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ABSTRACT 

The  automatic  classification of vectorcar- 
diograms and electrocardiograms  into  disease 
classes  using  computerized  pattern  recognition 
techntques has been a much  studied  problem.  To 
date,  however, no system exists which meets 
desired  accuracy and  noise  immunity  require- 
ments and development of new techniques  contin- 
ues. An important  aspect of the  problem  is  that 
of feature  selection, in  which  the functions of 
data  reduction and information  preservation  are 
performed. In this  paper,  the  problem of linear 
feature  extraction is studied and a modified form 
of the  Karhunen-  Loeve  expansion is developed 
which appears  to  have  some  advantages  for  the 
present  application.  Comparison  with  other  fea- 
ture  selection  methods is made  using  a two- 
dimensional  example.  Finally,  some  areas  for 
future   research  are  pointed out. 

I. INTRODUCTION 

An important  application of pattern  recog- 
nition  theory in biomedical  engineering  applica- 
tions  is in automated  diagnosis of electrocardio- 
grams (ECG) or vectorcardiograms (VCG). 
This  is  demonstrated both in the  wealth of 
l i terature on  the  subject and the  develo  ment 
of several  readily  available  programs fl - 51. 
Nevertheless,  even  after two decades or s o  of 
work,  problems  still  remain in achieving  desired 
classification  accuracy. 

Bailey,  et al [S i ,  have  tested  three of 
the  most  popular U. S. programs  using two 
digital  representations of the  same  analog 
ECG tracing,  separated by one  millisecond in 
time. Although  the computer  diagnoses  should 
be  identical (i. e., cardiologist  diagnosis  is 
unchanged), diagnostic  statements  were identi- 
cally  reproduced less than 80% of the  time. 
Reproducibility  was  most  affected by the  algo- 
rithms used for  feature  extraction,  pattern 
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recognition,  consistency  checks and noise 
handling. Reproducibility  was  less  affected 
by analog high frequency  noise  attenuation. 
As Bailey  notes,  poor  reproducibility  perfor- 
mance  obviates  the need for  more  time- 
consuming  clinical  evaluation.  Since  such 
performance  does not eliminate  the need for 
numan intervention  and  review,  much  work 
remains  to  be done to  develop a truly  robust 
diagnogtic  program. 

The  problem of ECG or VCG diagnosis  is 
generally  divided  into two essentially indepen- 
dent  parts; (1)  rhythm  analysis, (2) waveform 
morphology, or contour,  analysis, Rhythm 
analysis  is  principally  concerned with the 
determination of the si tes and rates  of cardiac 
pacemakers and impulse  propagation  through 
the  cardiac conduction system. Waveform 
morphology analysis is principally  concerned 
with persistent  patterns of wave shapes i n  an 
attempt  to  describe the state of the  working 
muscle  masses. In this  paper, we will  be 
concerned only with the  problem of morphology 
analysis. 

The  pattern  recognition  problem  is  general- 
ly  divided  into two sequential  steps;  (1)  feature 
extraction, (2) classification.  This  dichotomy 
is  usually  made  for  simplicity,  since  selection 
of features in most  practical  problems  depends 
on the structure of the classifier and on the 
training  data.  Here we consider only  the problem 
of feature  extraction. In particular, we consider 
only linear  feature  extraction and comment on 
several  aspects of this  very  important  problem, 
motivated by our experience while  working with 
cardiologists in designing  a  feature  extractor 
for VCGs. 

This  paper  is  organized a s  follows.  The 
problem of representing the signal and noise 
processes and filtering of the  noise  processes 
is  considered in Section 11. The feature ex- 
traction  problem  is  discussed in Section 111, 
with emphasis on linear  ceature  extraction. 
A modified  Karhunen-  Loeve  expans ion technique 
is proposed in Section  IV-which  may  have  some 
potential  advantages in automated  medical  diag- 
nosis.  Comparisons of several  proposed  linear 
feature  extraction methods a r e  given in Section 
V, using  a  simple  two-dimensional  example. 



Finally,  a  discussion of the  overall  pattern 
recognition  problem  within  the  context of diag- 
ntxis of  VCGs ia given in Section VI. Several 
areas  of research, which are suggested by the 
practical  problem  at hand, are outlined. 

11. REPRESENTATION OF SIGNAL 
AND NOISE PROCESSES 

The  measured  analog  waveforms (ECG or 
VCG) at  time  t are denoted by the  vector  y(t) 
and assqmed  to  consist of the  underlying  cardio- 
graphic  signal  x(t)  plus  an unwanted noise  term 
d t ) ;  y(t) * x(t) + d t ) .  

2.1 Signal Process 

signal  process  x(t)  over  a  finite  interval Ef 0, TI. 
The signal  may  be  represented aa the output of 
a  lumped-parameter,  time-varying  linear or 
nonlinear  dynamical  system.  There has been 
very  little  success in this  area,  since  the  signal 
is stochastic and time-varying  and not accurately 
represented  using low order  linear models.  One 
is  faced,  inevitably, with a difficult  identification 
problem. 

