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Abstract

This paper outlines the development of Filtering
Theory for stochastic hereditary differential systems.
It uses the model of hereditary differential systems
developed by Delfour and Mitter and the results of
Bensoussan on Estimation theory in Hilbert spaces.

1. Introduction

In this paper we outline the development of Filter-
ing Theory for stochastic hereditary differential sys-
tems. To the authors' knowledge, the first paper in
this field is the one of H. Kwakernaaks, where simulta-
neously the smoothing and filtering problems for linear
differential systems with multiple constant time delays
are studied. In his paper, Kwakernaak8 considers a
class of linear filters, restricted to the extent that
they must be equal to 0 at time tg, and using a direct
argument analogous to the one of Kalman and Bucy’, he
derives the equations of the filter and the covariance
operator.

Here we use a different approach which allows us to
justify the formal calculations. First, we consider
the model of hereditary differential systems developed
by Delfour and Mitter4,5. They prove that these sys-
tems can be modelled by an operational differential
equation in a Hilbert space without delays, but with
an unbounded operator. This model is very analogous to
the one of J.L. Lions®, already used in the study of
partial differential equations. This analogy has al-
ready been used by Delfour and Mitter® to solve the
problem of optimal control for hereditary differential
systems. It is therefore very natural to use it for
solving the Filtering problem. Of course, the question
of modelling the noises in this framework raises new
questions, since we are dealing with infinite dimensi-
onal spaces. The model we adopt is the one already
used by A. Bensoussanl,2 to solve the Filtering problem
for linear distributed parameter systems. The noises
are modelled as linear random functionals in a Hilbert
space. By virtue of results on Estimation theory in
Hilbert spaces (see Bensoussan?) it is possible to re-
duce our problem to a least square functional minimiza-
tion problem. The problem is then a quadratic control
problem for the operational differential equation of
Delfour and Mitter, and thus can be solved using the
method of these authors. The key point concerns the
study of a Riccati equation in a Hilbert space, for
which a direct approach is possible but new results of
L. Tartar‘4 more easily lead to an existence theorem.

Since our objective is mainly to show how the above
approach is a useful tool to give a rigorous treatment
of the problem, avoiding a lot of technical difficul-
ties inherent in the direct approach, we did not at-
tempt to present the most general results which can be
expected. In particular, we did not consider delays
in the observation process (which have been considered
by Kwakernaaks) or distributed parameter systems with
delays. For simplicity, we also did not consider the
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smoothing problem and we concentrated on the Filterin§
problem. Those problems are considered in Bensoussan?,
using an aggroach based upon the decoupling method of
J.L. Lionsl0,11,

2, System description and formulation of the problem

2.1. Deterministic features

Let H, E and F be three Hilbert spaces.
0 =280 >6; >..> 8N = - a be real numbers. Let B € L®
(0,T;£(E,H)) and C € L*(0,T;L(H,F)). Furthermore let
Agp and A; (i=1,2,...,N) belong to L®(0,T;£(H)), and
Apy to L®(0,T;-a,0;L(H)). As in Delfour and MitterS,
we introduce the space £2(-a,0;H) {not to be confused
with L2(-a,0;H)) of all measurable maps from [-a,0]
into H which are square integrable, endowed with the

seminorm
Iyl = [ly)12 « [0 Iyce)iZas) /2,

The quotient space of £2(-a,0;H) by its linear subspace
of all y such that lyl = 0 is a Hilbert space which is
isometrically isomorphic to the product space H x L2
(-a,0;H). It will be denoted by M2(-a,0;H). For

£ € L2(0,T;H), £ € L2(0,T;E) and h € M2(la,0;H), we
consider the following linear hereditary differential
system \

Let a > 0,

N

% (t) = Ay (t)x(t) + izlAi(t)x(uei)
0

+ {a Ag; (t,0)x(t+8)de r -

+ B(L)E(t) + £(t)
x(8) = h(e),

-as<06=<0,. J
Then the solution x in [0,T] belongs to ACZ(O,T;H), the
space of absolutely continuous functions from [0,T] +H,
with a derivative in L2(O,T;H). The main result that
we need is that the map

2

,£) » x : M2 x L2(0,T3E) + AC2(0,T;H) )

is affine and continuous.

For t in [0,T], we can define the state x(t) in
M2(-a,0;H) by -

. x(t+8), t+6 2 0
x(t)(8) = . (3

h(t+8), t+6 < 0

For all h in ACZ2(-a,0;H), X(t) is the unique solution
in AC2(0,T;H) of

[%:

& (t) = A(t)X(t) +B(t)E(t) + E(t), a.e. in [0,T)

x(0) = h ,

(4)

where B(t) € £(E,M2) and ¥(t) € M2 are defined from B
and £ and A(t) is a family of unbounded operators in
MZ defined from Agg, Aj and Agp.

