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Abstract. Can theorem proving in mathematical logic be addressed by classical mathematical tech-
niques like the calculus of variations? The answer is surprisingly in the affirmative, and this approach
has yielded rich dividends from the dual perspective of better understanding of the mathematical
structure of deduction and in improving the efficiency of algorithms for deductive reasoning. Most of
these results have been for the case of propositional and probabilistic logics. In the case of predicate
logic, there have been successes in adapting mathematical programming schemes to realize new
algorithms for theorem proving using partial instantiation techniques. A structural understanding
of mathematical programming embeddings of predicate logic would require tools from topology
because of the need to deal with infinite-dimensional embeddings. This paper describes the first
steps in this direction. General compactness theorems are proved for the embeddings, and some
specialized results are obtained in the case of Horn logic.
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1. Introduction

Serious studies on spatial embeddings of logic were initiated by Robert Jeroslow
(see [16, 6]) and Paul Williams almost two decades ago. They essentially showed
that, by posing inference in logic as mathematical programming problems, we open
up the possibility of transfer of methodology from the geometric techniques of
mathematical programming to the symbolic world of computational logic. Further,
they demonstrated that these two perspectives can generate a symbiosis that adds
both in structural insights and effective algorithm design for inference.

These embeddings have yielded beautiful structural results relating forward and
backward chaining of logic with linear programming relaxations [3], resolvents
with cutting planes [10, 2], and explanation of inference with mathematical pro-
gramming duality [16, 24]. They have led us to exciting discoveries of new special
structures in propositions such as extended Horn [5] and balanced propositions [7].

� This research was supported by the National Science Foundation under the NSF-KDI Grant
ECS-9873451.
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Embeddings of logics of uncertainty (propositional logic plus various models of
probabilistic and evidential reasoning) have also been effectively formulated as
large-scale linear programs [1, 18, 20].

The embedding of first-order (predicate) logical inference as mathematical pro-
grams was also initiated by Jeroslow [15]. His approach, and that of subsequent
work on this topic [8, 11, 17], was to partially ground the predicate formula (as a
partial Herbrand extension) to a propositional CNF formula and hence as a math-
ematical program and to use dynamic activation to resolve the ensuing unification
conflicts. The emphasis has been on using the embedding for theorem proving and
not for structural insights.

In this paper, we introduce new embeddings of inference in predicate and par-
tially interpreted logics that provide for structural analyses. The framework is that
of finite and infinite mathematical programs. We also describe applications of these
embeddings. Using standard techniques of topology, we show that Herbrand’s the-
orem is a simple consequence of compactness in certain infinite integer programs.
Since Herbrand’s theorem is the cornerstone of first-order theorem proving, we
believe that our framework provides a handle on the structural aspects of theorem
proving. We are also able to prove the unique “minimal” model property of first-
order Horn logic via infinite-dimensional linear programming and thereby provide
a new foundation for analyzing model theory of logic programming.

While the use of the embedding to analyze the Herbrand extension of a first-
order formula is a nice application, the real challenge would be to “liberate” the-
orem proving from the clutches of the restrictive (and sometimes unnatural) Her-
brand universe and yet maintain the semi-decidable complexity of theorem prov-
ing. The framework we provide offers a glimmer of hope for accomplishing this
objective as our compactness theorems apply to infinite mixed integer programs
whose constraints and variables need not be denumerable. We use this capability to
show that inference in the constraint logic programming language CLP(�) embeds
as an infinite-dimensional linear program.

In the next section we present the spatial embeddings. Section 3 contains the
main compactness theorems. We then, in Section 4, address the mathematical pro-
gramming of logic programs (Horn formulas) in the Herbrand setting and em-
beddings of partially interpreted logics such as CLP(�). We conclude with some
remarks on the constructiveness of these frameworks and their possible application
in hybrid systems modeling.

2. Embeddings

A fundamental problem in logic is determining whether a formula is satisfiable,
i.e., whether there exists a valuation for the variables occurring in the formula
that makes the whole formula true. Logical deduction can be easily reduced to
satisfiability: formula φ is a logical consequence of a set of formulas A if and only
if the set of formulas A ∪ {¬φ} is unsatisfiable. Therefore, algorithms to decide
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the satisfiability of formulas can immediately be turned into procedures for logical
deduction and automated reasoning.

