FP4 - 3:00

EXACT SOLUTION TO LYAPUNOV'S EQUATION USING ALGEBRAIC METHODS

T.E. Djaferis and S.K. Mitter

Department of Electrical Engineering and Computer Science

and

Electronic Systems Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Abstract

Let A'P + PA = -Q be a Lyapunov equation with
A being a stability matrix and both A and Q
matrices with rational entries. Multiplying A and
Q by a suitable positive integer an equivalent Lya-
punov equation AiP+ PRy = -Q; is obtained, with Ay
and Q; having integer entries. Let I{x,y) be the
ring of polynomials in x and y over the integers
I, and E be the set of all sguare matrices with
integer entries. The solution P to this equation
is given by:

Pu = (emn) = fAl(qu(x,y), Ql)

1
P== R
u

where: qu(x,y) € I(x,y) and u € I
£ :I(x,y) X E + E defined as fA(h(x,y),M)
1

- 03 geak
= j;}:c hjk(Al) M Al

which is a finite sum.

The calculation of u and (x,y) requires
finding the characteristic polynomial of A;, as
well as using the Euclidean Algorithm, computations
which lead to polynomial coefficient growth. 1In
order to eliminate the space consuming manipulation
of large integers in intermediate steps, modular
arithmetic is used to obtain the matrix p.Pu =

i
(emn modpi) anq Piu =u modpi with p; a prime, for
a sufficient number of primes. The Chinese Remain-
der Theorem is then applied to obtain the solution
P.

The algorithm has been programmed on MACSYMA
which is a very suitable computer programming
system for all the numerical computations involved.

Numerical results as well as extensions to
solving the Algebraic Riccati Equation are
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presented.

1. Introduction

In the past fifteen years or so there has
been impressive progress in the theoretical under-
standing of the structure, representation and
control of linear multivariable systems. In con-
trast, workers in the field have paid very little
attention to the computational aspects of systems
problems. This does not mean that algorithms for
the solution of systems problems have not been
developed. But most of the algorithms that have
been proposed have never been seriously studied
as far as stability, convergence and similar
issues are concerned. Even the LQG problem, bul-
wark of the so-called "modern control theory",
seems to be little understood from the computa-
tional point of view.

In this paper we undertake a study of solu-
tion methods for Lyapunov's equation

PA + A'P = =Q (1.1)

using the methods of modern algebra. The emphasis
is on the use of finite algebraic procedures which
are easily implemented on a digital computer and
which lead to an explicit solution to the problem.

It is well known that this is an important
equation in the study of stability of linear
finite dimensional time-invariant systems. If Q
is symmetric and positive definite and if A is a
stability matrix (real parts of eigenvalues of A
strictly negative) then the unique solution to
(1.1) is given by the convergent integral

(=]
1
G = f Pty Pt g (1.2)
o

(cf. BROCKETT).

However, the solution requires the evaluation
of an integral over an infinite time interval.

The need for solving this equation also arisges
when one uses Newton's Method to solve the Alge-
braic Riccati equation

(a-BR™* 1

B'P) = -C'C-PBR 'B'P

(1.3)

B'P)'P + P(A-BR

where R is positive definite.

If (A,B) is stabilizable and (A,C) observable,
then there exists a unique positive definite solu-
tion P to (l1.3).

Now let Po be a symmetric matrix such that
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(A—BR-lB'P ) is a stability matrix, and consider

the Lyapunov equation

(A—BR-lB'PO)'P + P(A-BR-lB‘PO) =

[ gt
- C'C - POBR B PO (1.4)

It is well known that under our hypotheses this
equation has a unique positive definite solution
P.. Replace Py by P, in (1.4) and continue the
process. It is known (cf. KLEINMAN (1], [2]) that
this is a convergent process. The main computa-
tion here is therefore the solution of (1l.4).

This paper is based on an important paper
by KALMAN. Kalman's concern was the characteriza-
tion of polynomials whose zeroes lie in certain
algebraic domains (and the unification of the
ideas of Hermite and Lyapunov). In this paper,
we show that the same ideas lead to finite algor-
ithms for the solution of Lyapunov's equation.

