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Abstract 

An infinite-dimensional model is given  for 
the  generation  of  gyroscopic  noise, which exhib i t s  
power spec t ra l   dens i ty   p ropor t iona l   to   ( l / f )   over  
a wide frequency  range. The o p t i m a l   f i l t e r  is 
given  for   separat ing  a   s ta t is t ical ly   descr ibed  s ig-  
nal from additive  gyroscopic  noise,  using  discrete- 
time observat ions.   This   f i l ter  is eqmessed  as  a 
discrete-time  infinite-dimensional Ihlman-Bucy 
f i l t e r ,   w i t h  an associated  Riccati  covariance 
operator  equation.  Sufficient  conditions  are spe- 
c i f i e d  such t h a t   t h i s  Kalman-Bucy f i l t e r  w i l l  
possess  various desired propert ies .  

1. Introduction 

The gyroscope is an instrument used to   de t ec t  
angular movement.  The problem of  the removal  from 
the  gyro  output  signal  of  noise  inherent  to  the 
gyroscope in   a   cons tan t   g rav i ta t iona l   f ie ld  is one 
which has received  considerable  attention  in  the 
l i terature .   Suther land and Gelb [l], for example, 
discuss an a ided   i ne r t i a l  guidance  system,  where 
periodic  telescopic  sightings  are used  along  with 
gyro  output to develop  gyro error  observations. 
The error   observat ions  are  used as   the   input   to   a  
Wlman f i l t e r ,  which is used to estimate  the  gyro 
e r ror   a t   the   observa t ion  times. An estimate  of 
the  true  angular  posit ion is then  obtained by sub- 
tracting  the  estimated gyro er ror  from the  gyro 
output  samples. Mehra and  Bryson 121 discuss 
smoothing of t h e  gyro  output  to  obtain  estimates 
of the  input  signal. 

Gyroscopic  noise  has  often been  rmdeled a s  
e i ther   a   f i r s t -order  Gauss-Markov pr6cess [ 3 ] ,  or 
as a  Gaussian random walk ( in tegra l   o f  Gaussian 
white  noise) [4,51. However, recent  studies  per- 
formed a t  The Charles  Stark  Draper  Laboratory [61 
of the  power spec t ra l   charac te r i s t ics   o f   the  random 
noise  associated  with  various  gyroscopes  indicate 
tha t  gyro  noise is often  characterized by a   ( l / f )  
behavior  in power spectral   density  over  a wide 
frequency  range. An explanation  of  the  source  of 
t h i s   no i se   i n   t he  magnetic  materials of the  gyro- 
scope  (e.g.  the  gyro  float  rebalance  torquer) is 
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proposed by Harris and  Koenigsberg t71. In Sec- 
t ion  2 we discuss  their   f indings and  add others. 
We present a n  infinite-dimensional state space 
model which generates  noise  with  the power spec- 
t r a l  properties of  gyroscopic  noise. We a lso  
discuss   the  possible   re la t ionship between  magnetic 
disaccouamdation and gyroscopic  noise. 

In Section  3 w e  introduce and so lve   the   f i l -  
t e r ing  problem to be treated  in  the  paper.  Using 
discrete-time observa t ions ,   a   s ta t i s t ica l ly  
described  gyro  output  signal  (result ing from  angu- 
l a r  motion inputs to the  gyroscope) is optimally 
separated from additive  gyroscopic  noise. Be- 
cause  observations  are made a t  discrete times, we 
f i r s t  determine  a  discrete-time  infinite-dimen- 
sional  l inear  system  to  generate samples of  the 
gyroscopic  noise,  as modeled i n  continuous time i n  
Section 2. The f i l t e r i n g  problem  can be solved  as  a 
condi t ional   expectat ion  f i l ter   in   the  case where 
the  input  signal is Gaussian ( th i s   so lu t ion  being 
equivalent  to  the minimum variance  linear  estima- 
tor fo r  non-Gaussian input  signals).  The resu l t -  
ing   op t imal   f i l t e r  is expressed as  a  discrete-t ime 
infinite-dimensional Kalman f i l t e r  with an asso- 
ciated  Riccati  covariance  operator  equation. We 
note   here   that   s teady-state   f i l ter ing of  a random 
process  with  a  (f-l-ze) power spectrum  has  been 
discussed by Moran [SI. However, the  performance 
of MOran' s f i l t e r  degrades a s  E * 0. 

We indicate  how theorems concerning  Hilbert 
space Ulman f i l t e r s  and Riccati  operator  equations 
can be applied to the   gy rono i se   f i l t e r ing  problem. 
By specifying  conditions on the  system  generating 
the   s igna l   t o  be recovered, we are able t o  guaran- 
tee  amunbar  of  desirable  properties  for  the -1- 
man f i l t e r .  

