

ﬁhe part ofQ2, (or C) left uncovered.

We are now ready to state the main theorem of this sectio . - L
In more detail, the structure of the finite quantizer is charac-

Theorem 5.1:If system (1) is stabilizable, then it jgrac-

tically stabilizable by a Finitg-Logarithmic Quantizer with '72€d by

p < p* arbitrarily close to*, and orderV large enough. Uy = {—uo, —ptio, - - -, —p™ 11,0,
In particular, giverC, g,, with 3, such that2, C C, andz, N_1 )

such that PN o, s puo, o, s ug € R}

and the corresponding equivalent classes of states for which the
Qo={reX:V(x)<p}2C same control values is used.
We know from Theorem 2.1 that the cld$$ associated with
+ugp’ is given by

N > %logp < /352> OF; ={z : Lagp’ T Kgpa < Lagp’}; for
(8%
7% j=0,...,N—1

N, the order of the quantizer, can be taken to be

where . . . .
while the zero control value is associated to the stripe

ap = max Kgpx N N
0 E(Q G&p QZero = {.Z‘ L Qop S KGDJ; S Qo p }

x o
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which cover the part of2, (or C) left uncovered by the other For anyn € [—¢, ¢] the set
stripes. el , 5

The two design parameters arg (or the associated,) and £={¢€R 16816 + 26N + Tan” > 0}
N the order of the quantizet, is function ofC (or 2,)), while

; ) -\ k is an ellipsoid >, < 0) which degenerates to a point fpe= 0.
N is function both2, andC. In order for the finite quantizer to

Proof: See Appendix. |
coversl,, ag must be Since€ is a bounded ellipsoid for any[—«, €], S. is bounded,
ao > max Ko pz. and, moreoverS., D S, fore; > €.
€8 We are now ready to describe how to fifM, i.e., 5;(¢) so

From the construction, it is obvious that for anye Q, N QF, thatQ, > AS. and, > ..
j=0,...,N—1we havethaV (z) — V(zT) < 0. Therefore, Fig. 4 describes the relation among the various sets involved.

the only set we need to be concerned abowt s, (or its in- For clarity, AS. is not shown in the figure, but it also must

tersection withe2,). be contained inf2;. The result of next Lemma shows that it is
Now, lete = aop”™ > 0. By virtue of the truncation, the enough for2, to include AS, to guarantee thd?, O Se.
control valuezerois used for any: in the central stripe Define the(n x n) matrixI" to be
Qzeroz{x:_GSKGD.TSG}. o --- 0 O
It is clear however that. = 0 will not be able to maké/ () = . -
decreasing for alk € ,.... Let S, denote the set of states in 0 0 0
Q,exo for which the Lyapunov function is not strictly decreasing 0 - 01
S.=1{2 € Qro : V(z¥) > V(2)}. Lemma 5.2:Given anye > 0, the smallests} such that

Qe D AS, andQ,+ D S, is given by
Looking ahead, we will next show that is bounded, and its
dependence oaimplies that it can be made arbitrarily small. Br =~
Thus, its image unded, which is the set of reachable states i'?/vherefy is the solution of the following LMI problem in and
one step frons, with zero control, is also bounded and its size',

also scales witla. Therefore, botks. and AS. can be included T

in @, for any 3, > 0 selectinge small enough. This argument min 5. (24)
implies that(2, can be chosen arbitrarily small and within ST AMA_r5>0

and therefore, it will be control invariant, since for any €, e

eitherV(zt) < V(z) orzt = Az € Q,. Proof: We first describe how to compute the smallgst

2) Control Invariance of},: To give an explicit characteri- such that2,. 2 AS., we then show that in fadt,. > S and
zation ofS, itis convenient to make a coordinate transformatiotherefore3e = .
so thatKy, , is one of the basis elements and the others are or-\We want to compute

thogonal to it. Let
B¢ =min B

T=[W, K. _
[ ool subject to:{[g’ n]A'IIA [5} < Bs;
where the columns df¥ form an orthonormal basis for the null 77
space ofcp, and Ve [¢ n]zﬂ 20;—657756}
U
_ 7€
r=1T [77 but 3¢ is also given by

where¢ € R*~L andn € R. LetA = T-'AT andll = 7/PT A5 =¢"min v
be the corresponding representatiosiaind P in the new basis. subject to:{[&’ ] ATLA [5} < 2y