This paper is divided into four sections. In
section two we present constructive algebraic
proofs of two theorems related to a linear matrix
equation. This section provides the basis for
section 3 where the computational algorithms are
presented. In section 4 we present a numerical
example.

This is a preliminary report on this work.
At the conference we hope to present extensive
numerical results.

2. Algebraic Proofs of Two Theorems Related
to a Linear Matrix System

In this section we present constructive
algebraic proofs for the following two theorems.

Theorem 2.1. Let A be an n*n square matrix over
the reals. A is a stability matrix if and only
if for anysymmetric positive definite matrix Q
there exists a unique symmetric positive definite
solution P to the matrix egquation

PA + A'P = -Q, (2.1)

Theorem 2.2. Let A be an nXn square matrix over
the reals. If A is a stability matrix and (A,C)
is an observable pair then the matrix equation

PA + A'P = =C'C  (C is pxn) (2.2)

has a unique symmetric positive definite solution
P.

Before proceeding with the proofs we shall
introduce the algebraic framework in which we work.

Let Rix] be the ring of polynomials in x
over the field R of real numbers, and R[x,y] be
the ring in x and y over R. If p{(x,y) is any
element of Rix,y] we can write it as:

L (y)c(p)L(x) = p(x,y)
where 2£(z) is the column vector 1, z, ...zn_l, n
is one plus the largest power of p(x,y) in either
x or y and C(p) is an nxn matrix over R. This
introduces a bijection between R([x,y] and M the
set of all square matrices. This (cf. KALMAN)
motivates the

Definition 2.1. A polynomial p(x,y) in R(x,y] is
positive if and only if C(p) is i) symmetric
and ii) positive definite.

Let ¢ denote the ideal (d(x), ¢(y)) in
Rix,y]l. Let [g(x,y)] denote the elements of the
quotient ring R([x,y]/¢. We shall denote by pmodd
the polynomial of minimal degree in the equiva-
lence class [pl.

The following two lemmata can be established
(cf. KALMAN).

Lemma 2.1 The polynomial p(x,y) in Rix,y] is posi-
tive if and only if there exist polynomials

Ty oMgeeee (m = size (C(p)) such that
m
Plx,y) = 2 T (T, (y)
i=1

where {T,(x)} are a basis for (the vector space
over R “of) polynomials of degree less than m.

Lemma 2.2 Let n be the degree of ¢(x). If pmod®
is positive. of degree n-l in both x and y then
o(x}o(y)pix,y)mod® is positive if and only if
o(x) and ¢(x) are relatively prime.

Let fA:R[x,y] x M > M be the action (cf.

KALMAN) defined in the following manner
£,e,y) W = 3 b @0 (2.3
ok ?

We list here explicitly some properties of this
map:

i) fA(u,M) = uM (u a unit in Rix,y])
i) £ (glx,y) + hix,y), M) = £ (g(x,y}, M)
+ fA(h(x,y), M)
iii) fA(g(x,y)-h(x,y),M)=fA(g(x,y),fA(h(s:Y),M))
=fA(h(x,y),fA(g(x,y),M))

iv) Let g(x) = det(Ix-A) and H=(g(x),g(y))
fA(h(x,y). M) = £, (gmodH, M).

Suppose that A is an nXn stability matrix
with characteristic polynomial ¢,(x) = det(Ix-3a).
Define ¢l(x) and P¢(x,y) in the following manner.

8 (%) = ¢, (-x) (2.4)

¢2(x)¢2(y)-¢l(x)¢l(y)

P¢(x,y) = Py (2.5)

It can be shown that Ps{Xx,y) is an element of
Rx,y] of degree n-1 in both x and y, and that it
is positive. Since ¢l(x), ¢, (x) are relatively
prime there exist polynomials T, Au such that
Tu(X)¢1(X) + Xu(x)¢2(x) = u (; a unit in
[X,yl)
(2.6)

This implies (Lemma 2.2) that
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qu(x.y) = Tu(x)Tu(y)P¢(x,y)mod0 (2.7

is positive.
Using the above we have:

(X+y)'Tu(x)Tu(y)P¢(x,y)

T, (0T (y) [0, (%) 6, (x)=0, ()6, (7))

+T(X)T (¥) ¢, (x) &, (y)

-Tu(x)'ru(y) ¢, (x) ¢1 (y)

(T (T () = A, O (1))8,(x) 6, (y)

+uku(x)¢2(x) + uku(y)¢2(y) - u2

which implies that:
(xeby) T (0T, (1) Po(x,y)Imodl = -u”  (2.8)
- wnl.
fA((x+y)-Tu(x)Tu(y)P¢(x,Y),G) = -u"eG (2.9)

using property iv) of the action for any nxn matrix
G.