2.1. PROPOSITIONAL LOGIC

Satisfiability, the basic inference problem of propositional logic, uses symbolic val-
uations of atomic propositions as either True or False. Mathematical programming,
however, works with numerical valuations. Therefore, in order to usefully apply the
methodology of mathematical programming to these inference problems, we need
to embed them in familiar forms.

In 0–1 linear programming (i.e., the solution of linear inequalities on 0–1 vari-
ables), all the inequality constraints have to be satisfied simultaneously (in con-
junction) by any feasible solution. It is natural, therefore, to formulate satisfiability
of CNF propositions as 0–1 linear programming models with clauses represented
by constraints and atomic propositions represented by 0–1 variables.

Consider, for example, the single clause

(x2 ∨ ¬x3 ∨ x4).

The satisfiability of this clause is easily embedded as solubility of an inequality
over (0, 1) variables as follows:

x2 + (1− x3)+ x4 ≥ 1.

It is conventional in mathematical programming to clear all the constants to the
right-hand side of a constraint. Thus a clause Ci is represented by aix ≥ bi , where
for each j , aij is +1 if xj is a positive literal in Ci , is −1 if ¬xj is a negative literal
in Ci , and is 0 otherwise. Also, bi equals (1 − n(Ci)), where n(Ci) is the number
of negative literals in Ci . We will refer to such inequalities as clausal. In general,
satisfiability in propositional logic is equivalent to solubility of

Ax ≥ b, x ∈ {0, 1}n, (1)

where the inequalities of Ax ≥ b are clausal. Notice that A is a matrix of 0’s and
±1’s and each bi equals 1 minus the number of −1’s in row i of the matrix A.
We are therefore looking for an extreme point of the unit hypercube in �n that is
contained in all the half-spaces defined by the clausal inequalities. This is a spatial,
or geometric, embedding of inference in propositional logic.

2.2. INFINITE-DIMENSIONAL EMBEDDINGS OF PREDICATE LOGICS

We will assume that the reader has some familiarity with the basic concepts of
predicate logic. An excellent modern treatment of the constructs of logic that are
useful for computer scientists is given in [23]. Predicate logic is an extension of
propositional logic with the additional concepts of quantified variables, constants,
functions, and predicates.
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Given a well-formed formula W in predicate logic, it is known that by renaming
variables and introducing function symbols if necessary, W can be converted to F
in Skölem normal form (SNF) so that F is satisfiable if and only if W is. An SNF
formula has the form

F = ∀y1∀y2 · · · ∀ykF
∗.

The features are that the quantifiers are all universal, all variables are bound by a
quantifier, and the matrix F ∗ is in conjunctive normal form (the predicates playing
the role of atoms).

The variables {yi} have to be interpreted to construct a satisfying truth assign-
ment (model) of the SNF formula. The following is an example formula that is
satisfiable but only by an infinite interpretation.

Schönfinkel–Bernays Formula

∀x : [P(x, f (x))]
∧ ∀(u, v,w) : [(P (u, v) ∧ P(v,w)→ P(u,w)]

∧ ∀y : [¬P(y, y)]
Hence any complete embedding of predicate logic must contend with infinite struc-
tures. Consider a mathematical program of the form

D = {x ∈ {0, 1}ω : Ax ≥ β}, (2)

where ω denotes (uncountable) infinity. Each row of the matrix A has entries that
are 0,±1, and each entry of the (uncountably) infinite column β is 1− the number
of −1’s in the corresponding row of A. So this is just an infinite version of (1).
The finite support of the rows of A is the important structural property that permits
the compactness theorems based on product topologies to go through in the ensu-
ing development. It is a natural restriction in the context of first-order logic as it
corresponds to the finite “matrix” property of first-order formulae. Note that com-
pactness theorems can be pushed through for more general infinite mathematical
programs using the so-called weak* topologies, but this will not concern us.

In discussing Horn logic, we will encounter the continuous (linear program-
ming) relaxation of our infinite mathematical program (2).

D̄ = {x ∈ [0, 1]ω : Ax ≥ β}. (3)

Let {Aαx ≥ βα}α∈I denote a suitable indexing of all finite subfamilies of {Ax ≥
β}. And for each α in the uncountable set I let

Dα = {x ∈ {0, 1}ω : Aαx ≥ βα},
D̄α = {x ∈ [0, 1]ω : Aαx ≥ βα}.
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Thus,

D =
⋂
α∈I

Dα,

D̄ =
⋂
α∈I

D̄α.

