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Abstract

An infinite~dimensional model is given for
the generation of gyroscopic noise, which exhibits
power spectral density proportional to (1/f) over
a wide frequency range. The optimal filter is
given for separating a statistically described sig-
nal from additive gyroscopic noise, using discrete-
time observations. This filter is expressed as a
discrete~time infinite~dimensional Kalman-Bucy
filter, with an associated Riccati covariance
operator equation. Sufficient conditions are spe-
cified such that this Kalman-Bucy filter will
possess various desired properties.

1. Introduction

The gyroscope is an instrument used to detect
angular movement. The problem of the removal from
the gyro output signal of noise inherent to the
gyroscope in a constant gravitational field is one
which has received considerable attention in the
literature. Sutherland and Gelb {1], for example,
discuss an aided inertial guidance system, where
periodic telescopic sightings are used along with
gyro output to develop gyro error observations.
The error observations are used as the input to a
Kalman filter, which is used to estimate the gyro
error at the observation times. An estimate of
the true angular position is then obtained by sub-
tracting the estimated gyro error from the gyro
output samples. Mehra and Bryson [2] discuss
smoothing of the gyro output to obtain estimates
of the input signal.

Gyroscopic noige has often been modeled as
either a first-order Gauss-Markov prdcess [3]}, or
as a Gaussian random walk (integral of Gaussian
white noise) [4,5]. However, recent studies per-
formed at The Charles Stark Draper Laboratory [6]
of the power spectral characteristics of the random
noise associated with various gyroscopes indicate
that gyro noise is often characterized by a (1/f)
behavior in power spectral density over a wide
frequency range. An explanation of the source of
this noise in the magnetic materials of the gyro-
scope (e.g. the gyro float rebalance torquer) is
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proposed by Harxris and Koenigsberg [7]. In Sec~-
tion 2 we discuss their findings and add others.
We present an infinite~dimensional state space
model which generates noise with the power spec-
tral properties of gyroscopic noise. We also
discuss the possible relationship between magnetic
disaccommodation and gyroscopic noise.

In Section 3 we introduce and solve the f£il-
tering problem to be treated in the paper. Using
discrete~time observations, a statistically
described gyro output signal (resulting from angu-
lar motion inputs to the gyroscope) is optimally
separated from additive gyroscopic noise, Be-
cause observations are made at discrete times, we
first determine a discrete-time infinite-dimen~-
sional linear system to generate samples of the
gyroscopic noise, as modeled in continuous time in
Section 2. The filtering problem can be solved as a
conditional expectation filter in the case where
the input signal is Gaussian (this solution being
equivalent to the minimum variance linear estima-
tor for non-Gaussian input signals). The result-
ing optimal filter is expressed as a discrete-time
infinite-dimensional Kalman filter with an asso-
ciated Riccati covariance operator equation. We
note here that steady-state filtering of a random
process with a (f-1-2€} power spectrum has been
discussed by Moran [8]. However, the performance
of Moran's filter degrades as € > 0.

We indicate how theorems concerning Hilbert
space Kalman filters and Riccati operator equations
can be applied to the gyro noise filtering problem.
By specifying conditions on the system generating
the signal to be recovered, we are able to guaran-
tee a number of desitable properties for the Kal-
man filter.

The optimal filter derived in Section 3 ine
volves integrations over a free time constant para-
meter. In applications, these integrations must
be implemented discretely. This discretization
can be achieved by making a finite-dimensional
approximation to the infinite-dimensional gyro-
scopic noise model. The optimal filter becomes an
ordinary finite-dimensional discrete-time Kalman
filter, with an associated matrix Riccati equation.
It can beshown [19] that the mean-squared estimation
error incurred in using the Kalman filter of the
finite-dimensional approximate model can be made,
through the use of a sufficient number of dimen-
sions in the approximation, to approach the mean-
squared estimation error associated with optimal
filtering of gyrosopic noise.



The results found here for gyroscopic noise
are applicable to any random process characterized
by a wideband (lL/f) power spectral density, as
given in Section 2. (1/f) spectra are found, for
example in semiconductor flicker noise and in the
noise characterizing the frequency fluctuations of
guartz crystal oscillators.