We have now developed all the necessary
structure to prove Theorems 2.1 and 2,2.

Proof of Theorem 2.1. Suppose that A is a sta-
bility matrix. We claim that

1
P = ;5 fA(qu(x,y), Q)

is the unique solution of PA + A'P = -Q. Using the
apove mentioned properties of the action:
1 . ',
:—5 [fA(qu(x,y), Q) A + A'-£, (q (x,y) ,Q)]
)
= uz- £, (% £, (q (x,¥),Q))

+ fA (y, fA(qu(x; ¥),Q) )]

=33 | £ lxty), £y (q (xy), Q))]

fA((x+y)qu(x,y).Q{]

.

[fA (et q, GxrpImoady , @ )]

L'“Z'Q] -

ENIP r:wir- ::NP—- :Nt—-

Uniqueness follows by observing that the
2 2
linear operator L:R" + R®™ defined by

L(P) = PA + A'P

is onto since no restriction was placed on Q. This
implies that I is one-one.
We now show that P is positive definite.

Since q,{x,y) is positive this implies that
{Lemma 2.2)

u
%mw-znﬁmgw
i=]
where {ﬂi} are a basis.
Therefore

1
P = :2' fA(qu(pr) r Q)

n
- 37 fA<Z mLOOm (y), Q>
u i=1
1 ¢ '
=23 3 M AT ().
u i=l

P is symmetric and since Q > 0, it must at least
be positive semidefinite. Suppose that there
exists an n-vector z#0 such that z'Pz = 0,

This implies that T (A).z = 0 for all
1 <4i<n. The polynomials my,Ty,...T, form a
basis for the vector space of polynomials of
degree less than n. Therefore there exist con-
stant kj,k3...k, such that

u

El kT (%) = 1

u

D k.M (%), I}=1I (I n*n identity)
i+

oo

u
=) kT A =1

i=1

u
=2, KT () ez =1z
i=m]

Since ﬂi(A)-z = O for all i the l.h.s. of the
above equality is zero. This is a contradiction
since for z0, Iz¥0.

Therefore P is positive definite.

Suppose now that for each symmetric positive
definite matrix Q there exists a symmetric posi-
tive definite solution P of (2.1).

Let z be some eigenvector corresponding to
the eigenvalue A.

-;'-Qz <0 (z denotes complex conjugate)
D z' (PAHA'P)z < O

DD z'phz + X 2Pz < 0

(A + %) zPz<0

Since P > O this implies that A + A < 0, i.e.
that Re(A) < 0. Therefore A is stable.

Proof of Theorem 2.2. Suppose that A is a sta-
bility matrix. This implies that

qu(x,y) = Tu(x)Tu(y)P¢(x,y)mod¢
is positive.By lemma 2.2 qu(x,y) can be written as:
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n

q, (*ey) = i=21 T T (y)

where {7,} is a basis. Following the proof of
Theorem 2.1 the solution P of (2.2) exists and can
be written as:

p=ist

5 £, (g Gy, C'O)

[

1 I
=35 ) T (a)-clc M (a)
u i=1

Since C'C > O we have

z2'm (A').c'-Com, @A)z = |em aiz]] > 0

for all 1 £ i < n. This means that P > 0. Suppose
now that there exists z#0 such that z'.P-z = 0,
This implies that we must have

HC"Ti(A)-zH =0 forl<ic<n

=em(a)z=0 for 1 < i < n.