The analysis of finite-dimensional mathematical programs such as (1) is based
on elementary techniques from combinatorics and polyhedral theory. The situation
in the infinite-dimensional case gets more complicated. Constraint qualification is a
sticky issue even for semi-infinite mathematical programs. The standard approach
in infinite-dimensional mathematical programming is to impose an appropriate
(weak) topological framework on the feasible region and then use the power of
functional analysis to develop the structural theory.

3. Compactness Theorems

A classical result in finite-dimensional linear programming states that if a finite
system of linear inequalities in�d is infeasible, there is a “small” (d+1) subsystem
that is also infeasible. This compactness theorem is a special case of the ubiqui-
tous Helly’s theorem. Analogous theorems are also known for linear constraints
on integer-valued variables (see [22]). In the infinite-dimensional case, we could
hope for the “small” witness of infeasibility to simply be a finite witness. This
is exactly what we prove for infinite 0–1 programs, linear programs, and mixed
integer programs with structure relating to embeddings of various fragments of
predicate logic.

3.1. INFINITE 0–1 INTEGER LINEAR PROGRAMS

Let Sγ , γ ∈ G, be copies of a Hausdorff space S. Let SG = ∏
γ∈G Sγ . The product

topology on SG is the topology defined by a basis
∏

γ Oγ , where the Oγ are open
in Sγ and Oγ = Sγ for all but at most finitely many γ ∈ G. A classical theorem on
compact sets with product topology is that of Tychonoff (see [19], p. 232), which
states the following theorem.

THEOREM 3.1. Arbitrary (uncountable) products of compact sets with product
topology are compact.

Taking {0, 1} ([0, 1]) as a compact set of a Hausdorff space {0, 1} ([0, 1]) and
applying Tychonoff’s theorem, we get the following corollary.

COROLLARY 3.2. {x ∈ {0, 1}ω} ({x ∈ [0, 1]ω}) (with product topology) is
compact.

Next we show that Dα and D̄α, with product topologies, are also compact for
any α in I. This follows from the corollary and the lemma below.
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LEMMA 3.3. The set {x : Aα ≥ βα} (α ∈ I) is closed and hence compact.
Proof. Let y be a point in the complement of {x : Aα ≥ βα}. So, there must be

at least one violated constraint in the system Aαx ≥ βα of the form
∑
j∈Ji

Aij yj < βi.

Noting that |Ji | is finite, we can assert that

Bε = {z : |zj − yj | < ε ∀j ∈ Ji}
is an open set. And for sufficiently small ε we have Bε ⊂ {x : Aα ≥ βα}C . Hence,
{x : Aα ≥ βα}C is open and {x : Aα ≥ βα} is closed. ✷

Now we are ready for the main compactness theorem for 0–1 programs and
their linear programming relaxations.

THEOREM 3.4. D (D̄) is empty if and only if Dα (D̄α) is empty for some α ∈ I.
Proof. Suppose D is empty and Dα is nonempty for all α ∈ I. Then, for every

K ⊂ I with |K| <∞ we know that
⋂
α∈K

Dα �= ∅.

So, by the finite intersection property (see [19], p. 171) we know that D is non-
empty – a contradiction. The proof for D̄ is identical. ✷

Remark. An interesting question is whether there is an upper bound on the size
of the finite witness of unsolvability of these infinite 0–1 integer programs. It is not
difficult to construct a quadratic first-order formula (quadratic because each clause
is allowed at most two predicates) such that the size of the finite witness grows
arbitrarily large.

3.2. INFINITE LINEAR PROGRAMS

The compactness theorem (Theorem 3.4) applies to infinite linear programs that
arise as the relaxation of 0–1 programs. In such programs, all the variables are
bound by the interval [0, 1]. If we permit variables to take arbitrary values in
�, compactness can be obtained only under certain assumptions on the recession
cones of the underlying convex sets.

Let I, L denote possibly uncountable index sets. Let �i = a replica of � for
i ∈ L and �I = ∏

i∈L�i with product topology. Assume I to be well ordered, and
write X ∈ �I as x = [xα, α ∈ I ].