The optimal f i l t e r   d e r i v e d  i n  Section 3 in- 
volves  integrations  over  a  free time constant  para- 
meter. In applications,   these  integrations must 
be  implemented discretely.   This   discret izat ion 
can  be  achieved by  making a finite-dimensional 
approximation to the  infinite-dimensional gyro- 
scopic  noise model. The optimal f i l t e r  becomes an 
ordinary  finite-dimensional  discrete-time Kalman 
f i l t e r ,   w i t h  an associated  matrix  Riccati  equation. 
I t  can beshown [191 that   the  mean-squared estimation 
error  incurred  in  using  the Kalman f i l t e r  of the 
finite-dimensional  approximate model can  be mades 
through  the  use  of  a  sufficient number of dimen- 
s ions i n  the  approximation, to approach  the mean- 
squared  estimation  error  associated with optimal 
f i l t e r i n g  of  gyrosopic  noise. 
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The r e su l t s  found here  for  gyroscopic  noise 
are   appl icable   to  any random process  characterized 
by a  wideband ( l / f )  power spectral   densi ty ,  as 
given in  Section 2 .  ( l / f )   spec t r a  are found, fo r  
example i n  semiconductor f l icker   no ise  and in   t he  
noise  characterizing  the  frequency  fluctuations  of 
quartz crystal osc i l la tors .  

2 .  An Infinite-Dimensional Model 
fo r  Gyroscopic  Noise 

Gyroscopic noise  has  often been  modeled a s  
e i ther  a f i r s t -order  Gauss-Markov process 131, o r  
as  a Gaussian random walk ( in tegra l  of  Gaussian 
white  noise) [4,51. The Gaussian  nature  of  the 
noise is inferred from histogram  plots  of  gyro 
output. A l inearized  version on log-log  scales  of 
the power spectral   densi ty  of a f i r s t -order  Gauss- 
Markov process is shown in  Figure 1. The  random 
walk has a variance  proportional  to  time,  hence is 
nonstationary. Thus i n  a strict sense  the power 
spectral   densi ty  of a random walk process does not 
ex is t .  When discrete  sanples of  bandlimited  white 
noise  are  generated by computer  and suuuned ( t o  
resemble the  integration  of  white  noise),   the re- 
sult ing  noise is found to be  characterized by a 
(1/f2) power spectral   density  over  the bandwidth 
of the  original  bandlimited  white  noise. (The 
power spectral   densi ty  is found  through  evaluation 
of  the  squared  magnitudes  of  the  Fourier  coeffi- 
cients  of  the  output  signal.)  For  the  following 
reasons we in tu i t ive ly   expec t   th i s   resu l t .  The 
power spectral   densi ty ,  S ( f ) ,  of the  output of a 
time-invariant  linear  sys&  (transfer  functions 
H(f ) )  to an input  signal  of PSD (power spec t ra l  den- 
s i t y )   Sxx( f )  is given  by: 

The transfer  function of  an integrator  is propor- 
t i ona l   t o  (l/s), hence we would have: 

Bandlimited  white  noise  has a PSD constant  with 
frequency  (over its band limits), so we would in- 
tuitively  expect  our  approximation  to random walk 
t o  have  behavior  proportional t o   ( l / f 2 ) .  The PSD 
resul t ing from the  computer simulation  described 
above is shown in  Figure 2. Notice  that  both  ran- 
dom processes  discussed  here exhibit ( l / f2 )  behav- 
ior i n  PSD (slopes  of (-2) on log-log  scales). 

Recent s tudies  performed a t  The Charles  Stark 
Draper  Laboratory [61 of the power spectral charac- 
t e r i s t i c s  of the  random noises  associated  with 
various  gyroscopes  indicate  that gyro noise is 
often  characterized by a ( l / f )   behavior   in  power 
spectral  density. (The gyro is s e t  up as  an input 
ra te   integrator ,   wi th  a binary  torque  rebalance 
loop. The un i t s  of PSD are  ( input rate) 2/Hz.) A 
l inear ized graph of  the  observed form of gyro 
spectral   densi ty  is given in  Figure 3. The ( f  Fr ) 
portion of t h i s  graph i s  pr imari ly   a t t r ibuted  to  
quarrtization  noise due to the  binary  torque  loop. 
This  effect  of  quantization is currently  under  in- 
vestigation. Power spectral   analyses of separate  
record  lengths  of gyro noise show the power spec- 
t r a l  detlsity  to be constant  in time, hence we will 
t r e a t   t h e  gyro noise  as  stationary.  An explanation 

of  the  source  of  this  noise  in  the magnetic mater- 
i a l s  of the gyroscope  (e.g.  the gyro f loat   reba-  
lance  torquer) is proposed by Harris and  Koenigs- 
berg [7J. In   th i s   sec t ion  we sha l l   d i scuss   the i r  
f indings and  add others .  We f i r s t   d i s c u s s  a model 
fo r  magnetic relaxation (dieaccommodation).  This 
model is then used to develop  an  infinite-diman- 
s ional   s ta te   space model for  the  generation of 
gyroscopic  noise. 