2.2. Stochastic features

We now consider a noisy initial condition, that is

x(0) = h(o) + z0 .
x(8) = h(e) + zl(8), - a < 6 < 0, )



where ¢ = (co,cl) belong to M2(-a,0;H). From now on £
and 7 will be the noise at the input and the noise in
the initial datum, respectively. We shall also assume
an observation of the form

z(t) = C(t)x(t) + n(t),

where n regresents the error in measurement. As in
Bensoussan?, {z0,zl,z,n} will be modelled as a Gaussian
linear random functional on the Hilbert space

(6)

o = H x L%(-a,0;0) x L2(0,T;E) x L2(0,T;F)  (7)
with zero mean and covariance operator
P, 0 0 0
A 0 Pl(e) 0 0 (8)
0 0 Q(t) O
0 0 ] R(t)

It will also be convenient to consider the covariance
operator P in £(M2) defined as follows

- - 0 -
®hB) , = Ep%E% « [ @ @nle) Ee)de.  (9)
M -a

In view of (2) and the properties of the image of a
linear random functional under an affine continuous
map, we can look at x(t) as a Gaussian linear random
functional on H (for any t), where the mean of x(t),
x(t), is a solution of equation (1) with £=0 and z=0.
But it is easy to check that the mean of x(t), x(t),
is obtained from the mean of x(t) and the mean h(6) of
h(8) as follows

< ).((t+6), t+820
x(t)(8) = §_ . (10)
h(t+68), t+6<0
As a result §(t) is a solution of the state equation
&%) = AE(®) + (1), a.e. in [0,T],
t
(11)
%(0) = h

and the covariance operator of x(t), I'(t), is a "weak
solution" of the equation

&L (¢) = AO)T(e) + T(OAR)* + Br)Q(e)Be)*,
dt 12)
r() =P .

2.3. Formulation of the problem

For each T we want to determine the best estimator
of the linear random functional x(f) with respect to
the linear random functional z(s), 0 < s < T. It is
a linear random functional X(T) which can be obtained
(see Bensoussan2) through the following control prob-
lem. We start with the deterministic system (1), the
initial data (5) at time 0, where £ and r = (£0,z1)
are considered as control variables, and the following
cost function

T
Ip(e,2) = @7he,0) ¢ [ @) lere),E(enae
T 0 (13)
. { ®R(t) Lz (t)-c(t)x (), 2(8)-C(tIx(t))dt.

3. Solution of the control problem

At this point it is technically advantageous to
work in the state space. For this purpose we redefine
the cost function in terms of the state X(t)
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& 1) = Awxm + Bew + f(t)}
. (14)
x(0) =h + g
-1 T -l
JpE2) = (PThg,n) ¢ [ (QUR)TTE(E),E())dt
¢ (15)

T - . - -
. é ®R(t) Lz ()-C(0IX()), 2 (£)-C(£)X (1)) dt,

where B(t)£ = (B(t)£,0), £(t) = (£(t),0) and C(t)h =
C(t)h(0).

The pair (é,E) which minimizes the cost function
over all (£,z) in L2(0,T;E) x M2 is characterized by
Euler's equation

_1,\ T _1A
® c¢)+£(ma E(t),£(t))dt

T

+ [ R TE@FE), L@y (16)

o

T )
- é R TE )y (8),2(0)-COF (L)AL, ¥ &,¢,

where
L (e) = Ay () + é(t)E(t)}
17)
Y(O) = g,
& (1) = ki) + f(t)}
- (18)
y(0) = h.
By introducing the adjoint system
L (1) + A)*Be)
+ BRI E@ -G Lze) = 0} (19)
p(T) = 0,
where x is the solution of (1) corre§pondingAto (E,Z)
agdAi is the state constructed from x and‘*h+gz. Finally
(£,z) is characterized as follows
z=-Pp0) }
. . . (20)
g(t) = - Q(t)B(t)*p(t),
and
L (1) = AwE(t) - B)UBEIH() + E()
dt ) 1)
x(0) = h - P p(0).

We can now introduce the Riccati equation of
Delfour and Mitter®

& (1) = Aw)nee) + 1A
- mee)ée)R) " mce)
- - (22)
+ BrQ)B(e)*
n(0) =P

and prove that §(T) is the solution of the following
equation



& = Ay + Eo

T(6)E* (R " (2(2)-C(t)y (1)) (23)

+

y(0) = h.

The variable z makes equation (23) a stochastic
equation, where the solution y(t) is to be interpreted
as a linear random functional. Furthermore, if we
introduce the estimation error

e(t) = () - x(t),

then e(t) is a linear random functional with mean 0 and
covariance operator I (t).

Remark 1. By virtue of the equivalence between (1) and
(4) the equations of the filter and the covariance
operator can be obtained in a form very analogous to
the Kalman-Bucy filter.

Remark 2. The equivalence between the Filtering prob-
lem and the least square control problem is true only
when P,Q(t) and R(t) are invertible. In fact, we can
also obtain (22) and (23) when P and Q(t) are not ins
vertible by using duality arguments as in Bensoussan®.

Remark 3. As was pointed out in the introduction our
main objective was to show how our approach can be used
to obtain a rigorous treatment of the Filtering prob-
lem. The case where we have delays in the observation,
namely

z2(t) = co(t)x(t) + Cl(t)x(t-a),

is more interesting from the practical standpoint. This
necessitates the use of the sgace AC2(-a,0;H) as state
space rather than the space M4(-a,0;H). With that state
space the map

x(t) o C(BX(E) =Cy ()X () + C) (t)x(t-a) : Ac?(-a,0;H) >E

is linear and continuous. To deal with this problem in
the state_space M2(-a,0;H) would require an unbounded
operator C(t). Henceforth it is clear that the method
will be applicable and that the equations for the mean
and the covariance will have the same form.
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