There are several  ways of modelin  the 

An alternate  approach is taken  here and 
consists of representing the signal  process aa a 
sample  from  an  ensemble of statistically non- 
stationary  waveforms.  Since  computation  will 
be  done  in discrete  time we consider in the 
sequel only  the discrete  time  representation of 
the  signal. Let  the  jth  component of the  signal 
at  time  ti be  denoted by x.([), with  the  interval 
[ 0, T] containing  n  sampling  times.  For a sig- 
nal of dimension  m we define  the mn vector:, 

J 

Then  the signal  vector  x is represented in terms 
of a s e t  of scalar parameters Q = {Q -j= 1, *. , N’) 
as : N 

j’ 

(2) 

where  the se t  of N vectors 

$ = [!zij ; j.1, **. ,  N]  span R , N 

N mn, and2   i s  the  ensemble  mean of x. The 
coefficient  set CY, computed  on-line  from  the 
data  x and the  basis  vector  set @, a r e  the  fea- 
tures  to be used in  the classi f icat ion  a lgomm. 
A 

In any practical  scheme, N will  be of the 
order of several  hundred.  Thus  the desire  ts to 
pick  out only.the  most  informative  features. 
The representation (2) then  becomes,  for  m 
features: 

m 

where e, is the  representation  error.  The 
desire  is  to  minimize  some  measure of e over 
the  ensemble by selecting  an  appropriate  rule 
for  choosing the features, and by properly  select- 
ing  the  basis  vectors. Note that,  ideally,  the 
basis  vector  selection should  depend on the  dis- 
crimination rule and the  data  wed  for  training. 
Thus, feature  selection  should  be  done by em- 
ploying learning  rather than on an  apriori  basis. 

Selection of the  basis  vectors and  the rule 
for  selecting  the  coefficients  is given in Section 
IV. We now turn  to a discussipn of the  noise 
processes and  methods used to  remove them 
from the signal  process. 

2.2 Noise  Processes 

m 

In the  algorithms  under  development,  the 
low-frequency  baseline  shifts are first  eliminat- 
ed. Then  an  averaged  heartbeat is computed by 
averaging  together  several  successive  heartbeats. 
The  individual  beate are lined up at  their  fiducial 
points  defined aa the point of maximum down- 
ward  slope of the QRS complex. 

Inepection of analog VCG data  reveals 
four  major  sources of noise; (1) powerline  ripple 
(60 Hz), (2) baseline  drift, (3) high  frequency 
noise, (4) artifacts.  For  the  techniques  pro- 
posed here,  it  appears  that  baseline  drifts are 
the  most  significant  noise  source. Any 60 Hz 
components are essentially  orthogonal  to  the 
feature  space, a8 is  high-frequency  noise. That 
is,  the  elements of Q are all essentially  zero. 
Artifacts (e. g., muscle  noise)  appear  to  either 
be  easily  detectable or average out with  time. 

An example of a particularly  severe  base- 
line  encountered in real  data  is given  in Figure 
la. In Figure  lb,  an  estimate of the  underlying 
signal  (original minus estimated  baseline), 
using a fjrst-order  Kalman  filter with  optimized 
filter  time  constant and  gain, is shown. Note 
the induced overshoot  indicative of an S wave 
and  the ST  segment  slope  error in the estimated 
waveform. 

The  overshoot  was  eliminated by using 
an  adaptive  filter In which the  gain was decreased 
with increasing  measurement  residual amplitude. 
However,  this  resulted in sluggish  behavior, 
as shown in Figure IC.  In an  effort  to  improve 
response  a  second-order  non-adaptive  filter 
was  tried.  This did improve  performance, as 
seen in Figure Id. However,  the  causal  filter 
resulted  in  Significant  phase  shifts  for  a wave- 
form with  a  respiratory  component  (Figures 2a 
and 2b). Since  slope  monitoring  is  desirable  to 
eliminate  regions of high baseline  slope,  the 
results of Figure 2b were judged inadequate. 

A non-causal,  symmetric, moving-window 
filter with zero  phase  shift  characteristic was 
next  tried and  gave  the  best  overall  performance 
(Figure 3). Window length  was 800 msec,  using 
equal  weighting for both baseline and slope 



estimates.  Computation  time  was  decreased by 
using  only  every  20th  sample (at 4 msec/sample). 
No aliasing  problems  were  encountered  since 
higher  harmonics  were  outside  the bandwidth of 
the  moving-average  filter. 

An interesting  problem was  encountered 
using  the  non-adaptive moving-window filter. 
As shown in Figure 4, for  certain  heart  rates a 
fictitious  T wave  component  was  introduced  due 
to  the  energy  in  the QRS complex.  This  problem 
was  eliminated by making  the  filter  adaptive. 
Incoming data  for which a three-point  slope es- 
timate  exceeded 10 mv/sec  were  eliminated and 
an extrapolated  zero-slope  estimate was  sub- 
stituted.  The  next  data point was  also  neglected 
to allow for  broad QRS complexes (e. g., due  to 
left  bundle  branch  block).  This  adaptive, moving- 
window fil ter has performed  adequately in all  
tests  made  to  date. 

In the sequel we assume  that  the  noise  has 
been  eliminated  from  the  measured  signal or 
will not affect  the  feature  extraction  process. 
As discussed  at  the beginning of this  subsection, 
this  appears  to  be  an  achievable condition. 