re laxat ion (e.g. Ref. [91) ind ica tes   tha t   the  
response  of  iron to transients   in   appl ied magnetic 
f i e l d  can  be  characterized ks t he  impulse  response 
of a  continuum of   f i rs t -order   l inear   system  with 
a unifonn volume densi ty   dis t r ibut ion  of  time 
constants. The term "uniform volume density  dis-  
tr ibution" is used here   to  mean a s p a t i a l   d i s t r i -  
bution  of  systems  such  that  each volume element 
contains many systems, and such  that   the systems 
i n  each volume element have t i m e  cons tan ts   d i s t r i -  
buted  according  to  the same probabi l i ty   densi ty  
function. Each individual  system is characterized 
by a transfer  function of the form: 

Examination of t he   l i t e r a tu re  on magnetic 

The probabili ty  density  function of  time  constants 
(TI is given by (see  inser t   in   Figure 4) : 

( 4 )  

We shall   demonstrate  that  the above density func- 
t ion  is effect ive  in   explaining  the gyro noise PSD 
i n   add i t ion   t o  magnetic relaxation, which is ob- 
served when the  gyro is operated  in  the  presence 
of power supply  transients.  Incidentally,  other 
possible   densi ty  forms (for   anelast ic   re laxat ion 
of s t r a i n  i n  c rys t a l l i ne   so l id s ,  a re la ted  pheno- 
menon) are  discussed by  Nowick and Berry  [lo]. 
The impulse  response  of  each  linear  system (Eq. 
( 3 )  ) is given by: 

h T ( t )  = e -t /T (5) 
The magnetic relaxation of the material is then 
characterized  (see Ref. [9l) by the  weighted inte-  
gra l   o f   the  impulse  responses  of  the  linear  sys- 
tems, with  the  time  constant  density  of (Eq. 4),: 

Subst i tut ing Eq. (4 )  and Eq. (5) i n to  Eq. ( 6 ) ,  we 
find that: 

changing var iables ,  we obtain:  

where we have made the  subst i tut ion:  

765 



Finally,  we obtain:  

m(t) h ( T 2 / T 1 )  1 
K [E ( t / T 2 )  - El(t/T1) 1 (10) 

Where E (z) is the  exponential  integral,  defined 
by : 1 

E 1 ( Z )  0 [ (y) du (11) 

We choose K to  normalize m ( t )  t o  $(t) , where we 
require  for  normalization  that:  

*(O) = 1; $("I - 0 (12) 

We f ind   tha t :  

K =  1 (13) 
Thus, the magnetic  disacconrmodation (relaxat ion)  
is normalized  to: 

$(t) = [El(t/T2)-El(t/Tl) 1 (14) 
1 

Graphs of $( t ) ,  fo r  T1 = 0.01, T 2  = 1.0, on l inear-  
linear,  semilog, and log-log  scales  are found i n  
Figures 4, 5 ,  and 6, respectively.  A s  discussed 
i n  Ref. (7 )  , $(t) , with  proper  choise  of T1 and T2,  
of ten  f i ts   the   t ime  record  of   gyro  output   in   the 
presence of power supply  transients.  Gyro output 
is the  record  of  the  torques  applied by the mag- 
ne t ic  gyro torquer   in   o rder   to  keep the gyro f l o a t  
angle  close  to  zero.  For (t) between T1 and T2, 
$(t) is proport ional   to   ( -Rn(t)) ,  a f ami l i a r   r e su l t  
in   the  s tudy of  magnetic re laxat ion  (see Ref. (11)). 
( Incidental ly ,  T1 and T2 may be  estimated by ob- 
serving  the  gyro  output and using an ana ly t ic  
approximation (12) f o r  $(t) , fo r  t between TI and 
T2.) In summary, the  time constant  density  given 
i n  Eq. (4) can  be  used to  explain  the  deterministic 
gyro  response to t rans ien ts .  The reader  should  be 
aware tha t  we do not have  empirical  confirmation 
that   the   re laxat ion  exhibi ted by gyro output   in   the  
presence of power supply  transients i s  necessar i ly  
magnetic in   o r ig in .  We can  only  suggest t h i s  as a 
possible  source, and note   tha t   th i s  mechanism is 
effective  in  explaining  the  observed power spec t ra l  
charac te r i s t ics  of  gyroscopic  output  noise, which 
we sha l l  now discuss. 