For finite J ⊂ I , denote by xJ = �|J | the appropriately ordered |J |-tuple
[xα, α ∈ I ]. Also, define ||x||∞ = supα |xα| (possibly +∞).
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For each i ∈ L, we have a constraint Ci of the type

AixJ (i) ≥ bi,

where J (i) ⊂ I is finite, Ai ∈ �J (i)|×|J (i)|, bi ∈ �|J (i)|.
Without loss of generality, let

⋃
i∈L J (i) = I .

Let θ be the zero vector in �I and θn the zero vector in �n.

ASSUMPTION.⋂
i∈L
{x | AixJ (i) ≥ θ|J (i)|} = {θ} (4)

(i.e., the convex sets defined by Ci, i ∈ L, have no common direction of recession).

THEOREM 3.5. ∃ finite M ⊂ L such that for J
'= ⋃

i∈M J (i),⋂
i∈M

{
xJ ∈ �|J | | AixJ (i) ≥ θ|J (i)|

} = {θJ }. (5)

Proof. From (4), we have⋂
i∈L
{x | AixJ (i) ≥ θ|J (i)|, ||x||∞ = 1} = φ. (6)

Each set above is compact (being a closed subset of {x | ‖x‖∞ = 1}, which is com-
pact by Tychonoff’s theorem). Thus, by the finite intersection property of families
of compact sets, ∃ a finite M ⊂ L such that⋂

i∈M
{x | AixJ (i) ≥ θ|J (i)|, ‖x‖∞ = 1} = φ.

Hence,⋂
i∈M

{
xJ ∈ �|J | | AixJ (i) ≥ θ|J (i)|,max

α∈J
|x|α = 1

}
= φ.

Suppose ∃x ∈ �|J | such that

AixJ (i) ≥ θ|J (i)|, i ∈ M,

xJ(i) �= θ|J (i)|, for at least one i. (7)

Then a
'= maxα∈J |xα| > 0. Define x̃ ∈ �|J | by

x̃α = xα/a, α ∈ J, x̃α = 0 for α �∈ J.

Then ‖x̃‖∞ = 1, Ai x̃J (i) ≥ θ|J (i)| ∀i ∈ M, i.e., x̃ is in the left-hand side of (3), a
contradiction. Therefore, no such x can exist. In other words, (5) holds. ✷

By abuse of notation, let Ci denote the closed convex subset of �I for which
AixJ (i) ≥ bi .
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THEOREM 3.6. Under the above assumption, if
⋂

i∈L Ci = φ, then there exists a
finite K ⊂ L such that

⋂
i∈K Ci = φ.

Proof. Let M,J (i), i ∈ M,J be defined as in the preceding theorem. Let

C ′
i =

{
xJ ∈ �|J | | x ∈ Ci

}
denote the projection of Ci to �|J | under the map x → xJ . It suffices to show that
∃ a finite K ⊂ L for which

⋂
i∈K C ′

i = φ. Define ⊂i = C ′
i ∩ (

⋂
J∈M C ′

J ), i ∈
L. By the preceding theorem, C ′

j , φj ∈ M, do not have a common direction of
recession and therefore

⋂
j∈M C ′

j is bounded (see Rockafellar [21], pp. 60–61). It

is also closed and therefore compact. Thus Ci, i ∈ L, are compact, and
⋂

i∈L Ci =
φ. By the finite intersection property of families of compact sets, it follows that
there exists a finite T ⊂ L such that

⋂
i∈T Ci = φ. Let K = T ∪ M. Then⋂

i∈K C ′
i = φ. ✷

The following examples show that the assumptions cannot be relaxed.

EXAMPLE 3.1. I = {1}, Ci = {x | x ≥ i}, i ≥ 1. Then
⋂

i Ci = φ, but no finite
intersection is empty.

EXAMPLE 3.2. This example shows that the assumption is needed even when
{Ai}, {bi} remain bounded.

I = {1, 2}, Ci, i = 0, 1, 2, . . . defined by

C0 = {[x, y] | x ≤ 0}, Cn =
{
[x, y] | x + 1

n
y ≥ 1

}
n ≥ 1. (8)

In fact, the “assumption” is both necessary and sufficient. (For sufficiency, sim-
ply note that if there is a common recession direction for Ci, i ∈ I , any finite
intersection of the Ci’s will have a ray along that direction and is therefore non-
empty.)