111. FEATURE EXTRACTION 
Perhaps  the  most  important  problem in 

VCG or ECG  computer  diagnosis  is  feature 
extraction, in which a smal l   se t  of numbers  is 
selected to represent  the  complex  waveforms 
of each  patient for later pattern recognition. 
These  numbers (features) should  be  selected to 
provide: (1) optimal  discrimination, (2)  mini- 
mum sensitivity  to  noise,  artifact,  heart  size 
and orientation, body shape.  etc. 

The essential  function of the  feature  extrac- 
tor  is  data  reduction, in which  only diagnosti- 
cally  relevant  measurements  are  preserved. 
In most  practical  problems,  the  feature  set  is 
to  be  selected tcrgive  the  lowest  probability of 
misclassification.  However,  since  the  dsta  are 
not independent  this  is  no  simple  matter.  For 
example,  suppose our data  consisted of N 
samples and we wish  to  use only M(< N) of these 
as features. We cannot, in general,  pick  these 
a s  the M singly  most  informative  features. 
Cover [ 73 has given an  example  where  the two 
best independent measurements  are not  the two 
best.  The  generalization of this  result  is  that 
an  exhaustive  search  may be required  over  all 
M-element  subsets of the N data points. 

Essentially  all  programs in present-day 
use select features  based on  the  cardiologist's 
knowledge and experience. Among typical 
features used a r e  location of onset and end of 
the QRS complex, P wave, T wave,  and ST 
segment  depression. What may  be  neglected, 
however, a r e  potentially  important  features 
relating  to  subtle  changes in waveform  shapes 
and correlations between  waveform  segments, 
locations and durations. 

Diagnostic  statements are generally  made 
on the basis of threshold  logic,  using a hierar- 
chical  decision  tree  structure. In so doing,  the 

statistical  nature of the problem  may  be  over- 
looked  and the  decision  structure,  determined 
apriori,  restricts  the  flexibility of the system. 
While the  cardiologist  is  an  expert  patteyf 
recognizer,  the  crucial  question  here  is Doe? 
the  cardiologist know what features he uses? 
in  the sense of b w a b l e  to quantify  them. 
The  answer  to  this  question  based on present 
operational  systems,  appears  to be in the 
negative, 

With this in mind,  it would appear  desir- 
able  to  develop  an  approach in which features 
are  selected on  the  basis of efficient  classifica- 
tion  into disease  categories and insensitivity 
to  noise.  This  is  the  essence of the  approach 
given in this  paper. 

A statistical  feature  selection procedure 
is  presented  here  for  use in ECGIVCG diagnosis. 
Risk of misclassification and time weighting 
a r e  included to  enhance  performance.  The 
technique  is, in principle,  easily  extendable 
to  more  general  medical  diagnosis  problems. 

Although most  previous  work in this  area 
is  based on deterministic  ideas,  recently  there 
has been more  effort put into statistical ap- 
proaches.  Cornfield,  et a1 [ 21, have  used  a 
Bayesian  approach  to  classification,  using  a 
feature  set  composed  princi  lly of waveform 
onset and end times. B a l m F ]  tried  a  correla- 
tion  technique,  using as features 36 evenly- 
spaced  samples  over  each  QT  interval. 
Muciardi and Gose [ 91 compared  several  statis- 
tical  techniques  for  selecting  optimal  features 
from  a  set of 157 features  chosen by cardiolo- 
gists.  Okajima,  et  a1 [ l o ] ,  considered  an 
adaptive,  matched  filter  approach  using, as 
features, 30 evenly-spaced  samples  over  each 
QRS complex. 

Recently, s o y e  work has  been  reported 
using  Karhunen-  Loeve  expansions  over  portions 
of the P T  segment.  Karlsson [ 11 1 used 20  QRS 
samples and 2 7  ST  interval  samples and  con- 
cluded  that  nine features  were  sufficient  for 
diagnosis.  Hambley, et  a1 [ 121 used 120 evenly- 
spaced  samples  over the QRST interval and 
concluded  that  eight  features  were  sufficient. 
Kittler and Young [ 131 used 20 evenly-spaced 
QRS samples  from  each  axis of three-lead 
vectorcardiograms.  Their  data  indicate  that 
at  least 30 features were required  to  achieve 
m inimum classification  error  probability. 

In work [ 14, 151 performed  at the Charles 
Stark  Draper  Laboratory,  the  use of a  K-L ex- 
pansion  over  the  entire PT interval  has  been 
studied,  using  an 8 msec  sampling  rate. A 
total of 300 samples  (lOO/axis)  were  used  for 
each  record (N= 300). The  dominant  eigen- 
values  were found using  an  efficient method for 
symmetric  matrices given  in  Wilkinson  and 
Reinsch [ 161,  which find all  eigenvalues which 
lie within  a  given  range.  The  data  consisted 
of 198 VCG records,  supplied by cardiologists 
a t  the U. S. Air Force School of Aerospace 
Medicine  (USAF/SAM),  with approximately 