If a l i nea r  system (Eq. (3))   wi th time con- 
s t an t  (?) is fed by an input  function w ( T ,  t) then 
its response,  x(T, t ) ,  is characterized by: 

Let  the  input  function  of two var iables ,  w ( T ,  
to  the  systems be characterized by covariance 
(6 (. ) is the  Dirac  delta  function) 

E{w(T, t )w(y,  t-a))  4 Wb(T-y)6(a) 

W ( T ,  t) is formally a " two-dimensional white  
noise". The inpu t s   t o  two systems  with  time con- 
s t an t s  T and y are  independent i f  T # y. Eq. (12) 
may be  regarded as a s ta te   equat ion,  where s t a t e  
x(T, t) is a function of T E [T1 ,T2] .  Gyroscopic 
noise is now mdeled  as   the  weighted  integral   of  
the   ou tputs   o f   the   f i l t e rs  (where x(T, t) is the 
output   (a t   t ime t) of a f i l t e r   w i t h  time  constant 
T) , and is given  by: 

In more rigorous form,  Eq. (15) , (16) and 
(17) are  shorthand  for: 

where the   f i r s t   i n t eg ra l ,   t he   i n i t i a l   cond i t ion  
propagation, is a  Wiener in tegra l  and the  second 
is a "two-dimensional Wiener integral" , defined i n  
Appendix A. I n  t h i s  appendix we also  discuss  t h e  
two-dimensional Wiener process f i ( T , s )  whose (for- 
mall mixed double pa r t i a l   de r iva t ive  i s  the  two- 
dimensional  white  noise, ~ ( ' 1 , s )  , i n  Eq. (13) .  
Further,   as  discussed  in Appendix A, nonnalization 
of g ( t )  so that  the  noise  has  unit  variance  re- 
quires:  

The  power spectral   density  of  the  noise is then 
given  by: 

A graph  of  Sgg(f) is plotted  in  Figure 7.  Note 
tha t   t he  ( l / f )  charac te r i s t ic  of  gyro  noise ob- 
served  experimentally i s  inherent i n  the  l inear- 
ized  version of t h i s  plot .  The (f2) section of 
Figure 3, the  experimentally  observed  gyro  noise, 
due to   quant iza t ion  dominates  over  the  (l/f2)  line 
of  Figure 7 a t  high  frequencies, masking tha t  por- 
t ion  of   the gyro  noise.  Further, it is f e l t   t h a t  
the low frequency  breakpoint  of  Figure 7 corres- 
ponds t o  times  longer  than  the  record  lengths  nor- 
mally employed for  observations  of  gyro  output, 
accounting  for its absence from Figure 3 (see cap- 
tion  of  Figure 2 ) .  Ongoing experiments a t  The 
Charles  Stark Draper  Laboratory w i t h  long  record 
lengths  of  gyro  output  indicate  that  the power 
spectral   densi ty  i s  f l a t  a t  very low frequencies 
(-1 cycle/month) f o r  some of  the  gyroscopes  being 
tes ted.  

Henceforth, we shall use  the term gyroscopic 
noise  to  refer  to  the  stochastic  process  generated 
by our state space model. The gyroscopic  noise is 
assumed t o  have s t a r t ed  a t  (t=-), hence t o  be 
s t a t iona ry   a t  ( t = O )  . 

Incidental ly ,   a l ternat ive models, in   tenns 
of diffusion mechanisms, for  stochastic  processes 
with  the power spec t ra l   charac te r i s t ics  of gyro- 
scopic  noise  are  discussed  in Ref. [131 and [ U ] .  
Another  modelfwith a (f-1-2E) power spectrum, is 
discussed  in Ref.  [151.  Note  however that because 
our  gyro  noise f i l t e r  i s  a l i nea r  estimator only 
the  second-order  properties  of  the  gyroscopic 
noise   in f luence   the   f i l t e r  mean-squared error 
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sequence. Thus a l l  mathematical models which  gen- 
erate  stochastic  processes  with  the same PSD as 
gyro  noise  (hence  the same second-order  properties 
as  gyro  noise) w i l l  y ie ld   the same optimal  (mini- 
mum var iance)   f i l t e r .  In the  next  section we for- 
mulate the problem  and indicate  how it can  be 
solved  in an infinite  dimensional  context. 

3. F i l te r ing  and Propert ies   of   the   Fi l ter  

Take X , u  real  separable  Hilbert  spaces, 
(Q, s, P )  a  complete probability  space. 

3.1  Separable  Hilbert  space-valued random 
variables  

The reader i s  re fer red   to  [20] for  mre de- 

x:Q + X is cal led an X-valued random variable 
tailed  exposit ion of this   mater ia l .  