3.3. INFINITE 0–1 MIXED INTEGER PROGRAMS

In the context of partially interpreted logics, we will need compactness results for
infinite linear programs that have a subset of variables bound to {0, 1} along with
real-valued variables with no explicit bounds on them. The compactness theorem
(Theorem 3.6) that we just saw can be extended to this case as well. The addition
of 0–1 variables causes no difficulty to compactness because they are bounded.
The assumption that the constraint regions have no common recession direction is
modified to assuming that the projection of the constraint regions onto the space of
real-valued variables have no common recession direction.

Let I,K,L denote possibly uncountable index sets. Let �i be a replica of � for
i ∈ L and �I = ∏

i∈L�i with product topology. Assume I to be well ordered, and
write x ∈ �I as x = [xα, α ∈ I ]. Similarly let {0, 1}i denote a replica of {0, 1}
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for i ∈ L and {0, 1}K = ∏
i∈L{0, 1}i with product topology. Assume K to be well

ordered, and write u ∈ {0, 1}K as u = [uβ, β ∈ K].
For finite J ⊂ I , denote by (xJ ) ∈ �|J | the appropriately ordered |J |-tuple

[(xα), α ∈ I ]. Similarly, for finite T ⊂ K, denote by (uT ) ∈ {0, 1}|T | the appropri-
ately ordered |K|-tuple [(uβ), β ∈ K].

For each i ∈ L, we have a constraint Ci of the type

AixJ (i) + BiuT (i) ≥ hi,

where J (i) ⊂ I is finite, T (i) ⊂ K is finite, Ai ∈ �|M(i)| × �|J (i)|, Bi ∈ �|M(i)| ×
�|T (i)|, hi ∈ �|M(i)|, and M(i) is finite.

Without loss of generality, let
⋃

i∈L J (i) = I and
⋃

i∈L T (i) = K.
Let θ = the zero vector in �I and θn the zero vector in �n.

ASSUMPTION.⋂
i∈L

Px{x | AixJ (i) + BiuK(i) ≥ θ|M(i)|} = {θ}. (9)

(Here Px denotes the projection operator that projects a given set in x, u-space
onto x-space. Note that each Ci, i ∈ L represents a union of convex sets. The
assumption is that the x-projection of these sets has no common direction of reces-
sion.)

The compactness results are now derived exactly as they were for the case of
infinite linear programs. Note that convexity of the constraint regions was never
used in the compactness proofs in that case. The result for the case of infinite 0–1
mixed integer programs is summarized by the theorem below.

THEOREM 3.7. Under the above assumption, if
⋂

i∈L Ci = φ, then there exists a
finite N ⊂ L such that

⋂
i∈N Ci = φ.

Since the case of infinite linear programs is a special case of the infinite 0–1
mixed integer programs (where all the u variables are bound to 0 or 1), it follows
that the “assumption” is both necessary and sufficient.

4. The Mathematical Programming of Herbrand’s Theorem

Starting with an SNF (Skolem normal form) formula F , we define the Herbrand
universe UH = D(F ) in the usual way. If the matrix F ∗ contains some constant
symbols, we use them, and if not we introduce a Skolem constant a and define
D(F ) by instantiating all variables in all terms on these constant symbols. The
Herbrand expansion of F is then given by

E(F ) =
⋂

{F ∗[y1/t1][y2/t2] · · · [yk/tk] | t1, t2, . . . , tk ∈ D(F )}.
Notice that E(F ) is really an infinite propositional CNF formula, since all the
variables have been substituted to fully ground terms. A classical result in theorem
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proving (attributed independently to Gödel, Skolem, and Herbrand in the literature)
is that the SNF formula F is satisfiable (in a predicate logic sense) if and only if
the CNF formula E(F ) is (in a propositional sense). We know how to embed
satisfiability of propositional formulae as 0–1 linear programs. The fact that the
number of propositions is infinite (countable) as are the number of clauses means
that the embedding will be a special case of (2). And then applying Theorem 3.4,
we obtain Herbrand’s theorem.

THEOREM 4.1. A Skolem normal form formula F is unsatisfiable if and only if
there is a finite subformula of the Herbrand expansion E(F ) that is unsatisfiable.

This theorem may be viewed as the cornerstone of theorem proving in predicate
logic because it implies that proving a formula unsatisfiable (if we already know
that it is so) is decidable (simply develop the Herbrand expansion – one instan-
tiation at a time – and check the resulting finite CNF formula for propositional
satisfiability). Of course there have been many sophistications to this scheme since
Herbrand, but the basic construct remains the same.