2. An Infinite-Dimensional Model
for Gyroscopic Noise

Gyroscopic noise has often been modeled as
either a firgt-order Gauss-Markov process [3], or
as a Gaussian random walk (integral of Gaussian
white noise) [4,5]. The Gaussian nature of the
noise is inferred from histogram plots of gyro
output. A linearized version on log-log scales of
the power spectral density of a first-oxder Gauss-
Markov process is shown in Figure 1. The random
walk has a variance proportional to time, hence is
nonstationary. Thus in a strict sense the power
spectral density of a random walk process does not
exist. When discrete samples of bandlimited white
noise are generated by computer and summed (to
resemble the integration of white noise), the re-
sulting noise is found to be characterized by a
(1/52) power spectral density over the bandwidth
of the original bandlimited white noise. (The
power spectral density is found through evaluation
of the squared magnitudes of the Fourier coeffi-
cients of the output signal,) For the following
reasons we intuitively expect this result. The
power spectral density, S, (f), of the output of a
time-invariant linear system (transfer functions

H(f)) to an input signal of PSD (power spectral den-

sity) Syy(f) is given by:
Syy(®) = Siet) + |u(e)]? (1)

The transfer function of an integrator is propor-

tional to (1/s), hence we would have:

_ 1 o1
(i2mf) (~jamf) 4ﬂ2f2

lue|? (2)

Bandlimited white noise has a PSD constant with
frequency (over its band limits), se we would in-
tuitively expect our approximation to random walk
to have behavior proportional to (1/£2). The PSD
resulting from the computer simulation described
above is shown in Figure 2. Notice that both ran-
dom processes discussed here exhibit (1/£2) behav-
ior in PSD (slopes of (-2) on log-log scales).
Recent studies performed at The Charles Stark
Draper Laboratory [6] of the power spectral charac-
teristics of the random noises associated with
various gyroscopes indicate that gyro noise is
often characterized by a (1/f) behavior in power
spectral density. (The gyro is set up as an input
rate integrator, with a binary torque rebalance
locp. The units of PSD are (input rate)2/Hz.) A
linearized graph of the observed form of gyro er
spectral density is given in Figure 3. The (£<)
portion of this graph is primarily attributed to
quantization noise due to the binary torque loop.
This effect of quantization is currently under in-
vestigation. Power spectral analyses of separate
record lengths of gyro noise show the power spec-
tral density to be constant in time, hence we will
treat the gyro noise as stationary. An explanation

of the source of this noise in the magnetic mater-
ials of the gyroscope (e.g. the gyro float reba-
lance torquer) is proposed by Harris and Koenigs-
berg [7]. In this section we shall discuss their
findings and add others. We first discuss a model
for magnetic relaxation (disaccommodation). This
model is then used to develop an infinite-dimen-
sional state space model for the generation of
gyroscopic noise.

Examination of the literature on magnetic
relaxation (e.g. Ref. [9]) indicates that the
response of iron to transients in applied magnetic
field can be characterized as the impulse response
of a continuum of first-order linear systems with
a uniform volume density distribution of time
constants. The term "uniform volume density dis-
tribution" is used here to mean a spatial distri-
bution of systems such that each volume element
contains many systems, and such that the systems
in each volume element have time constants distri-
buted according to the same probability density
function. Each individual system is characterized
by a transfer function of the form:

T

Ts + 1 3

GT(s) =

The probability density function of time constants
(T) is given by (see insert in Figure 4):

/(T /T INL/T); T, STST
palm = Z : ’

0 ; otherwise
(4)

We shall demonstrate that the above density func-
tion is effective in explaining the gyro noise PSD
in addition to magnetic relaxation, which is cb-
served when the gyro is operated in the presence
of power supply transients. Incidentally, other
possible density forms (for anelastic relaxation
of strain in crystalline solids, a related pheno-
menon) are discussed by Nowick and Berry [10].