(r.v.1 i f  it is a (weakly)  measurable map. The 
linear  space  of X-valued r .v. 's  is denoted 
Mes( 51, U; X ) .  

x ( . )  :R+ + Mes( 52, u; X). x( . )  is a  measurable  pro- 
ces s   i f   t he  map ( t , O )  + x(t,W) is measurable w . r . t .  
pL x p ( p ~  denotes Lebesgue  measure  on R+). 

x E Mes( a, p; X) is f i r s t   o r d e r   i f  
x E L 1 [  51, p; X] and  second o r d e r   i f  x E Lz [61,p; X I .  
For  a f i r s t   o r d e r  r. v. x(w) we define  the mean 
E{x(d 1, (ji) 

An X-valued stochastic  process is a map 

- 

E{x(w)} = 1 x(w)dp (Bochner Integral)  
For  a  second order  r.v. x(W), (h ,  r) + EI<x(W) - 
E{x(@)}, h> <x(w) - E{x(w)}b} i s  a continuous, 
symmetric b i l inear  form  which has  unique  represen- 
tatio;  through Q E L(x) , Q 0 ,  Q* = Q a s  (h,iiS + 

<Q, h>. Q i s  the  covariance  of  x(w). The covari- 
ance of a  second order random variable x(w) i s  nec- 
essarily  nuclear. 

y ( d ,  (h, m + E{<x(w)-x, h> <y(w)-- 8, Fi>} has 
unique representation (h,ir) + <Rh,h>, R E L(x). 
R is called  the  covariance  of x(w)  y(w)  and is 
writ ten cov  {x(w), y ( w ) } .  

x(w) y(w) E_ Mes ( Q, P; X) are  independent 
if-  <h,  x(w)>,  eh,  y(w) > a re  independent for  a l l  
h,h E X. x E L2[Q,p:Xl is Gaussian i f  *.x(W), h> 
is normally dis t r ibuted  for   each h E X. 

3.2 Wiener P rocess 

Given two  X-valued-second o r d e r   r . v . ' s   x ( d ,  

The  U-valued stochastic  process W ( t ,  w) is a 
Wiener rocess   i f  (i) fo r   f i n i t e   co l l ec t ions  e E U, (w ( t i , w ) ,  e j )  is a family of 
real-valued  gaussian  r.v.'s (ii) W ( t , w )  is second 
order   for  each t 2 0 and there   ex is t s  some nuclear 
Q E L(x) s.t. 

each 
each 
ties 

Q* I 

E{<w( t l ,W)  ,h> < w ( t 2 , W )  ,K>} 
= <Qh,E> min{tl , t2} 

t l ' t 2  - > 0, h,F E u ,  (iii) E{w(t,u)} = 0 for  
t 0. See ([201, p. 167 e t   seq.)   for   proper-  
of W ( t , W ) .  
Notice  that  since Q is nuclear, Q 0, 
Q 
Q ( - )  = Chie i  <ei, * > 

i 

fo r  some { A i l f  hi 0 with c x i < m f  some orthonoa- 

mal sequence  {e i n  u .  We sha l l  make use of the 
p rope r ty   t ha t   t i e  Wiener process W ( t , w )  has  unique 
representation 

i 

N 

w ( t , w )  - l i m  C Bi(tfw)ei 
w i = b  

(limit i n  L ~ [ Q ,  p; XI 

with  the  $,Is  independent  real  valued Wiener pro- 
cesses. 

3.3 The Wiener Integral  

Suppose b:R + X is  loca l ly   essent ia l ly  
bounded, measurable and that B ( t , U )  is a real-  
valued Wiener process. Then the  Wiener Integral  

+ 

I,' b (t) dB (t ,w) 

is defined i n  the  usual menner as a limit i n  
L2tn,p; XI through a sequence  of  simple  functions 
approximating b ( t )  i n  L2[0, T; X]. Now suppose 
tha t  B ( . ) :  R+ * L(u , x) s a t i s f i e s  (i) I t B ( . )  1 1  
is loca l ly   essent ia l ly  bounded, measurable (ii) 
t -P B( t )x  is measurable f o r  each  x E X. The Wiener 
Integral  

B ( t I d w ( t 4 )  

is  defined i n  th i s   case   as  

where each  element i n   t h e  sequence is evaluated as 
above. (ei, ( t , w )  i = l ,~ , . .  as inSec.  3.2)  For 
B (  .) measurable w . r . t .  the  uniform operator topo- 
logy t h i s  def ini t ion  coincides   essent ia l ly   with 
that i n  ( [ z o ] ,  p. 180 e t  seq.).  Notice  that  the 
Wiener Integral  is defined  mdulo  null-functions 
i n  L ~ [ Q ,  P; X I .  