equal  numbers of normal and abnormal  records. 
The  mean and several  of the  eigenvectors are 
shown in Figures 5 - 8, with  the ith  eigenvector 
associated with  the  ith  largest  eigenvalue of the 
ensemble  covariance  matrix.  The  data are 
presented in an  orthogonal (u, v,  w) frame  deter- 
mined for each  record so that  the  v axis contains 
the least amount of the  timeaveraged  energy. 
The  u  axis is aligned  with  the  maximum  T wave 
amplitude in the u-w plane  and  the  w  axis  com- 
pletes  an  orthogonal  triad.  The u-w plane  con- 
tains  about 90% of the  total  energy,  indicating 
that  the  cardiac  dipole  vector  is  essentially 
confined to  the u-w plane. Preliminary  tests 
[ 151 indicate  that  improved  claseification  ac- 
curacy can be  obtained  using  the (u, v, w) axes 
rather than  the (x, y, z) axes of the  Frank  lead 
system,  since  sensitivity  to  heart  orientation  is 
reduced. 

Several  points  should  be noted from  the  data 
of Figures 5-8. The  eigenvectors  clearly re- 
present  processes which a r e  quite non- stationary 
and time-varying. For wide-sense  stationary 
processes,  the  eigenvectors  are  sinusoidal. 
The  higher order  eigenvectors  contain  higher 
frequency  components of the QRS complex. It 
was found; however, 'that no significant P wave 
components  appeared in the  first twelve  eigen- 
vectors.  This has led to  problems  in  recon- 
structing the low energy P waves,  which  have 
high diagnostic  content.  It  thus  appears  desir- 
able  to modify  the K-L  expansion,  perhaps  using 
time weighting of the  data, to enhance  feature 
extraction.  The  percentage of the  total  ensemble 
energy  contained  in.the  first few eigenvectors 
is  shown in Figure 9. Six eigenvectors  contain 
90% and 12 eigenvectors  contain 98%. However, 
it  appears  that  part of the remaining 2% may  be 
of significance. 

The  objective of the  remainder of this 
paper  is  to  suggest  some  generalizations of the 
K- L  expansion  approach  to  feature  extraction, 
motivated  by  problems  encountered  during 
research on diagnosis of VCGs. 

IV. A MODIFIED K-L EXPANSION 
4. 1 Formulation 

lar  approach to feature extraction  is  to  utilize 
the  K-L  expansion.  To facilitate notation, let 
superscript  k  denote  association with the  kth 
member of the  ensemble.  Then (3) becomes 

m 

For  the  linear signal model of (3), a popu- 

j= 1 
with  the f i rs t  two terms on the  right-hand s ide 
representing the estimate of xk. The  K-L  ex- 
pansion is defined by first  constraining 0 to be an 
orthonormal  set. Then, the  coefficients are 
selected bv: 

and the  basis  vectors {@.) are eigenvectors of 
the  ensemble  covariancd  matrix 

P 
R = -  (xk - x) (x - x) (6) k - T  

k- 1 
k= 1 

with P the  number of samples in the  population. 
The  eigenvectors are  ordered  according to the 
magnitude of their  corresponding  eigenvalues, 
with  0. associated with  the  jth largest  eigenvalue. 
The K l  L expansion has been  extensively  studied 
[ 17, 181 and its  properties are well-known. 
The  intent  here  is  to point  out some  deficiencies 
in  the  K-L  expansion, as applied  to  feature ex- 
traction  for ECG/VCG  diagnosis in particular 
and to med ical d iagnos is in general. 

The K- L  expansion  minimizes 
function 

P 

the cost 

(7) 
k=  1 

Not e that  each  member of the  ensemble  receives 
equal  weighting and that all  time points a re   a l so  
given  equal weight. Intuitively,  one would expect 
that  ensemble  members with  high misclassifica- 
tion  risk should  be weighted more  heavily and 
that  portions of the  waveform  with  higher in- 
formation  content  should  receive  higher weight- 
ing so that $ is  representative of the  diagnosti- 
cally  important  data.  Consider  a  modification 
of (7) to the form 

P 

k= 1 

with r > 0, Q > 0. Then r is %e cost, or risk, 
associated with misclassifying x and Q allows 
the  errors  to be time weighted. 

k  k 

Chien  and Fu  [ 191 have  considered  the  case 
of 4. independent classes.  Their  result iskthat 
the  weighting.coefficienks  take  the form r 
pi/ni.  where  member  x is in the  ith class r.(, 
which contain  ni  members and occurs with 
apriori  probability p Note,  however,  that if i' 
p. is very  small, then  0  will not contain  vectors 
characteristic of the  ith class and discrimina- 
tion of the  ith class will  be  difficult. Thus, 
r k  should  reflect  the r i s k  of misclassification 
of xk, as well-as  the  probability of occurrence 
of xk. 

4.2  Solution 
The  solution of the modified problem 

defined by (4) and (8) is given as follows. With- 
out loss of generality, we take  the  set 0 = 
to be Q-conjugate; 



Then  minimizing (8) with respect  to Q 
k 

yields j 

9k = ejT Q X k (10) 

If minimization is now done over  the set 
($. 1, the  result  is  that 2. is the  eolution of the 
eigenequation 

3 J 

u 

R Q ej = X j  tdj 
.. 

where 
P 

R = 1 rk (xk - 5 )  (xk- z ) ~  (12) 

k =  1 

and  the  eigenvalues are ordered as 
X , >  x 2 >  h' .* > X N .  