Since {“i} are a basis there exists an nXn matrix K
such that:

p - - 1
ﬂl(x) 1
ﬂz(x) x

K- B =
n-1l
Kl i

The above represents n equations of the form
i-1

kilﬂl(x) + kizwz(x)... + kinwn(x) = X ,
1<i<n
with (k,.s ... k, ) being the i™Prow of K
i1’ in *

i-1
fA(kilﬂl(x) + eee. + kinﬂn(x), C) = C-A

l1<i<n

& i-1
=3 kT (A) = CoA
R M

l1<i<n

Define the operator H:R" + R™P by:

i )
[od
Ca
H(w) = . w
CAn—l

Since (A,C) is an observable pair the null space
of B is {0}.

Since C-T;(A)2z= 0 1 < i< n this implies

that

n

> x,.Com.(A)z=0 foralll<i<n
b RS R - =

DH(z) = 0.

This is a contradiction since 2z#0 and the null
space of H is {0}.

3. Computational Algorithm

The proof of Theorem 2.1 is constructive and
purely algebraic. It therefore gives great
insight into how a computational algorithm should
be constructed, for obtaining the solution P of an
equation of the form

(2.10)

where A is a stability matrix. The algorithm so
<onstructed, basically involves obtaining ¢, (x)
the characteristic polynomial of A. Using the
Extended Euclidean algorithm a polynomial T, as
in {2.6) can be obtained. With these polynomials
P¢(x,y), qu(x,y) and the solution P are formed.

By restricting the field of interest R, to
that of the rational numbers F, the procedure for
obtaining the exact solution of (2.10) is fully
implementable, using the remarkable facilities
provided by the computer programming system
MACSYMA available at M.I.T.

Three algorithms are presented here, the
Rational, Integer and Modular, which are based on
the constructive proof of Theorem 1.

MACSYMA (Project MAC's SYmbolic MAnipulation
System) is a large computer programming system
used for performing symbolic as well as numerical
mathematical computations. This would easily
allow us to make parametric studies.

We now describe the algorithms.

PA + A'P = =0

The Rational Algorithm

This algorithm is a mere implementation of
the steps outlined in the proof of Theorem 2.1.

Rl) Obtain ¢2, the characteristic polynomial of a.
d2(x)92(y) - ¢y (x)d; (v)
X +y

Rz) Set P¢(x,y) =

R3) Using the Extended Euclidean Algorithm obtain
T and u.
u
R4) Set qu(x,y) = Tu(x)Tu(y)P¢(x,y)mod¢
R;) Form P, = fA(qu(x,y), Q)

1
R6) Set P = :5 . Pu

The Integer Algorithm

Multiplying A and Q by a suitable positive
integer an equivalent Lyapunov equation
' = - 1
AP = PA, = -Q, (3.1}
is obtained with R,, Q, having integer entries.
Suppose that ¢3(x)” is the characteristic poly~
nomial of Al in x. It is clear that ¢§(x) has
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integer coefficients and therefore it is an element
of Z[x,y] (the ring of polynomials in x and y with
integer coefficients).

Let

¢i(x) = ¢é(-x)
05 ()05 (y) —¢'l (x)9] (y)

pragy (3.2)

Pé(x,y) =

It can be shown that P'(x,y) € Z[x,y], as well as
the fact that there exist polynomials T&(x) Ay (x)
elements of Z[x,y] and u' an integer such that

T&(X)¢i(x) +A&(x)¢é(x) =y (3.3)

Since the leading coefficient of ¢5 is unity,
division is possible and with ¢' the ideal (¢5(x),
¢5(y)) in 2[x,y] we have

t - 1 A 1 1]
Qi) = TLOOT (V) BL(x,y) modd (3.4)
being an element of Z{x,y]. Consequently
* 1 3 : .
Pu = fAl(qu(x,y), Ql) has integer entries with the
solution now being expressed as:
1

. P, (3.5)
(u')2

u

P =

In (3.3) it is required that polynomials T&(x),

AL(x) and integer u' be found such that (3.3) is

satisfied. Existence can be shown in this manner.
Let ¢4(x) = det(Ix-A;) = agx® + a;xP~1 + ...