3.4 I n f i n i t e  Dimensional  Formulation 
of the   F i l te r ing  Problem 

We f i r s t  show  how equations (15) and (,l7) 
can be  represented  in  the  infinite-dimensiqnal  sto- 
chast ic   set t ing  just   descr ibed.   Let  x a L ~ ( T ~ , T ~ ;  
R) be  the  space  of  square-integrable  functionswith 
values i n  R, and l e t  < - , * >  denote  the  natural sea- 
lar product on X. A l l  random variables   are  con- 
sidred  with  respect to some fixed complete  proba- 
b i l i t y  space (0 ,  A, P), 

Denote by 8 (t) = w ( -  ,t) the  X-valued  Wiener 
process  with  covariance  operator w obtained from 
the two dimensional Wiener process w ( T , t ) .  

Consider A:X + X:x(T,t) + -- x(T, t ) .   This  1 
T 

is c lear ly  a bounded linear  operator.  
L e t   y ( t )  = x(  * ,t) be an X-valued random var- 

iab le ,  given as   the  solut ion of the  integral  equa- 
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t i on  t 

y ( t )  = eAtyo + e A(td)d$(t7)  (21) 

where yo is an  x-valued  Gaussian random variable  
with  zero mean and Covariance operator n. It is 
assumed that yo and B ( t )  are independent. 'It can 
be shown t h a t  (i) y ( t )  is a Gaussian ran,dom Vari- 
able, (ii) E ( y ( t ) )  = 0 and (iii) w r i t i n g   h ( t , s )  = 

cov[p ( t )   , y ( s ) ] ,   <h ( t , s )h , c>  = <eAtneA*th,F> + 

+ I,""""'.e 
A*(sb)h,WeA*(t*)Gdb  h,K E X. 

A* denotes  the  adjoint  of A. 
fhs output  equation  of  the  gyronoise d e l  is 

g ( t )  = 1' pd(T)X(T,t)dT (22) 

where p ( a  ) is a bounded measurable  function. The 
above def ines  a bounded l inear   operator  C:X + R. 
(21) and (22) const i tute   the  inf ini te   dimensional  
representation  of  the gyro model. In   pract ice ,   the  
gyro  output is sampled.  Then,  doing a "sampled- 
data" approximation to  (21) and  (22) we ob ta in   the  
discrete-time  representation 

d 

y(n+l) = Yy (n) + B (n) (23) 
{ Y ( O )  = Yo 

g(n)  = pd(T)X(T,n)dT  (24) 
1 

n = 0,1,2,... -T 
Here $J c L(x,x) is the mapping f (T) -t e  f (T)  
where T > 0 is the  sample-time  increment, and a ( n )  
is an independent  sequence  of X-valued Gaysian 
random variables  with  covariance  operator W (which 
can be calculated from w and the  sampling da ta) .  
yo and B Cn) d e  assumed t o  be  independent. 

l inear   s tochas t ic  system be given by 

T 

Now l e t  a  finite-dimensional  discrete-time 

a(n+l )  = a b )  + Bu(n) (25) 

p,(n) = h'a(n)  (26) 

Here a (0)  is a  Gaussian Rn-valued random variable  
with mean 0 and covariance P I  u(n)  is a "white" 
Gaussian  sequence  with mean zero and covariance 
Q1, 0 and B are matrices  of  appropriate  size and h 
a  vector. 

The observation  equation is 

z(n)  = p,(n) + g(n)  + v(n) , (27)  

where v(n) is a  white  gaussian  scalar  sequence w i t h  
zero mean and covariance Y > 0. 

pl(n) is the  ideal  gyro  noise  output which 
needs t o  be  estimated. I n  order to  estimate it we 
have to estimate a ( n )  and y(n) . This   f i l t e r ing  
problem  can now be solved  using  standard  infinite- 
dimensional  f i l tering methods (see, fo r  example, 
[21 ] ) .  By dua l i ty  arguments, it can  be shown t h a t  
t h i s  problem is equivalent to the following  optimal 

control problem (in backward time) 
;(t+l) = F;(t) + Gu(t ) ,  t = O,.,Z,...T-l 

(28) 
with cost functional  of  the form 

(SG(T) ,;(TI 1 + [12 q(T)X(T,t) 2 dT 

+ a ( t ) ' Q a ( t )  + cr~(t)~]  (29) 

t = O  1 

((.,-) denotes   the  natural   scalar  produce on 
x x Rn). 