The impulse response of each linear system (Eq.
(3)) is given by:

h(t) = e " (s)

The magnetic relaxation of the material is then
characterized (see Ref. [9]) by the weighted inte-
gral of the impulse responses of the linear sys-
tems, with the time constant density of (Eg. 4):

-]
nee) 4 x/ Py (Dh_(t)ar (6)
0

Substituting Eq. (4) and Eq. (5) into Eq. (6), we
find that:

T
2
- K -t/T
m(t) E;T;;7?IT j; (1/7) (e yat (7
1

changing variables, we obtain:
/1,

K
m(t) = ,Q,n(TZ/Tl) /;/T
2

where we have made the substitution:

(e ¥/may (8

y =t/t (9)
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Finally, we obtain:
K
m{t) = I;T;;7;;T{El(t/12) - El(t/Tl)] (10)

Where El(z) is the exponential integral, defined

by: © -u
e
El(z) =j (T)du (11)

z

We choose K to normalize m(t) to Y(t), where we
require for normalization that:

Yo) = k; Y(® =0 (12)
We find that:
K=1 (13)

Thus, the magnetic disaccommodation (relaxation)
is normalized to:

1
Y(t) = (EET?;7;;79[El(t/Tz)-El(t/Tl)] (14)

Graphs of Y(t), for T; = 0.01, T, = 1.0, on linear-
linear, semilog, and log-log scales are found in
Figures 4, 5, and 6, respectively. As discussed
in Ref. (7), VY(t), with proper choise of T; and Tp,
often fits the time record of gyro output in the
presence of power supply transients. Gyro output
is the record of the torques applied by the mag-
netic gyro torquer in order to keep the gyro float
angle close to zero. For (t) between T; and T,
Y(t) is proportional to (-&n(t)), a familiar result
in the study of magnetic relaxation (see Ref. (11)).
( Incidentally, T3 and T, may be estimated by ob-
serving the gyro output and using an analytic
approximation (12) for Y(t), for t between T; and
Ty.) In summary, the time constant density given
in Eq. (4) can be used to explain the deterministic
gyro response to transients. The reader should be
aware that we do not have empirical confirmation
that the relaxation exhibited by gyro output in the
presence of power supply transients is necessarily
magnetic in origin. We can only suggest this as a
possible source, and note that this mechanism is
effective in explaining the observed power spectral
characteristics of gyroscopic output noise, which
we shall now discuss.

If a linear system (Eqg. (3)) with time con-
stant (T) is fed by an input function w(T, t) then
its response, x(T, t), is characterized by:

%xu,u=-ému,u+wu,n (15)

Let the input function of two variables, w(t, t),
to the systems be characterized by covariance:
(§(+) is the Dirac delta function)

E{w(t, wly, t-0)} & w8 (T-v)8 () (16)

w(T, t) is formally a " two~dimensional white
noise". The inputs to two systems with time con-
stants T and Y are independent if T # Y. Eq. (12)
may be regarded as a state equation, where state
x(T, t) is a function of T € [T;,T2]. Gyroscopic
noise is now modeled as the weighted integral of
the outputs of the filters (where x(T, t) is the
output (at time t) of a filter with time constant
T), and is given by:
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-]
g(t) =/ x(T, t)pd('r)d'l' (17)
4]

In more rigorous form, Eq. (15), (16) and
(17) are shorthand for:

T2
g(t) = pd(r)e't/Tdu(r,O)
T

1
1.'2 t
+ f / pd(T)e_(t-s)/TdB(T,s)
T 0 (18)

where the first integral, the initial condition
propagation, is a Wiener integral and the second
is a "two-dimensional Wiener integral", defined in
Appendix A. In this appendix we also discuss the
two-dimensional Wiener process B(T,s) whose (for-
mal) mixed double partial derivative is the two-
dimensional white noise, w(T,s), in Eq. (13).
Further, as discussed in Appendix A, normalization
of g(t) so that the noise has unit variance re-
quires:

W= 2£n(12/11) (19)

The power spectral density of the noise is then
given by:
2 1 -1
Sgg(t) = (137?27;170(§?§)tan .
2wf(12 - Tl)
Ty (20)
1+ 4n°f T,Ty