The  effect of Q  is a non-singular  trans- 
formation of coordinates. If Q is factored as 
Q = WWT and we define  zk = WT xk, #Jj W tdj, 
then (10) and (11) become: 

T 

where R", = W f i W  is  the  covariance  matrix 
associated with z. 

T 

The  question now to  be  asked is how to 
choose  the  set ( r k ]  and Q. Ideally,  these  should 
be  selected  to  minimize  classification  error. 
One  method for  doing  this would be  an  iterative 
scheme in which  the global  minimum of, say 
the  Bayes r isk would be  sought by varying (rk} 
and Q. This  is  a  complex  nonlinear  program- 
ming  problem which is  further  complicated by 
the  fact  that  analytic  gradients a r e  not generally 
available. AB an  alternative, we will  consider 
in the sequel a two-class  problem  in which  the 
discriminatory  information  is  easily defined. 
Diagnostically,  this  may  be  thoufht of as a 
screening  problem with classes  Normal" and 
"Questionable". 

Some  insight  into  the  two-class  problem 
may  be gained by considering  the  relationship 
of the  mcdified K - L  expansion and classical 
linear  discriminant  analysis  for the two- class 
problem. 

4.3 Relation  to  Discriminant  Analysis 

within-class and between-class  scatter  matrices 
a r e  wed to  develop  criteria for class  discrimin- 
ation.  The  within-class  scatter  matrix  is  given 
by : 

In statistical  discriminant  analysis [ 171, 

Sw = cN RN + cQ RQ; cN + cQ = 1 (14) 

where mN and R N  a r e  the  mean and covariance 
matrix  for  theNorma1  class and m and R a r e  
the  mean and covariance  matrix for the Ques- 
tionable  class. Note that Sb is the ensemble 
scatter  matrix. 

Q Q 

The  usual  interpretation  given  to cN and 

cQ  is  that  they a r e  the respective  apriori  class 
probabilities;  cN = pN, cQ = pQ. However, 
since  usually pN > > p Sw carries  very  little Q' 
information  relative  to  the  questionable  class. 
By including class risk  factors rN and r and 
and defining  cN = rN pN, cQ = rQ pQ, 

will  contain  more  information  relative  to  the 
questionable  data  since  the  risk r associated 
with  misclassifying  questionable  data,  is  much 
higher  than  the r isk rN, associated with  mis- 

classifying  normal  data. 

e? 
Q' 

EXficient discrimination  is enhanced by 
simultaneously  maximizing Sb and minimizing 
Sw. A convenient scalar  discrimination  measure 
is [17]: 

J = t r  (Sw Sb) - 1  
(16) 

which is invariant  under  any  nonsingular  trans- 
formation of coordinates,which  is a desirable 
feature. 

We now consider  the  problem of finding 
an  optimal  set of m  features. Define  the  m x n 
matrix A as: 

A =  9ZT 

'F L qm." J 
with E@,} an  orthonormal  set. Then  the feature 
vector  for  x is; k 

ak = [Cy1 * ... k 

= A x  k 

and  the measure  to  be  maximized  is : 

Jm = tr[ (ASw A T - 1  ) (ASbAT)] (19) 

and  the between-class  scatter  matrix is : 

387 



It  can  be  shown [ 171 that J, is maximized 
Lf $i is the  eigenvector of SW-' Sb corresponding 
to the eigenvalue pi, with the  eigenvalues  order- 
ed ae p1 > p2 > . . . > pm. Further, 

m 

Jm = C pi  (20) 
i= 1 

The; solutlon, then, reqalres so lvhg  an eigen- 
value  problem of the  form; 

and the eigenvalues pi are positive real since 
Sw and S,, are symmetric and positive-definite. 
We remark  that  the method proposed by Kittler 
and Young [ 131 is identical to solving  (21) 
although  derived in a different  manner. 

By equating ( 2 1 )  and (111, it  can  be  seen 
that  the  time  weighting  matrix  Q is explicitly 
given by 

Q =  $1 -1 
'w  'b 

Since  only  the  symmetric  part of Q  affects 
Jm of (8),  (22) can  be  reduced to 

The  relation  (23)  provides a way of deter- 
mining  the  equivalent  weighting in the modified 
K-L expansion  to  give  the  discriminant  analysis 
solution, The value of this  is in increasing 
understanding of the  linear  discriminant method 
in terms of the  intuitive  idea of time weighting 
of the  data. Note that  (23)  implies  that, in 
general,  cross- weighting of the  original  data is 
required.  However, if Q of (23) is  diagonalized 
by an  orthogonal  transformation  matrix  C so that 
CQCT is diagonal,  then no cross-weighting  is 
required  in  the  transformed  coordinates.  This 
is  equivale  t  to a transformation of the data  from 
(xk}  to {CX R 3. 

Note from (15) and (21) that if the  class 
means,  mN and m coincide,the  linear  dis- 
criminants all contain equal discrimination 
information and linear  discriminant  analysis 
offers no solution  to  the  feature  extraction 
problem. 