..+an. Define S to be the n-dimensional matrix

0 e 0
( a; a, 0 0 0 T
a3 a2 al ao 0 0 oo 0
S = a5 a4 a3 a2 al ao . e 0
| %2n-1 %2n-2 " n ]
where ay = 0 for k > n and a, = 1. Since ¢é(x) is

a stability polynomial S is positive definite (cf.

BROCKETT). Since det3 > 0 it can be shown that

for each allowable integer value of u' there exist

unique polynomials T{(x}, A} (x) of degree less than
n such that

T&(X)¢i(X) + A;(x)¢é(x) =u

If T'(x) = & v ax"2 4 ... +d then
u 1 2 n
Mni.u'
= —— < i <
4 = Zdets 1iicgn

where M . = det S_,, with S_. the matrix obtained
ni ni ni

from S by deleting the nth row and ith
column.,

By letting u' = ke¢(2detS), k an integer greater
than zero we have u' € Z and T& e zlx,yl.

The algorithm proceeds as follows.

Il) Obtain Al, Ql'
I,) Find ¢é the characteristic polynomial of A
¢é(x)¢i(y)-¢i(x)¢i(y)

X +y

1°

I,) Set P&(x,y) =

I,) Find T& and u'.
I_) Set q&(x,y) = T&(x)T&(y)P$(x,y)mod¢'
16) Pt = fAl (q&(x,y),Ql)

1 *
« P
(u')2 u

I.) Set P =

Doing all calculations in integer arithmetic may
save time since greatest common divisor computa-
tions will not be performed in intermediate steps.

The Modular Algorithm

The Integer algorithm paves the way for a
modular approach to the solution.

Suppose p is a prime that does not divide
2 dets. 1If A, = (aij) and 9, = (qij)

1
let pA e (aijmodp), PQ = (qijmodp), both pA and

2 being matrices with elements in 2., the field
of integers modulo p. Let Zp[x,y] be the ring
of polynomials in x and y over Z

Let P’
=4d - ’ ’
p¢2(x) et (Ix pA) Pd)z(x) € Zp[x yl
and
pd>1(x) = P<i>2(—x)

It can easily be shown that:

P¢2(x) = ¢5(x) modp
p¢1(x) = ¢ (x) modp

(the notation ¢é(x)modp means reduce each coeffi-
cient of ¢é(x) modulo p, considering the derived
polynomial as an element of Zp{x,y]). Let

p¢2(x)P¢2(y) - P¢l(x)p¢l(y)
X+ vy

PP¢(X’Y) =

(x+y being thought of as an element of Zp[x,y]

pP¢(x,y) is an element of Zp[x,y].)

It follows that there exist polynomials Tu(x),
A (x) and u e 2_ such that p
pu P b

pTu(x)P¢l(x) + PAu(x)pd)z(X) = Pu

. 1
where: pTu(x) Tu(x)modp

P)\u(x) k&(x)modp

u = u'modp

Let p¢ be the ideal (pdnz(x) , p¢2 (y)) in zp[x,y] and
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qu(x,y) PTu(X)pTu(y)pP¢(x,y)mod¢

P

=00t epof toegX tep Xt

n-1 yn-l

* ®n-1) (-1 ¥

we have that

pqu(x,y) = q&(x,y)modp.

Let . )
P = e, (ANK: 9-( n)3
pu ;g% kg BT

with all operations done modulo p.
If PE = (gij) in {(3.5), then

pPu = (gij modp) .

Now if P
pu p
number of primes, the Chinese Remainder Theorem can
be used to find P*, and u' making it possible to
obtain the solution

1
(u')2

u are obtained for a sufficient

P =

+ Px
u

Since considerable coefficient growth takes
place in intermediate computations of the Integex
algorithm it may be advantageous to implement the
modular algorithm.

M;) Obtain A .
1 P o~

M.) Let = det(Ix - A)
p¢2 2

2
b (x) ¢ (y) = o (x) . (y)
P2 'p2 pl 7 p'1
M3) Set pP¢(x,y) = g
M4) Obtain pTu pu.
M) set Pqu(x,y) = PTu(x)PTu(y)PP¢(x,y)modp<I>

M) Obtain P .
pu

M_) Repeat steps 1-6 for a sufficient number of
primes and by use of the Chinese Remainder
Theorem find P;, u'.