4.1. THE LEAST HERBRAND MODEL OF DEFINITE PROGRAMS

We believe that the infinite 0–1 embedding that was just used to prove Herbrand’s
theorem can also be specialized and honed to shed light on these more modern
aspects of theorem proving. As an illustration we consider the case of Horn for-
mulae (each clause of F contains at most one positive atom) and show that in this
case we can restrict our attention to the linear programming relaxation embedding
(3) and still obtain the well-known result on unique minimal models for definite
programs.

Assuming now that H is a Horn formula as defined above, we formulate the
following infinite-dimensional optimization problem.

inf
{∑

xj | Ax ≥ β, x ∈ [0, 1]ω
}
, (10)

where the linear inequalities Ax ≥ β are simply the clausal inequalities corre-
sponding to the ground clauses of H . The syntactic restriction on Horn clauses
translates to the restriction that each row of A has at most one +1 entry (all other
entries are either 0 or −1’s, only finitely many of the latter though). We prove
now that if the infinite linear program (10) has a feasible solution, then it has an
integer optimal (0–1) solution. Moreover, this solution will be a least element of
the feasible space; that is, it will simultaneously minimize all components over all
feasible solutions.

LEMMA 4.2. If the linear program (10) is feasible, then it has a minimum solu-
tion.



MATHEMATICAL PROGRAMMING EMBEDDINGS OF LOGIC 101

Proof. Let ψn = ∑n
j=1 xj and 3 = supn ψn. We know that, as the supremum of

continuous functions, 3 is lower semi-continuous (lsc). The optimization problem
(10) seeks to find the infimum of an lsc function over a compact set. Therefore, the
minimum is attained. ✷

LEMMA 4.3. If x1 and x2 are both feasible solutions for (10), then so is {x̄j =
min x1

j , x
2
j }.

Proof. Let xi be partitioned into (yi , zi) (i = 1, 2) such that the components
of y1 are no larger than the components of y2 and the components of z2 are no
larger than the components of z1. Now if an inequality in the constraints of (10)
has a +1 coefficient on a y variable (or if the inequality has no +1 coefficient at
all) we note that (y1, z1) satisfies the inequality and therefore so does (y1, z2) since
the z-coefficients are all nonpositive. Similarly, if an inequality in the constraints
of (10) has a +1 coefficient on a z variable, we note that (y2, z2) satisfies the in-
equality and therefore so does (y1, z2), since the y-coefficients are all nonpositive.
Therefore, in all cases, (y1, z2) is feasible. ✷

THEOREM 4.4. If the linear program (10) is feasible, then it has a unique 0–1
optimal solution that is the least element of the feasible set.

Proof. If the feasible region of (10) is nonempty, we know that an optimal solu-
tion exists. Let x∗ be such an optimal solution. If x∗ has all 0–1 components, there
is nothing to prove. Otherwise, let Ãx̃ ≥ β̃ be obtained from Ax ≥ β by fixing all
components xj = x∗j for all 0–1 valued xj and clearing the constants to the right-

hand side of the inequalities to obtain β̃. Note that β̃ is integer valued. Now, every
β̃ coefficient must be nonpositive. Otherwise, we would have at least one inequality
with a right-hand side of +1 or larger and a left-hand side of fractional coefficients
no more than one of which is positive, and such an inequality is impossible to
satisfy with x̃j in [0, 1]. Hence we can set the x̃ to 0 and maintain feasibility. This
contradicts the optimality of x∗ in (10). ✷

The interpretation of this theorem in the logic setting is that if a Horn formula
H has a model, then it has a least model (a unique minimal model). This is an
important result in model theory (semantics) of so-called definite logic programs.

Remark. In the context of propositional logic, Jeroslow and Wang [16] showed
that the optimal solution to the dual of the linear programming relaxation of an
unsatisfiable Horn formula is a signature of the number of times clauses are used
in a resolution proof of unsatisfiability. The compactness theorem implies that a
similar result must hold for the predicate case as well since compactness gives us
a finite grounding of the Horn formula that is already unsatisfiable.