In   the above, 
;(t) = ( y ( t )   , z ( t ) )  E X X R" 
u ( t )  E R 

F:X x Rn -t x x Rn is the  bounded l inea r  mapping 

(f  (TI  ?a )  -+ (e  'I f ( T I ,  @a) ,  T > 0, 
G:R + x x Rn is the  boun'ded l i nea r  mapping 
u + (p(.)u,hu) where p ( - )  i s  bounded measurable 
and h E Rn, S is a  posit ive  operator,  Q is a sym- 
metric  positive  semidefinite  matrix,  q(T)  c > 0 
is a bounded measurable  function and U s 0  is a 
scalar .  What is of   interest  is the  asymptotic 
behavior  of t h i s   con t ro l  problem ( tha t  is, the  
asymptot ic   behavior   of   the   f i l ter) .  

ists an integer  y 2 0 and a  constant 0 < a < - 
such that 

T -- 

We say  that  ( 2 8 )  is reachable i f   t h e r e  ex- 

r .  
(s, F ~ G  G * F * ~ )  a1 1x1 1 '  TF s E x x R" 

i=c1 

Let us check whether  this is possible 
par t  of the system. We would require 

for   the  X 

d T  f o r  some a > 0 

and V- f E L2 ( T ~ , T ;  R)  which is clearly  impossible. 
The X-part of  the  system i s  however stable. Now 

q(T)x(T,t)2dT = <- X ( * , t ) , m ) x ( . t ) > .  I" 1 
Hence the  mapping x ( . , t )  .+ f l ) x ( * f t )  = b x ( * , t )  
may be thought  of  as an observation  equation  for 
the X-part  of the  system. We say t h a t   t h e  X-part 
of ( 2 8 )  with  the above observation  equation is ob- 
se rvab le   i f  X integer  s 2 0 and a  constant 
0 < b < such tha t  

s 
(x ,  F*iG Fix) ,bl!x112 V-x E X. 

Since q ( T )  2 c > 0 the  X-part of  the  system 

i = O  

is observable. Now assume tha t  a ( k + l )  = @a(k) + 

hu(k) is s tab i l izab le  and  CO*kQ@k > 0 for  some s. 
S 

k=C 



I t then  fol lows from the resul t s   o f  Hager and  Horo- 
yitz  [22],  on the  aeymptotic  behavior of Discrete 
Riccati   Operator  Equations,   that   the  result ing  f i l-  
ter is asymptotically stable. For the  appropriate 
concepts of f i l t e r   s t a b i l i t y  see the  forthcoming 
paper by Vinter I231. 

Appendix A 
The  Two-Dimensional Wiener Process 

I n   t h i s  appendix, we discuss  the tuo-dimen- 

E [ 8 ( T , t ) ~ ( s I U ) l  - W * min(T,s) * min(t,U) 

sional Wiener process,  with  covariance: 

(A-1) 

Note that,   formally,   the mixed double p a r t i a l  de- 
r iva t ive  of this  process w i l l  have the  covariance 
of  a  two-dimensional  white  noise,because,  formally: 

(A-3) 
We s h a l l   f i r s t  show the  existence of  a  (Gaussian) 
random process  with  the  covariance  in Eq. (A-1).  
We then  shall   give meaning t o  a  two-dimensional 
Wiener in tegra l  (where  f E L2 ( [0,-) X [O, ") ) ) : 

(A-4) 

Finally,  we s h a l l  show t ha t   t he  model we have  given 
for  gyroscopic  noise  in Eq. (18) : 

in   fact   y ie lds   the  desired power spectral   densi ty  
(Eq. 20) : 

2 1 
Sgg(f) = (Xn(T2/Tl) 2 ~ f  

- .  

(A-6) 

Further  details  concerning  the  multiparameter Wie- 
ner  process and Wiener integral   are  discussed by 
Park [ I .  

We f i r s t  show the  existence  of  the two-dimen- 
sional Wiener process. The argument closely  par- 
a l l e l s   t h a t  of J.M.C. Clark [171. Choose two s e t s  
of complete  orthonormal  functions i n  LZ ( [Q, -1 : 
(where < . , a >  is scalar  product  notation) 

f- 

(A-7) 

= 1;; ; i4, 2, ... (A-8) 

(Note tha t  {$,(t) 1 and {Jli(T) 1 may be the  same 
set of  functions.)  Next,  define  a  sequence  of 
doubly-indexed  Gaussian random variables: 

where 6,- is the  Kronecker delta  function,  defined 

We now define  a  sequence  of random processes 
{BN(r,t)  1. Each  random process is a  function  of 
two variables ,  (T) and (t). The def in i t ion  is 
given by: 

Fix (T) and (t) . We claim that {BN(Trt) 1 is a 
quadratic mean Cauchy convergent  sequence  of ran- 
dom variables. Observe that:   (say M > N) 

By Eq. (A-9) , we obtain: 

(A-1'3) 
Define the  following  function: 

(A-14) 

We may now express Eq.  (A-13 i n  dot  product  nota- 
t ion : 

E [ ( B M ( T l t ) - B N ( T , t ) ) ' 1  - 
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By the orthononnality  of  the  sequences {$ (y) 1 and 
{$j (1) 1 we have t h a t  each  factor on the   r i gh t  of 
Eq.  (A-15) approaches  zero  as N + W .  Thus 
{BN(T,t)) is  a quadratic mean  Cauchy convergent 
sequence  of random variables.  Call  the limit 
B ( T , t ) .  We now demonstrate  that  B ( T , t )  has  covari- 
ance as i n  Eq. (A-1)  : 

1 

We have thus  es tabl ished  the  exis tence of the two- 
dimensional Wiener process. 