Let alsoX = A'TIA—II. Finally, partitionII andX accordingly 7
to § / 13
n vEm[E nlX gl Z0—esn<er
o= |:H1 Hﬂ (25)
= .
My s It is easy to verify, and it is left to the reader that Problem (25)
and is equivalent, having the same feasible set, to the following one:
Y X Yo B2 =¢? min ~
Y T T
. subject to:{[&’ n]A’HA[ } < n?;
Then we can describg, as follows. n

Lemma 5.1: ; Ve [& 77]2[7&;} ZO;—ESUSG}.
Sez{i,n:—GSnsf, and [£ n]EMEO}- (26)
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§ which, after rearrangement becomes
0

AL -1 - %7 > 0. (29)

(¢ n]= 3 > 0 (recall 2; < 0), and the fact that the ) ) )
Ll ) Applying theS-procedure again, we have that (29) holds if and
constraint set is balanced-(¢,7) belong to the set if¢, ) only if

do), it is sufficient to search over the following constraint set:

Finally, given that no vector of the forrr{ } satisfies

{[5, n]A’HﬁmsM {[5' nlﬂmsﬁ“wvm:[s' nlzmzo}

which implies that2? O S.. Thusg; = 537. |
Ve[ n]E [5} >0; 9= 6} Summarizing the development in this section, we have shown
n] - that by selecting

but this set is equivalent to the set where the constraiat ¢ a0 > max Kape

has been removed z€Q,
{[5’ W]A’HA[ﬂSnQ'V;V&n:[ﬁ’ n]zmzo}. with £, 2 C,

Viz) = V(zT) <0 VazeCl\Q,.

While, any2; < C can be made control invariant by selecting
N so that

This is once again due to the fact that any vector witk 0 is
not feasible, and any vector with# 0 can be re-scaled to one
with » = ¢ and vice-versa.

Problem (25) assumes now the following form: N 3
agp < 4 —.
B¢ =¢* min ~y ’
subject to:{[&’ n]A'ILA [5} < n?y; Therefore, the Finitep-Logarithmic Quantizer so constructed
n practicallystabilizes system (1). This ends the proof of Theorem

Veén:[¢ n]zmzo} (7 51

Consider the following two quadratic forms which appear i
the constraint set:

Comment: We would like to point out that Theorem 5.1
Erovides a practical way to implement a quantized output feed-
ack controller design based upon the theory developed in this

: paper.
To(e,n) = [& n] (' = ATIA [ }
ol§m =1[& nl(y ) " VI EXAMPLE
and In this section, we report the results of an application of the
¢ theory to the following second-order continuous time system:
nen=1¢ az|f). .
n z=Fx+ Gu
A well know result known as thé&-procedure [25] states the y=Huz
following in the case of two quadratic forms: with
0 3|’ 1 o ’
if and only if there exists a positive such that ) . . o
We sample it at the optimal™ corresponding to the minimal
To(&m) = mTi(&m) Y& density grid and given by (23¥™* ~ 0.1763 in this case. We

uses = 1-1077 to perturb thexpensiveontrol Riccati solution,

Therefore, our Problem (27) becomes and obtainy ~ 0.4142.

B = I;“f Y The Riccati solutions for the state-feedback and estimator
) S (28) -
subject to: 7T A>%A>6220 problems are, respectively
Y ,T
which is an LMI probler_n thgt can be efficiently solved. Py = [609'6579 127'4906} , and
Substituting forxX = A’IlA — 11 into the constraint 127.4906  61.4880
R P — 3.9064 1.7509

W= AIA =75 20 E=11.7509 1.1049

for 7 and~ solutions of Problem (28), we obtain and the associate directions of quantization are
-
I+ 17 — ATIA(1+7) 2 0. K =—[12.4932 8.3679]; andL = {_O;i;é} .