A graph of Sgg(f) is plotted in Figure 7. Note
that the (1/f) characteristic of gyro noise ob-
served experimentally is inherent in the linear-
ized version of this plot. The (£f2) section of
Figure 3, the experimentally observed gyro noise,
due to quantization dominates over the (1/f2) line
of Figure 7 at high frequencies, masking that por-
tion of the gyro noise. Further, it is felt that
the low frequency breakpoint of Figure 7 corres-
ponds to times longer than the record lengths nor-
mally employed for observations of gyro output,
accounting for its absence from Figure 3 (see cap-
tion of Figure 2). Ongoing experiments at The
Charles Stark Draper Laboratory with long record
lengths of gyro output indicate that the power
spectral density is flat at very low frequencies
(~1 cycle/month) for some of the gyroscopes being
tested.

Henceforth, we shall use the term gyroscopic
noise to refer to the stochastic process generated
by our state space model. The gyroscopic noise is
assumed to have started at (t=-x), hence to be
stationary at (t=0).

Incidentally, alternative models, in terms
of diffusion mechanisms, for stochastic¢ processes
with the power spectral characteristics of gyro-
scopic noise are discussed in Ref. {[13] and [14].
Another model,with a (£-1~2€) power spectrum, is
discussed in Ref. ([15]. Note however that because
our gyro noise filter is a linear estimator only
the second-order properties of the gyroscopic
noise influence the filter mean~squared error



sequence. Thus all mathematical models which gen-
erate stochastic processes with the same PSD as
gyro noise (hence the same second-order properties
as gyro noise) will yield the same optimal {(mini-
mum variance) filter. In the next section we for-
mulate the problem and indicate how it can be
solved in an infinite dimensional context.

3. Filtering and Properties of the Filter

Take X,U real separable Hilbert spaces,
(2, S, U) a complete probability space.

3.1 Separable Hilbert space-valued random
variables

The reader is referred to [20] for more de-
tailed exposition of this material.

x:fl + X is called an X~valued random variable
(r.v.) if it is a (weakly) measurable map. The
linear space of X~valued r.v.'s is denoted
Mes( £, u; X).

An X~valued stochastic process is a map
x(+):R*¥ > Mes( §, Y; X). x(+) is a measurable pro-
cess if the map (t,w) + x(t,w) is measurable w.r.t.
uL % U (uL denotes Lebesgue measure on Rt).

x € Mes( £, U; X) is first order if
x € L1[ §, u; X) and second order if x € L2{Q,u; X].
For a first order r.v. x{w) we define the mean

E{x(w)}; (3'0
E{x(w)} = j;Z x{w)du

For a second order r.v. x(w), (h, h) + E{<x(w) -
E{x(w)}, h> <x{w) - E{x(w)}h>} is a continuous,
symmetric bilinear form which has unique represen-
tation through @ ¢ L(x), 9 > 0, ¢* = 9 as (h,h) »
<ch, B>. Q is the covariance of x(w). The covari-
ance of a second order random variable x(w) is nec-
essarily nuclear.

Given two X-valued second order r.v.'s x{w) ,
v, (h, B) + E{<x(w)=X, h> <y(w) - ¥, B>} has
unique representation (h,h) * <®Rh,h>, R g L(x).

R is called the covariance of x(p), y(w) and is
written cov {x(w), y(w)}.

x(w), v(w) € Mes( @, y; X) are independent
if <h, x(w)>, %h, y(w)> are independent for all
hheX. =xc¢ L2[Q,H:X] is Gaussian if <x(w), h>
is normally distributed for each h € X.

(Bochner Integral)

3.2 Wiener Process

The U-valued stochastic process W(t, w) is a
Wiener process if (i) for finite collections
itif € R+,TejF € U, (wity,w0), ej) is a family of
real-valued gaussian r.v.'s (ii) W(t,w) is second

order for each t > 0 and there exists some nuclear
Qe Li{x) s.t.