102 VIVEK S. BORKAR ET AL.

4.2. THE MATHEMATICAL PROGRAMMING OF CLP(�)

In most early implementations of logic programming (namely, ProLog), the lan-
guage designers found it necessary to include partially interpreted formulas via
“built-in predicates”. This was deemed to be a practical necessity, because, in
programming with pure logic (i.e., uninterpreted symbols), it would take too much
effort to exploit the problem-solving capabilities developed in several numerical
and algebraic domains. There are also other reasons for including built-in predi-
cates emanating from programming ease. Of course, this meant that the theoretical
framework, in particular the Herbrand interpretation, cannot be used to analyze
the semantics of such programs. The constraint logic programming (CLP) scheme
[12–14] was proposed in the mid-1980s by Jaffar, Lassez, and Maher to address
this conflict between theory and practice of logic programming. CLP works with
partially interpreted Horn formulas, where some of the predicates and variables
have specific interpretations as constraints on domains which have useful expres-
sive power and have efficient solution methods. In CLP, compactness properties of
constraint domains are combined with compactness in the Herbrand universe (on
the pure logic predicates) to generalize Herbrand’s theorem in a richer setting.

Thus constraint logic programming began as a natural merger of two declara-
tive paradigms: constraint solving and logic programming. This combination helps
make CLP programs both expressive and flexible, and in some cases more ef-
ficient than other kinds of programs. We apply our embedding technique to a
particular kind of CLP known as CLP(�) to bring out its inherent mathematical
programming nature. Constraints in CLP(�) are linear inequalities on real-valued
variables. Thus CLP(�) brings together the techniques of linear programming and
logic programming in a declarative programming language setting.

Constraint Logic Programming: Some Definitions [12–14]

If 4 is a signature, a 4-structure M consists of a set D and an assignment of func-
tions and relations on D to the symbols of 4 that respects the arities of the symbols.
A 4-theory T is a collection of closed 4-formulas. A model of a 4-theory T is
a 4-structure M such that all formulas of T evaluate to true under the interpre-
tation provided by M. A primitive constraint has the form p(t1, . . . , tn), where
t1, . . . , tn are 4-terms and p ∈ 4. A constraint (first-order) formula is built from
the primitive constraints in the usual way using logical connectives and quantifiers
[12, 14].

In constraint logic programming there is also a signature 7 comprising the
uninterpreted predicates that are defined by a logic program. A CLP atom has the
form p(t1, . . . , tn), where t1, . . . , tn are terms and p ∈ 7. A program P is of the
form p(x̄) ← C, q̄(ȳ), where p(x̄) is an atom, q̄(ȳ) is a finite sequence of atoms
in the body of the program, and C is a conjunction of constraints. A goal G is
a conjunction of constraints and atoms. A rule of the form p(x̄) ← C is called
a fact.
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We assume that programs and goals are in the following standard form:

– All arguments in atoms are variables, and each variable occurs in at most one
atom. This involves no loss of generality because a rule such as

p(t̄)← C, q(s̄)

can be replaced by the rule

p(x̄)← x̄ = t̄ , ȳ = s̄, C, q(ȳ).

– All rules defining the same predicate have the same head, and no two rules
have any other variables in common (this is simply a matter of renaming).

For any signature 4. let M be a 4 structure (the domain of computation) and
L be a class of 4-formulas (the constraints). We call the pair (M,L) a constraint
domain. We also make the following assumptions.

– The binary predicate symbol “=” is contained in 4 and interpretated as iden-
tity in M.

– There are constraints true and false in L that are true and false in M,
respectively.

– The class of constraints in L is closed under variable renaming, conjunction,
and existential quantification.

Semantics

A valuation σ is a mapping from variables to the domain D. A M-interpretation
of a formula is an interpretation of the formula with the same domain as that of M
and the same interpretation for the symbols in 4 as M. It can be represented as a
subset of BM, where BM = {p(d̄) | p ∈ 7, d̄ ∈ Dk for some k}. A M-model of
a closed formula is a M-interpretation that is a model of the formula. The usual
logical semantics are based on the M-models of P .