We now wish t o   d e f i n e  a two-dimensional Wiener 
integral .  We f i r s t  develop  an  analog  of the 
“Orthogonal  increment”  property  of Brownian motion. 
For a Brownian motion, p ( t ) ,  it is well known (17) 
tha t :  
(A ( *  ) denotes  length) 

E t ( p ( t ) - p ( s ) )   ( p ( q ) - p ( r ) ) l = ~ . X ( t s , t )   n t r , q ) )  
(A-18)  

Define the following  function,  over a box ( [ T L , T ~ )  
x [ t l l t 2 ) )   i n  the f i r s t  quadrant  (no  generality is 
l o s t  by defining our process  for T 2 0, t 2 0 )  of 
the ~2 plane: 

Note, incidental ly ,  that  i f  a determinis t ic  func- 
t i o n   q ( T , t )  E C2 had its mixed double p a r t i a l  de- 
rava t ive   in tegra ted   over   th i s  domain, we would 
obtain:  

- q h 1 , t 2 )  + 9 ( T l , t l )  (A-20) 

This  can  be  taken as motivation  for Eq. (A-19). I t  
is easily  seen,  using  only Eq.  (A-17) tha t :  ( A ( . )  
denotes  area) 

(A-21) 

Equation (A-21)  i s  the   ana log   to  Eq. ( A - 1 8 ) .  Using 
this property, w e  proceed, bs Wong (17) does f o r  a 
one-dimensional  orthogonal  increment  process, t o  
def ine  the two-dimensional Wiener integral .  

(1) I f  f = I [a l ,a2)x[b l ,b2) ,   the   ind ica tor  func- 

t ion  of   the  rectangle   Ia l ,a2)xtb  ,b  1, we set:: 
1 2  

f(T,t)dB(T,t)=F(al,a2,bl,b2) (A-22) 

we set: 

*(T, t )dB(T, t )  (A-23) 

The c lass   o f   func t ions   f (T , t )   for  which t h i s  
is possible is L2([O,m)x[O,m)). In   addi t ion,   as  
i n   t h e  one-dimensional  case i n  Wong ( I s ) ,  we f ind 
tha t :  

(A-24) 

We s h a l l  make use of Eq.  (A-24) in  showing 
t h a t  our model for  gyroscopic  noise (Eq. (A-5) 
yields   the  desired power spectral   densi ty  (Eq. 
(A-6)). From  Eq.  (A-5) we have t h a t   ( f o r  CY 2 0 )  : 

The process v(T,O) is an i n i t i a l  “T-axis-scaled“ 
Brownian motion characterized by (analog  of Eq. 
(A.24) i n  one  dimension (18) : 
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Also, we have that B(T,s) (T 2 0, s > 0) i s  inde- 
pendent  of p(T,O) ('I 0 ) .  Thus we obtain from 
Eq.  (A-25) that :  

(A-27) 
In tegra te   in  Eq.  (A-27) t o   o b t a i n  

= e  

Let t + to i n  Eq.  (A-28) ,to obtain a stationary  ran- 
d o m  process  characterized by: 

A Fourier   t ransom of Eq. (A-29) yields:  

Subst i tut ing Eq. (4)  into Eq.  (A-30) and using a 
normalization (W = ~ R ~ ( T ~ / T ~ ) )  to   g ive  s ( f )   u n i t  
variance, we obtain: gg 

r -l 

(A-31) 
Equation (A-31) is t h e  power spec t ra l   dens i ty   for  
gyroscopic  noise which we had i n  Eq. (20).  Inci-  
dentally,   note  that   our  discussion  of  the two- 
dimensional Wiener process and  two-dimensional 
Wiener in tegra l  can easily  be  extended t o  (n)  di- 
mensions. 
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Figures 

I. Linearized power spectral   densi ty   of  first- 
order Markov process 

simulated random walk. The lowest frequency 
sample (aside from the  sample at  0 correspond- 
i n g   t o   t h e  mean) of the power spectral   densi ty  
is a t  ( f  = l / T ) ,  where T is the  record length 
used for   analysis .  The highest  frequency sam- 
ple  is  a't ( f  1/2Ts),  where T, is the  sample 
time. 

t 

3. The observed  form  of gyro noise power spec t ra l  
density. 
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2 .  Linearized power spectral   density  of computer- 
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6. $(t) vs. ti log-log  scale. 
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7. Power spectral density of gyroscopic noise 
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