E{<w(t,,w) h> <w(t,,w) h>}
= <¢h,h> min{tl,tz}

each t),ty > 0, h,h e U, (iii) E{w(t,w} = 0 for

each t > 0. See([20]1, p. 167 et seq.) for proper-
ties of w(t,w).
Notice that since Q is nuclear, Q > O,

Q* =0
() =§>‘iei <e,s t >

for some {Ai}, Ai > 0 with E:Ai<®, some orthonor-

mal sequence {e,} in U. We fhall make use of the
property that tﬁe Wiener process W(t,w) has unique
representation

N
wit,w) = lim 2: Bi(t,w)ei
Neo  i=]

(limit in LR, w; X)

with the Bi's independent real valued Wiener pro-
cesses.

3.3 The Wiener Integral

Suppose b:R* + X is locally essentially
bounded, measurable and that B(t,w) is a real-
valued Wiener process. Then the Wiener Integral

T
f b(t)aB(t,w)
0

is defined in the usual manner as a limit in

L2 (R,u; X] through a sequence of simple functions
approximating b(t) in L2{0, T; X]. Now suppose
that B(-): R¥ = L(u, x) satisfies (i) |[B(-)}|

is locally essentially bounded, measurable (ii)

t + B(t)x is measurable for each x € X. The Wiener

Integral

T
B(t) dw (trw)
0

is defined in this case as

N T
lim 2 B(t)e, B (t,w)
N i=1 JO

(limit in [0, T; X1)

where each element in the sequence is evaluated as
above. (e,, (t,w) i =1,w,.. as inSec., 3.2) For
B(-) measiirable w.r.t. the uniform operator topo-
logy this definition coincides essentially with
that in ([20], p. 180 et seq.). Notice that the
Wiener Integral is defined modulo null-functions
in L2[Q, u; X].

3.4 Infinite Dimensional Formulation
of the Filtering Problem

We first show how equations (15) and (17)
can be represented in the infinite-~dimensional sto-
chastic setting just described. Let X = L2(Ty,T,;
R) be the space of square-integrable functions with
values in R, and let <.,*> denote the natural sca-
lar product on X. All random variables are con~
sidred with respect to some fixed complete proba-
bility space (2, A, P).

Denote by B(t) = w(-,t) the X-valued Wiener
process with covariance operator W obtained from
the two dimensional Wiener process w(T,t).

Consider A:X * X:x(T,t) -+ —%-x(T,t). This

is clearly a bounded linear operator.
Let y(t) = x(*,t) be an X-valued random var-
iable, given as the solution of the integral equa-
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tien

t
yie) = &y, +/ SN g (21)
)

where y, is an X-valued Gaussian random variable
with zefo mean and covariance operator II. It is
assumed that yg and B(t) are independent. ‘It can
be shown that (i) y(t) is a Gaussian random vari-
able, (ii) E(y(t)) = 0 and (iii) writing A(t,s) =
covly(t) ,y(s)], <Ale,8)h,B> = <e"“re” “n,

A* denotes the adjoint of A.
The output equation of the gyronoise model is

T
2
g(t) = / pd(‘t)x(‘t,t)d'r (22)
T
1

where p () is a bounded measurable function. The
above defines a bounded linear operator C:X =+ R,
(21) and (22) constitute the infinite dimensional
representation of the gyro model. In practice, the
gyro output is sampled. Then, doing a "sampled-
data” approximation to (21) and (22) we obtain the
discrete-time representation

{Y(n*'l) = Yy(n) + B(n) (23)
y(0) = Y5
i)
g(n) = pd(T)x(T,n)dT ’ (24)
Tl

n=20,12,... T

Here U € L(x,x) is the mapping £(T) * e T (1)
where T > 0 is the sample-time increment, and ¢ (n})
is an independent sequence of X-valued Gaugsian
random variables with covariance operator (! (which
can be calculated from W and the sampling data).
Yo and B (n) are assumed to be andependent.

Now let a finite-dimensional discrete-time
linear stochastic system be given by

a(n+l) = a(n) + Bu(n) (25)
pl(n) = h'a(n) (26)

Here a(0) is a Gaussian RP-valued random variable
with mean 0 and covariance P, u(n) is a "white"
Gaussian sequence with mean zero and covariance
Q1+, ¢ and B are matrices of appropriate size and h
a vector.