4.4 Eigenvector  Computation 

inversion which may not be  feasible  for  covari- 
ance  matrices of large  dimension,  due  to ill- 
conditioning.  In our  studies on vector- 
cardiograms, 100 samples/axis  at a sampling 
rate  of 125 samples/sec  were used, so that  the 
covariance  matrices were of dimension 300, 

&' 

The  solution of (21)  involves  a matrix 

and attempts at inversion  failed. An iterative 
technique for obtaining  dominant  eigenvalues of 
non-symmetric  matrices [ 201 was tried but  was 
numerically unstable. 

eimultaneous  diagnonalization f171. However, 
since all eigenvalues of Sw must  be obtained, 
the  ill-conditioning of Sw still  prevented  obtaining 
a solution.  Kittler [ 211 who considered  the  same 
problem,  has  proposed a Fourier  representation 
to obtain  the  eigenvalues of Sw. The K-L ex- 
pansion  reduces  to  the  discrete  Fourier  trans- 
form if the  process  is wide sense stationary; 
In this case, the  covariance  matrix  elements 
along  diagonals  parallel  to  the  main  diagonal a r e  
equal.  While  this  may hold approximately in 
some  problems,  it did  not for the  covariance 
matrices  encountered in this  study(see Figs.5-8h 

Another  method of solvin  (21) is via 

It appears  that a worthwhile  approach  is 
the  reduction of dimensionality, i. e., represen- 
tation of the  individual  waveforms by fewer  time 
samples.  Since all waveforms a r e  to  be  sampled 
at  the  same  time points,  the  sample  points  may 
be selected on  the  basia of the ensemble  statis- 
tics. 

Although, ideally, selection  should  be 
based on minimizing  the  probability of misclas- 
sification, a more  tractable method would be 
to  minimize  some  measure of the  expected re- 
presentation  errors  for given  interpolation poly- 
nomials.  This is a problem in approximation 
theory which  could be  attacked using, a8 a p  
proximating classes, finite-  order  algebraic and 
trigonometric  polynomials or splines [ 221, 

V. COMPARISON OF LINEAR 
DISCRIMINANT METHODS 

In this  section we will  consider a specific 
idealized  two-class  discrimination  problem 
which exhibits a particularly  interesting  struc- 
ture. The classes   areshown in Figuce 10. The 
feature  space is .the two-dimensional  plane  and 
in general,  the  classes  will not be  1inear.ly 
separable. The  problem  considered  is  optimal 
linear  feature  extraction by reduction  to  one 
discriminant  feature. The results of seven 
methods of feature  extraction  will be  presented. 
These are the  following: The K-L  expansion, 
the  Fukuna  -Koontz  method [ 231, the Fisher 
method [ 24Tdiscriminant  analysis [ 171, the 
Chernoff  method [ 251, the  method of Ch'ien and 
F u  [ 191, and the  modified K-L expansion.  The 
probability of classification  error  can be 
computed  explicitly  for  each of these  feature 
extractors.  The  deficiencies of these  feature 
extractors are clearly pointed  out by this  ex- 
ample which represents a  topologically  complex 
two class  configuration  while  maintaining  analyt- 
ical  tractability. 
(a) K-L Expansion In this case. the  maximum 
eigenvalue of R of (6) is sought.  Note  that 
R = Sb  with cN and c the  proportion of normal Q 



and  questionable  records in the  data.  The 
decision rule for  the  discriminant  direction  is 

a2/2 + (cQ/cN) r2(1+s(2e)) + 2 c  m X 

b2/2 + (CQ/cN) r (1-s(2e)) 72 Y 

- 
&x 2 1  (24) 

Note that  increasing r and  m favors  selection 
of the  x direction as desired. The  y direction  is 
always  chosen if b ts sufficiently larger than a. 
but may  also  be  chosen if a > b, 8 > n/2 and 
m is sufficiently  small. 
(b)  Fukunaga-Koontz Method In this method a 
normalization  technique is used  for  feature ex- 
traction. A mixture  covariance  matrix 
R = RN + R is  formed and transformed by 
a matrix U-such that T U T  5 I. Then two 
matrices R~ = U R ~ U  and R& = UR UT  a re  
formed.  The  eigenvectors of x, and R 
identical and the  eigenvalues,  denoted  respec- 

3 
Qx 

Qx 

Q 

a_ 
Q are 

tively by 1 and xiQ are related by : N 

X:= l - x i .  Q 

For  classification  purposes we wish  to 
choose  the  features  whose  eigenvalues  are 
closest  to 0 or 1 in  general.  That is, eigen- 
values which are far from 0.5 are more  appre- 
ciated  since  they  lead  to a good dichotomy of 
the  classes. A cost  criterion  suggested in 
[ 231 is 

m  m 

As C increases  the  features are more  effective. 
However in our  problem  where  m= 1 the  choice 
of either  eigenvalue  leads  to  the  same  cost  due 
to  symmetry. With this method two eigenvectors 
are necessary  for  twoclass  problems with  dif- 
ferent  mean  vectors.  Therefore  this method 
does not apply  to  this two dimensional  example. 
(c)  Fisher Method: 