CLP(�) Defined [14]

Let 4 contain the constants 0 and 1, the binary function symbols + and ∗, and the
binary predicate symbols =,<, and ≤. Let D be the set of real numbers, and let M
interpret the symbols of 4 as usual (i.e., + is interpretated as addition, etc.). Let
L be the constraints generated by the primitive constraints. The � = (M,L) is
the constraint domain of arithmetic over the real numbers. For our purpose we will
consider only function symbol + and only predicate symbol ≥ in 4. A typical rule
in CLP(�) will look like p(x) ← (2x+ 3y ≥ 2), (4y ≥ 3), q(y), where x, y ∈ �.
When we associate the variables in a rule in CLP(�) with values over the reals �,
we obtain a ground instance of that rule. It is easy to see that the ground instances
of a rule in CLP(�) are uncountable.
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The Embedding as an Infinite 0–1 Mixed Integer Program

In order to illustrate the formulation, let us assume that a rule Ri in a given CLP(�)

is of the form

p(x) ← c̃1, c̃2, q1(y1), q2(y2),

where c̃1 and c̃2 are primitive constraints of the form f (x, y) ≥ 0 and g(x, y) ≥ 0,
respectively, and f (x, y), g(x, y) are linear functions of x, y. The qi are atoms.
We associate a linear (clausal) inequality lc(Ri) as follows:

vp(x) +
2∑

i=1

(1− uc̃i )+
2∑

i=1

(1− vq(yi)) ≥ 1.

This clausal inequality can be rewritten as

vp(x) −
2∑

i=1

uc̃i −
2∑

i=1

vq(yi) ≥ (1− k),

where k is the total number of primitive constraints and atoms in the body of the
rule.

We also associate the linear equalities

f (x, y) + (1− uc̃1)M ≥ 0,

g(x, y) + (1− uc̃2)M ≥ 0,

with the rule Ri , where M is an arbitrary large number. Note that a constraint must
be solvable if the corresponding u variable is to take value 1. Also, if a particular
value of u is feasible, then so are all smaller values of u (as far as these inequalities
are concerned). We rewrite these inequalities as

f (x, y) −Muc̃1 ≥ −M,

g(x, y) −Muc̃2 ≥ −M,

respectively, and denote them as le(Ri).
Given a CLP(�) program P , we construct a 0–1 mixed integer program FP {0, 1}

as follows:

1. For each rule R in P , the linear inequality lc(R) is in FP {0, 1}.
2. For each rule R in P , the inequality le(R) corresponding to the constraints

appearing in P is in FP {0, 1}.
3. For any atom p(x̄) appearing in FP {0, 1} the constraint vp(x̄) ∈ {0, 1} is in

FP {0, 1}.
4. For every primitive constraint c̃ appearing in P , uc̃ ∈ {0, 1} is in FP {0, 1}.
5. For every variable x appearing in P , the constraint x ∈ � is in FP {0, 1}.
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When we replace the restriction 3 by vp(x̄) ∈ [0, 1] and 4 by uc̃ ∈ [0, 1], we get
FP [0, 1].

If we ground the formulation FP {0, 1}, by grounding the logical variables on
the Herbrand universe and the interpreted variables x on the reals, we would ob-
tain an infinite 0–1 mixed integer program. Under suitable assumptions, we could
obtain a compactness theorem akin to Theorem 3.7. In addition, we obtain a least
model property for CLP(�) by noting that the following linear program

inf
{∑

v +
∑

u | u, v, x satisfy ground FP [0, 1]
}

(11)

has a minimum v, u solution that is guaranteed to be 0–1 valued. A formal state-
ment and proof of this result are completely analogous to Theorem 10.

5. Concluding Remarks

An important issue related to the uncountable nature of the embeddings, presented
here, is whether the proof of the compactness theorem can be made constructive.
This problem is closely related, via complementation, to the problem of finding
a finite subcover from a given cover of a compact set. One idea is to be able
to identify a countable subsystem to restrict the search to. In addition, a natural
enumeration scheme is required for the countable subsystem to construct decision
procedures. This is in effect what is done in classical first-order logic, since the
Herbrand universe and the Herbrand extension provide just such a substructure.

In several real-world applications of theorem proving, it would be useful to
permit interpreted functions and predicates. This, however, deeply affects the struc-
tural techniques of classical theorem proving, which are built on the ideas of uni-
fication and compactness. The constraint logic programming (CLP) framework of
Lassez, Jaffar, and others have shown us one way out, namely, treat unification via
constraints and introduce the notion of solution compactness. The ideas presented
in this paper suggest an alternative approach based on mathematical programming.
As an example, we believe that the embedding results of this paper can be usefully
applied to better our understanding of hybrid systems. In such systems, there is a
mix of discrete structures (logic) with mathematical programming (control theory)
structures. The embeddings presented in this paper offer unified frameworks for
carrying out this integration.
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