The observation equation is

z(n) = pl(n) + gin) + vin), (27)

where v(n) is a white gaussian scalar sequence with
zero mean and covariance Y > O,

pp(n) is the ideal gyro noise output which
needs to be estimated. 1In order to estimate it we
have to estimate a(n) and y(n). This filtering
problem can now be solved using standard infinite-
dimensional filtering methods (see, for example,
[21])). By duality arguments, it can be shown that
this problem is equivalent to the following optimal
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control problem (in backward time)
X(t+l) = Fx(t) + Gu(t), t = 0,.,2,...T-1

(28)
with cost functional of the form
-1 [T,
m s + L[| awee,n e
t=0 T
1
+ a(t)'Qalt) + au(t)z] (29)

((-,+) denotes the natural scalar produce on
X x RAy,
In the above,

() = (y{t),z(t)) € x x R®
u(t) € R

F:X X R® + ¥ x R is the bounded linear mapping
T

(£(0),a) > (e T £(1), %a), T > 0,
G:R + X x RP is the bounded linear mapping
u #* (p(-)u,hu) where p(-) is bounded measurable
and h € RR, S is a positive operator, Q is a sym-
metric positive semidefinite matrix, gq(7) > ¢ >0
is a bounded measurable function and 6 >0 is a
scalar., What is of interest is the asymptotic
behavior of this control problem (that is, the
asymptotic behavior of the filter).

We say that (28) is reachable if there ex-
ists an integer v > 0 and a constant 0 < a < ®
such that

r . 2
(%, 2 F'G G*F*'%) > al x| 2 #%exxR®
i=0

Let us check whether this is possible for the X
part of the system. We would require

r T2 -z
> {f p(T)e Tf(r)d-r}2
i=0 Tl

T
2 2
> a/ £(T)"dT for some a > O
T

and ¥ £ € L2(17,T; R) which is clearly impossible.
The X-part of the system is however stable. Now

T
2
f q(T)x(T,t)sz = </gq(*) x(:,8) ,Yg(-)x(-¢t)>,
T
1

Hence the mapping x(*,t) + vYg(*)x(*,t) = Qx(-,t)
may be thought of as an observation equation for
the X~part of the system. We say that the X-part
of (28) with the above observation egquation is ob-
servable if 3 integer s > 0 and a constant

0 € b <~ guch that

s
(x, 2, F*% rlx) inxIl2 ¥xe€ X
i=0
Since gq(T) > ¢ > 0 the X-part of the system
is observable. Now assume that a(k+l) = da(k) +
s

hu(k) is stabilizable and J_ 0"%0¢¥ > 0 for some s.
K=0



It then follows from the results of Hager and Horo-
witz [22], on the asymptotic behavior of Discrete
Riccati Operator Equations, that the resulting fil-
ter is asymptotically stable. For the appropriate
concepts of filter stability see the forthcoming
paper by Vinter [23].

Appendix A
The Two-Dimensional Wiener Process

In this appendix, we discuss the two-dimen-
sional Wiener process, with covariance:

E[B8(T,t)B(s,0)] = W * min(T,s) * min(t,0)
(a-1)

Note that, formally, the mixed double partial de-
rivative of this process will have the covariance
of a two-dimensional white noise,because, formally:

2 2
EL iy (T,8)) (yags Bls,0))]

4
= Se3esoss EIB(T81B(e,0)] (A-2)
and from Eq. (A-1) we have that:
54
3titi03s EIB(T/0)B(s,0)] = W-8(1-8) -8(t-0)

(A-3)

We shall first show the existence of a (Gaussian)
random process with the covariance in Eq. (A-1).
We then shall give meaning to a two-dimensional
Wiener integral (where £ € L2([0,®) X [0, ®))):

f[ f(t,t)ag(t,t) (A-4)
0o Jo

Finally, we shall show that the model we have given
for gyroscopic noise in Eq., (18):

T2
g(t) =/ pd(T)e-t/Tdu(‘r,O)
T

1
Tz t
+f f pd(T)e-(t-s)/TdB (t,8)
Tl 0 (a-5)

in fact yields the desired power spectral density
(Eq. 20):

6 = (e 337
Sgg - n(Tz/Tl) 2mf

2rf(t, - 1,)
« tan 1 -———323———l (A-6)
14417 € 1211

Further details concerning the multiparameter Wie-
ner process and Wiener integral are discussed by
park [ 1.