In this method of two class discrimination 
we seek to  compute a direction d in the  feature 
space such  that  orthogonally  projected  samples 
from  the two classes onto  d a r e  maximally  dis- 
criminated.  The  discrimination  criterion sug- 
gested by Fisher  is related  to  the  ratio of the 
projected  class  differences  relative  to  the ~ u m  
of the  projected  within-class  variability.  Speci- 
fically,  the  Fisher  discriminant is obtained 

by solving  for  the unit vector d  which  maxi- 
mizes  the  ratio 

m 

J =  d '  Md 

dT Swd 

In order  to  solve for the  Fisher  direction d we 
take  the  derivative of J with respect to d and 
set  equal  to  zero.  This  leads to: 

[ M - X S w ] d =  0 

The  solution  is  obtained by solving for the 
eigenvectors.  The  rank of M is 1 and therefore 
only  one  nonzero  solution  exists.  The  eigen- 
vector  corresponding  to  the  non-zero  eigenvalue 
is the Fisher  direction and is given by: 

d = CT Sw -1 [ m N  - mQl 

where CY is  a  normalization  constant. 

It  can  be  seen  that,  regardless of the shape 
of the classes, the resulting  discrimination 
direction  will  be  along  the  vector  joining  the 
means of the two classes  whenever  these  classes 
have dia  nal  covariances.  This is not always 
a deswa * e wection as can be seen  for  the ex- 
treme  example given in Figure 11. In this  ex- 
ample knowing the  y-coordinate of a sample  is 
a much better  discriminant  for  classification 
than knowing the  x-coordinate.  The  Fisher 
method  however  will  never  give  the  y-direction 
for  discrimination  for  this  family of two-class 
problems. 
(d)  Linear  Discriminant  Analysis  Using (211, 

e eigenvector a socLated wLtn the principal 
2genvalue of SW-' Sb can  be shown to  always 
lie  along  the  x  axis (i .  e., along  the  line  joining 
the class means). 
(e) Chernoff Method Chernoff suggests two 
closely  related  measures  for  discriminating 
between two distributions.  The method leads 
to  the  discrimination  direction d  given by 

d = S -1  (m, - mQ) 

Here S is a particular  mixture of the class 
covariance  matrices 

S =  t R N  + (1-t) RQ; t c [ 0, 13 

and  t is chosen  to  optimize  a  certain  criterion. 
The  details of the  choice of t  and the  theoretical 
justifications for this  choice can be found in [ 251. 
For our  two-class  problem we can  obtain  the 
feature  extractor without explicitly  computing t. 
Since  both RN and R are diagona1,S is  diagonal 
and d is  always  along x. 
(f) Chien and Fu  Method In this method the 
eigenvalues of Sw a r e  foufid, where cN. 

Q 

'Q are 



interpreted aa apriori  class probabtlities.  Thus, 
Sw is the average  within-class  scatter  matrix. 
The best  linear  discriminant  direction  is the 
eigenvector  associated  with  the  principal  eigen- 
value.  Note that  this method does not take  the 
class  means into consideration, which can  be 
a  deficiency in two-class  discrimination. 
(g) Modified K-L  Expansion  This method is 
studied by conslaering  the  effects of using  risk 
parameters and time weighting of the  data  sepa- 
rately in the  modified K- L  expans ion, as given 
by (10)  and (11). For equal  time  weighting  Q I 
and the  relevant  covariance  matrix  is Sb of (15) 
with cN rN pN, cQ = rQ pQ, where rN, 
a r e  the  mieclassification  risks,  and  the  decision 
rule is given.  by (24). Generally rs > rN since 
misclassifying a questionable VCG is more 
costly  than  mtsclassifying a normal one. In- 
spection of (24)  shows  that as r Ir increases 
the  x  axis  is  favored, and a s  r / r  - the 
decision rule becomes 

rQ 

Q N  
Q N  

X 

s (2e) o 
Y 

which favors x for 0 e 8 e v i 2  and y for 
r l 2  c.8 e.*, independent of a, b  and  m Note 
that  increasing c has the  effect of increasing 
the sensitivity t:, differences in the  class means. 

Qx. 
Q 

The  effect of time weighting of the  data 
can be seen by assuming  that  the  problem is 
that of classifying on the basis of scalar  measure- 
menta x(t)  at two times,  tl and t and associa- 
ting  the  values  at  these  times w i g  the  x  and  y 
cbmponents  respectively, of the two classes of- 
Figure 10. Our  "feature"  is now the  most in- 
formative  time.  The  weighting  matrix  Q 
corresponding  to  the  discriminant  analysis  solu- 
tion can then  be  obtained from (22)  and is found 
to  be  diagonal.  Assuming  c = c = 112, the 
weighting of the sample  at  time  tl  relative  to 
the  one at  time t2 is: 

Q N  

Note that  z(t,)  (the  x  component)  gets 
heavier  weighting as b  increases,as a decreases,  
and as m increases-which is  intuitively  the 
correct  behavior. As r increases,  the  sensi- 2 
tivity  to  the  sector  angle 8 increases and in the 
limit as 7 - W ,  z(t,) is given  higher  weighting 
if r l 2  c 8 e Q and z(t,) is given  higher  weighting 
if 0 < e e n 1 2. For e small,  this  is  equivalent 
to  giving  the  highest  weighting  to the time  sample 
with smallest  variation. 