Let7 = 7 + 1, note thatr > 0. Then we have that the above | B 4g. — for both teedback
expression can be rewritten as follows: We selected, = 200, and/, = 0.01 for both state-feedbac

- and estimator. With these values the resulting order of the fi-
AT +1(7 — 1) — ATIA7 > 0 nite quantizer iV = 15 for both state-feedback and estimator.
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Fig. 5. Plant state evolution in closed loop.
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Fig. 6. Quantized control values and quantized estimation error d@ng

This means that we ne@iV + 1 levels to cover both positive, by looking for the best quadratic Lyapunov function that allows
negative, and zero values, which correspond to 54D log-  for the coarsest logarithmic quantizer, to show that it is the same
arithmic converter. as that arising in the solution of thexpensive controLQR

Fig. 5 shows the continuous-time evolution of the plant statpsoblem. Based on the properties of thepensive contrdlQR
starting from a random initial condition. We see that the statentroller, we have derived a closed form expression for the
does not go to zero asymptotically but rather stays very closmallest logarithmic base compatible with quadratic stability
to it after the transient. This is the consequence optiaetical of the closed-loop system. The expression is exclusively in
stability. Fig. 6 show the quantized sequences of control inpigrms of the unstable eigenvalues of system. Both quantized
and estimation error used in this case. state-feedback controller and estimator have been derived. The
results of the analysis of discrete-time systems are a basis for
the study of both sampling and quantization of continuous-time
systems. We have shown that there is a sampling time with

In this paper, we have developed the basis for a theory asociated quantization that minimizes the density of both
design of quantizers for SISO linear discrete-time systems. \&&mpling and quantization and still ensures stability. The
have shown that quadratic Lyapunov functions for the systemgtimal sampling time depends exclusively on the unstable
induce a (countable) logarithmic quantization of controls aigenvalues of the system. Perhaps even more interestingly, the
measurements and of the system state-space. We went furbiase of the optimal logarithmic quantizer is independent of the

VII. CONCLUSION AND FUTURE WORK
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system and thereforeniversal Finally, we have shown how

to construct logarithmic quantizers with only finite number of
quantization levels, which still achievgsactical closed-loop
stability. This provided a way for a practical implementation

the results of this paper. Perhaps the most urgent one is the
eralization to multi-variable systems. Another important iss
is to generalize the method to include performance objectivlg

other than just stability with decay rate. Given the tight co A
nection with LQR theory, at this point it seems natural to Iook/
into quadratic type performance criteria. A perhaps not too r,
mote possibility is to obtain a quantized version of LQG cony
trollers. Also we have not considered the effects of noise as we
as the effects of other model uncertainties. Since the approgg
proposed is essentially based on the idea of robust Lyapu
functions, it is conceivable that it can be extended in princip
to nonlinear systems. Finally, we want to point out that the a
proach proposed can be applied to more general CLFs, as for
example polytopic CLF. This should lead toward smaller values

of p* at the expenses of increased complexity of searching ovef!!

these more general classes of CLFs. 2]
APPENDIX 3]
A. Proof of Lemma 2.2 (4]
SinceB’PB > 0, UU(x) is characterized by the open interval
between the roots of the second order equatian in [5]
&/ (A'PA — P)x + 2/ A'PBu+ /B PBu =0 [6]
which are given by 7]
B'PAx
L@ _ -
Y T T BPB 8]
+’A'PBB'PAx  2/(A'PA— P)z
(B'PB)? B'PB o]

From (2) is easy to see that the expression in the square root|ig)
equal to(z'Qx /B’ PB). Thus, we have that

z’'Qx
B'PB

[11]

1,2 —
u = KGD.T + [12]

[13]
B. Proof of Lemma 5.1
S, is given by the intersection 6t,.., with the set ofr such  [14]
thatV(z*) — V(z) = 2/(A'PA — P)z > 0. In the new coor-
dinate

s.={ens—esnza{enste me|f) 2o},

[15]

[16]

(17]
In order to prove the second statement, it is sufficient to recal[l ]
Property(P2), and the fact tha€) > 0, since we are solving
the perturbed problem of Section II-C¢P2) and@ > 0 imply
that for anyz orthogonal tok,,, « = 0 is sufficient to make
V(zt)—V(z) < 0. This, in the new coordinate system, implies
thatX; < 0 and the result follows. |

[19]
(20]
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