We first show the existence of the two-dimen-
sional Wiener process. The argument closely par-
allels that of J.M.C. Clark [17]. Choose two sets
of complete orthonormal functions in L2([9, *)):
(where <+,+> is scalar product notation)

{\Di(t)} - S wj> =j; wi(t)npj(t)dt =
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0; dipd
= ; 1=, 2, ... (A-7)
1l; i=y

{¢(t)}..<¢,¢>-f
i it % o

0; i¥)
= ; i=1, 2, ... (A~8)
1y  i=j

¢i(T)¢j(T)dT =

(Note that {y,(t)} and {¢,(T)} may be the same
set of functions.) Next, define a sequence of
doubly-indexed Gaussian random variables:

{aij} .. E[aijamq] = W'Gim-qu;
<i=l, 2, . (A-9)
4=1, 2, ...
where 8§, is the Kronecker delta function, defined

m
by 0; ism
8, = (A-10)

l; iem

We now define a sequence of random processes
{8Y¥¢1,t)}. Each random process is a function of
two variables, (T) and (t). The definition is
given by:

N N N t [T
i=0 3=0 0~o (a-11)
Fix (T) and (t). We claim that {B¥(1,t)} is a
quadratic mean Cauchy convergent sequence of ran-
dom variables. Observe that: (say M > N)

er8%r,e - 8N (,en?

= E a, P, (Y), (a)dady x
141 4omeL 3 JoJo S

R A
x Y, (M) $_(n)dndA
k=N+1 q=N+lakq./; 0o K 4

By Eq. (R-9), we obtain:

(A-12)

et 8%, 08N, 0% = w

M t 2 M 2
E ( p.{(y)ay) " |- 2: ( ¢, (A)ar)
i 3
isN+l O j=N+l YO

(A-13)
Define the following function:
1; 0<y<t
It y) = (A-14)
0; Y%t

We may now express Eq. (A~13 in dot product nota-
tion:

er8™r, 008, en? =

o 2| | < 2
LA EDWRCAE XS0 B 1D <by012)
i) JoN+1 (a-15)



By the orthonormality of the sequences {¥, (Y)} and
{¢j(k)} we have that each factor on the right of
Eq. (A-15) approaches zero as N * ©, Thus
{BN(T,t)} is a quadratic mean Cauchy convergent
sequence of random variables. Call the limit
B(t,t). We now demonstrate that B(T,t) has covari-

ance as in Eq. (A-1):
E(B(T,t)B(s,0)] = Z<w VI <Y, T >]

i=0
2: <¢ I ><¢ 1> (A-16)
j=0
By Parseval's theorem, we have that:
E{B(T,t)B(s,0)] = W-<I,,I ><I ,I0>

o o«
= W('/(; It(Y) IU(Y) dY)(/; IT(Y) IS(Y)dY>

E[B(T,t)B(s,0)] = Wemin(t,0) 'min(T,s) (A-17)
We have thus established the existence of the two-
dimensional Wiener process.

We now wish to define a two-dimensional Wiener
integral. We first develop an analog of the
"orthogonal increment" property of Brownian motion.
For a Brownian motion, u{t), it is well known (17)
that:

(A(*) denotes length)
E{(u(t)=u(s)) (ul{g) -u(r)) I=K-x{ls,t) Nir,q))
(A-18)

Define the following function, over a box ([t1},T3)
x [t3,t3)) in the first quadrant (no generality is
lost by defining our process for T > 0, t > 0) of
the R2 plane:

F(Terzitllt2)=B(T21t2)'B(Tzltl)'B(Tlrtz)

+ B(-rl,tl) (a-19)
Note, incidentally, that if a deterministic func-
tion q(T,t) € C2 had its mixed double partial de-
ravative integrated over this domain, we would
obtain:

. [t
“[ 22 g(rlt
. Jt. arer - tdT= altyi€y)

L 1 - q(Tzrtl)

- altyrty) + qlryt) (a-20)
This can be taken as motivation for Egq. (a-19). It
is easily seen, using only Eq. (A-17) that: (A(.)
denotes area)

E[F(Tl!TZItlytz)F(T3IT4lt3lt4)]

= WeALULT, 1) X[E) ,E,)) N ([T, ) x(ty, )]

(a-21)

Equation (A-21) is the analog to Eq. (A-18). Using
this property, we proceed, as Wong (17) does for a
one-dimensional orthogonal increment process, to
define the two-dimensional Wiener integral.