M,) Set P = r . p*

(u')2 v

6. Numerical Results
All three algorithms have been programmed on

MACSYMA, The example shown here corresponds to the
evaluation of

(=]
G = Jﬂ x'(t)-Q-x(t) ét
0
where x(t) is a solution of

x(t) = A x(8)  x(0) =¢C *)

The system modeled by (*) is given below:

%4%_é4m}~#m_34ﬁpnﬁ__54vpn§__é4mp4§__§4mkaﬁéE

The A matrix of the system is given by:

o M 0o 0 o 0 0 0 0 0]
“2kK-20 K Z 0 0 0 0 0 0
© 0 0 M 0 0 0 0 0 0
K £ -2k-2 K [ 0 0O 0 0
1 l0o o 0o 0 o m 0o 0o 0o o
M'lo O K [ -2k-2L K § O 0
©o 0o © 0 0 0 0 M O 0
0 0 0 0 K [ -2kK-20 K L
o 0 0 0 0 0 0 0 0 M

0O 0 0 0 0 0 K g =-2K-2C

The example shown is run with K = 10,000, M=1,
C=1.

The Q matrix is given by:

O o O O O O O O O O
o O O O O O O O - O
o O 0O O O O 0o O O O
o O O O O O B O O O
OO 0O 0O O O 0O o O O O
O O O O FH O O O O O
o 0O O O O O O O O O
o O +H O O O O O O o
o O O O O O o o o ©°O
r O O O O O O O O O

—

The solution to the equation PA + A'P = -Q is:

5000 0 0 ©o o0 0 0 0 o0 0
5 1 1 1 1
° 1z ©° 3 7 ° § ° 13
O o0 500 0 0 0 0 O 0 0
1 2 1 1 1
c 3 0o 3 0 5 0 3 0 ¢
© o0 0 0 50000 0 0 0 O
1 1 3 1 1
0 Z 0 E 0 I 0 5 0 2
6 o0 0 0 0 0 5000 0 0
1 1 1 2 1
0 g 0 3 0 z 0 3 0 3
o o o0 O 0 O 0 © 50000
1 1 1 1 5
Lo iz °® ® ¢ 3 ° 3 0 12_J

By appropriately choosing the values K,M,L the
system can be made ill-conditioned.
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Preliminary tests on the algorithms show that
the Integer algorithm performs the fastest, but
that it requires much more storage than the Modular
algorithm.

Since the solution P is exact it is quite
possible that its elements which are rational
numbers may have large numerators and denomina-
tors. But in a physical situation only a limited
number of digit accuracy is required. Since the
exact solution is available it is presently under
investigation whether a scheme can be devised that
would guarantee an arbitrary digit accuracy of an
approximate solution.

7. Generalizations
Using the same algebraic framework the solu-
tion of the matrix equation
PA + BP =C

can also be obtained in the case when A and B are
two arbitrary n*n stability matrices. In this case
let ¥ be the ideal ($,(x), Vy(y¥)) in Rix,y) where
dy(x), wZ(Y),¢1(Y), Y1 {y) are defined as:

¢2(x) = det(Ix - A)

det(Iy - B)

w2<y>
¢1(x)

¢, (=x)
Y (y) = Y, (-y)

where ¢“(x)¢2(y) - ¢1(y)w1(x)
P¢ w(xly) = =

XxX+y

It can be shown that there exist polynomials Au(x),
Uu(x), A"J(X), U;(x) such that:

u ua unit in

R[le]

A“(x)wl(x) + uu(x)¢2(x)

A{‘(x)wz(x) + u&(x)¢l(x) u

Let
q;(x,y) = -lu(x)-u&(y)P¢w(x,y)modY

Define a new action fAB:R[x,y] xM>M by

j k
f,5l90x,y),M) = jz;, gjk(B)J'M'(A)

where g= 2: g. xkyJ
w

The solution P of equation PA + BP = C is
then given by:

1 L]
P = ;—2' fAB(qu(x'Y) /C).
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