QX 

VI DISCUSSION 

In this  paper we have  proposed  the  use 
of a modified K-L  expansion  to find the  optimum 
se t  of features  for VCGs. This.modification  was 
introduced  due  to our  desire  to  time-weight  the 
data and employ  individual risk  factors  for  each 
VCG in the training  set.  The weighting in the 
modified K-L  expansion which gives  the  optimum 
two-class  discriminants  was found by maximizing 
a  measure involving  the  within class and between- 
class  scatter  matrices. It would be desirable 
to  generalize  this  to  the  multi-class  problem. 

Since  the  meaning of a single  linear  dis- 
criminant  for  more than two classes is not clear,  
it  appears  that  some kind of local  feature ex- 
traction is required,  where  distant  classes  are 
ignored. 

Although this  paper has considered  only 
VCGs, the  methods a r e  applicable to EcGs as 
well.  The main  problem  then  is  a  computational 
Qne due to  the increase in dimensionality. With 
a view to  overcoming  the  dimensionality  problem, 
a  study  has  been  conducted  at  the  Charles  Stark 
Draper  Laboratory [ 15 1 to  determine  the  feasi- 
bility of estimating  the VCG (3 signals) of a 
patient  from  his ECG (12 signals)  for  purposes 
of data reduction.  It has been found that  the 
average  heartbeat  waveforms of an individual 
a s  obtained from  the K G  and the VCG. a re   very  
accurately  related  by-a  lineartransformation. 
with  the  provision  that  phase  shifts  among  the 
ECG signals a r e  accounted  for in the  transforma- 
tion. However attempts  to find a  single  trans- 
formation which is valid for an entire  group of 
individuals  have not been  successful. 

The  persisting need to reduce  the  set of 
ECG signals then led' to an investigation of princi- 
pal factor  analysis.  The  results of a  study per- 
formed on a se t  of nine  ECG records  supplied by 
USAFlSAM indicate  that  the  use of four, five, or 
six  standard  principal  factors  accounts,  respec- 
tively,  for 97. 7%, 98. 8% and 99. 3% of the  total 
ECG signal  energy.  This, coupled  with visual 
assessment'of  original  and'.reconstructed wave- 
forms,  suggests  that  data  reduction  from 12 to 
approximately 6 to 8 signal  components  via  a 
standard  transformation  may  suffice  for ECG 
analysis.  Furthermore,  comparison with VCG 
data for the same  patient  set show's that  the 
intrinsic  plane  concept  used  for  the VCG holds 
for  the ECG to essentially  the  same  degree of 
accuracy. It was found that  the VCG and ECG 
intrinsic  planes a r e  aligned to within 13 degrees 
in all cases  studied. 

An intermediate  stage between feature 
selection arid pattern  classification  is  cluster 
analysis.  Cluster  analysis  may  be used to  aid 
both  the  feature  selection and the  pattern  classi- 
fication  process.  Several  comments  should  be 
made  at  this point. Firstly,  the  feature  selection 
and pattern  classification  processes  ake not 
deCOUDled, since a true measure of good feature 
selection is minimizing  pattern  classification 



error.  The whole process is indeed a closed- 
loop system not  unlike  that of optimum  stochastic 
control  where  the  estimation and control functions 
cannot in general  be  separated. What we are 
doing  here in control  parlance is to  do  a linear 
analysis in which we decouple  the  feature selec- 
tion and pattern classification  steps.  Since  the 
optimum  classifier  is in general  non-linear  this 
decoupling  in  general is not  valid. Furthermore 
the  optimum  features  are  probably  no.dinear 
functions of the  data. 

In order  to  better  approximate  the  over- 
all process, one  might consider  cluster  analysis 
as an  intermediate  stage  between feature selection 
and pattern  classification.  The  basic  idea  here 
could be that good feature selection leads to 
compact  clueters with  maximum  separation and 
hence good pattern  classification.  Hence if the 
initial  features  were  chosen in a sufficiently 
high dimensional  space  to  give good approxima- 
tion of the  waveforms and cluster  analysis  per- 
formed in thie  high  dimensional space, optimum 
features in a lower  dimensional space could be 
obtained  by  taking  into  appropriate  account  the 
local geometry of the clusters as well as their 
global  configuration. 

Finally,  some  comments  should  be  made 
about the choice of norms in the  feature  selection 
process. So far we have  used  the  C2-norm. 
It appears  that  this  particular  choice  may  distort 
the  true  information  metric,  since  large  devia- 
tions are not  always  associated  with  high in- 
formation content.  The h1 norm  might  be  a 
better  choice  for our purposes.  However,  the 
choice of optimal basis vectors with respect 
to  an  hl-norm  appears  to  be  an open  problem. 
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Fig. 2. Baseline  Removal  with  Respiratory component. 
(a) Original  record, (b) Estimates  using 2nd order  
Kalman  filter 
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Fig. 4. Spurious T wave  generation using non-adaptive 
moving window filter 
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Fig. 10. Two-class, two-dimensional discrimination 
example 
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Fig. 11. A codtiguration which favors y-axis 
discrimination 