(1) If £ = I{aj,ay)x[bj,by), the indicator func-

tion of the rectangle [al,az)x[bl,bz), we set::

L fo f(T,t)dB(T,t)=F(al,a2,bl,b2) (A-22)

(2) If £ = \)Z_:la\)f\), with £ functions as in (1),

we set:

[--] [=-]
//f(T,t)dS(T t)— ff £, (T,£)aB(T,t)
v=1
(3) /[ lf (T,8)-£(T t)l dtdt +~ 0, we set:
/ / £(t,t)dB (T, t)—l:.m in q m. f /

«(T,t)aB(T,t) (a-23)

The class of functions £(T,t) for which this

is possible is L2([0,%)%[0,®))., In addition, as
in the one-dimensional case in Wong (18), we find

that:
E{[/ f(T,t)dB("c,t)][[ g(T,t)aB(T,t)
0 0
=//f(T.t)(g(T,t)det
o Jo

We shall make use of Eq. (A-24) in showing
that our model for gyroscopic noise (Eqg. (A-5)
yields the desired power spectral density (Eqg.
(A-6)). From Eq. (A-5) we have that (for a > 0):

T
2
Elg(t)g(t-0)] =[<f (e /Tau(r,0)

1

f f py (e = (t=8)/Tap (e, s))

T2
><< pae” E a0
T

T -
2 [t-0
+ / / py e e "’Wdem,c))]
Tl o]

(a-25)

(A=24)

The process U(T,0) is an initial "T-axis-scaled"
Brownian motion characterized by (analog of Eq.
(A.24) in one dimension (18):

Ta Ta
E[(f f(T)dU(TIO))(f g(Y)du(Y,O))]
Tl T

1

T2
= f £(1)g (1) (h(1)dT) (a-26)
T

1 (for some h{T))
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Also, we have that B(T,s) (T >0, s >0} is inde-
pendent of W(T,0)(T 2 0). Thus we obtain from
Eq. (A-25) that:

E{g(t)g(t~-0)]

T
2
- e'“/T/ p§<r)e"t'a)/T h(T)dT
T

T -0
2 2s/T
/T - -0
‘e /f pg('f)e 2(t )/rf e Wdsdrt
T 0

(A~27)
Integrate in Eq. (A-27) to obtain
Elg(t)glt-a)]
T2
- e'a/Tf ;_;(Zi(r)e"(t"")/T h(T)dT
T
T2
+ e'“/Tf el n-e 2 Mg
B (A-28)

Let t > ® in Eq. (A-28),to obtain a stationary ran-
dom process characterized by:

Rgg(a) = E[g(t)g(t-0)]
T
2 we -lalst 2
= (E—Oe pd(T)dT (A-29)
B

A Fourier transorm of Eqg. (A=29) yields:

® 2
W 2
s_(f) =f — ) [p. (D) 1%T (a-30)
99 0 <l+4'n'2f21'2> d

Substituting Eq. (4) into Eg. (A-30) and using a
normalization (W = ZZn(Tz/T }) to give S__ (f) unit

) s 1 g9
variance, we obtain:

2ME(T,~T. )
2 1 -1 2”1
S (t) = (—-—————) (_——)tan v r———————
99 In(t,/T,)" "21E 1+47%£%1 T
271
(a-31)

Equation (A-3l) is the power spectral density for
gyroscopic noise which we had in Egq. (20). Inci-
dentally, note that our discussion of the two-~
dimensional Wiener process and two-dimensional
Wiener integral can easily be extended to (n) di-
mensions.
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