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Abstract

Survey of currently available theory for
systems the evolution of which can be described
by semigroups of operators of class C,. Connec-
tion between the concepts of stabilizability and
detectability and the problem of existence and
uniqueness of solutions to the operator Riccati
equation. Examples and open problems.

1. Introduction.

For systems described by ordinary differential
equations the infinite-time quadratic cost problem
is well-studied (cf. R, BROCKETT [1], R.E. KALMAN
[1],[2], J.C. WILLEMS [1], W.M. WONHAM [1]). This
problem has been studied for certain classes of in-
finite-dimensional systems. J.L. LIONS [1] has
studied this problem for abstract evolution equa-
tions of parabolic type and given a complete solu-
tion to the problem. LUKES-RUSSELL [1] have studied
this problem for abstract evolution equations of the

type

(1) & = Ax + Bu, x(0) = x, € D(A),

where A is an unbounded spectral operator (cf.
DUNFORD-SCHWARTZ [1]) and B is also an unbounded
operator satisfying certain conditions. LUKES-
RUSSELL [1] also allow unbounded operators in the
cost function. Using an approach originally due to
R.E. KALMAN [2] they obtain an operational differen-
tial equation of Riccati type to characterize the
time-varying feedback gain in the finite time case.
They also show that under an appropriate stabiliza-
bility hypothesis the solution to the infinite-time
quadratic cost problem can be obtained in feedback
form, where the "feedback gain'" is characterized by
the solution of an operator equation of quadratic
type. The same problem has also been studied by R.
DATKO [5]. Unfortumnately R. DATKO [5] does not
characterize the solution as a feedback controller
acting on the 'state' of the system.

The objective of this paper is to survey avail-
able results for a special class of infinite dimen-
sional control systems the evolution of which is
characterized by a semi-group of operators of class

CO' The approach we use here is different from that
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of LUKES-RUSSELL [1] as well as R. DATKO [3] and
constitutes a synthesis of the work of J.L. LIONS
[1] and DELFOUR-McCALLA-MITTER [1]. Complete re-
sults and detailled argument are to be found in a
forthcoming monograph (cf. BENSOUSSAN-DELFOUR-
MITTER [1]). Our results also make use of the work
of R, DATKO [2] on Stability Theory in Hilbert
spaces and J. ZABCZYK [1] on the concept of de-
tectability in Hilbert spaces. In doing this, we
insist on an approach which clarifies the system-
theoretic relationship between controllability,
stabilizability, stability and existence of a so-
lution of an associated operator equation of
Riceati type.

This theory covers certain classes of distrib-
uted controls; it also covers hereditary systems
which can be looked as distributed parameter sys-
tem with boundary control. At this time, it does
not seem possible to systematically deal with
boundary control problems. However, in a different
framework, results are now available (c¢f, D.L.
RUSSELL [6]).

Notation

Let X and Y be two real Hilbert spaces with
norms | |y and | ly and inner product ( , Jx and
( » )y. The space of all continuous linear maps
T :X = Y endowed with the natural norm

ITI = sup{ITx|y : Ixly < 1}

will be denoted £(X,Y). When X=Y we shall use the
notation £(X). The transposed operator of T in
L(X,Y) is an element of L(Y',X") which will be
denoted T*, where X' and Y' are the topological
dual of X and Y. T in £(X} is self-adjoint if
T*=T; a self-adjoint operator T is positive, T 2 0,
if for all x in X (x,Tx) = 0.

2. Preliminaries and problem formulation,

Let X, U and Y be real Hilbert spaces. Let B
be an element of L(U,X) and let A be an unbounded
closed operator on X with domain D(A). We assume
that A is the infinitesimal generator of a strongly
continuous semi-group {S(t) :t 2 0} of class Cgp.

We denote by D(A) the domain of A endowed with the
graph norm

2

W2 = il

(2.1) + {Avl;.

We write i: V = X the continuous dense injection of
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V into X. We also introduce the topological duals
V' and X' of V and X, respectively. We identify
elements of X and X' and denote by i* the adjoint
map of i:

. .
(2.2) vais xzxt IS oy,

We now consider the system

(2.3) % = Ax + BV in [0,»[, x(0) = x; €V
or more generally

t
(2.4) x(t) = 8(0)xy + | S(t-s)Bv(s)ds.

0

Equation (2.4) can be looked at as a ''weak solution'

of equation (2.3) and any solution of (2.3) will be
of the form (2.4).

We associate with the control function v and
the trajectory x the cost function

(2.5) J(v,x) = [ [Hx(©)] + (W (), v(8))ldt,
0

where H and N belong to £(X,Y) and £(U), respec~
tively. Moreover there exists a constant ¢ > 0
such that

2
(2.6) Y v, (NV,V)U 2 c!vIU.

Given xo, the optimal control problem consists
in minimizing the cost function (2.5) over all v in

Lloc(orwiu)

2.7 Inf{J(v,x) 1 v € 2

Lloc(O,w;U)}.

3. Asymptotic behaviour and L2-stability.

In order to make sense of problem (2.7), it is
necessary to introduce concepts of stability to
characterize the asymptotic behaviour of solutions
of system (2.3) as the time t goes to infinity.
Consider the uncontrolled system

(3.1) % = Ax in [0,«f, x(0) = X,
with observation
(3.2) y(t) = Hx(t).

Definition 3.1. (i) A is said to be L®-stable
with respect to H if

o«

(3.3) ¥ xp, f IHx(n)1%at < e,
0

(ii) A is said to be LZ-stable if it is L%-stable
with respect to the identity I with Y=X.

(iii) The pair (A,B) is said to be stabilizable
with respect to H if
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(3.4) )
¥ xg, 3 v € L7(0,2;U) such that [Hx(t) 12t < =,
0

(iv) The pair (A,B) is said to be stabilizable if
it is stabilizable with respect to the identity I
with Y=X,

Theorem 3.2, The following statements are equiva-
lent:

(i) A is L2-stab1e with respect to H;
(ii) There exists an element B of £(X) such
that

t
(3.5) ¥ x,y € X, (Bx,y) = lim f(HA(t)x,HA(t)y)Ydt;
to 0

{1ii) There exists a positive self-adjoint ele-
ment D of £(X) such that

(3.6) A*Di + i*DA + i*H*H = 0 in L(V,V').

Proof: Cf. R. DATKO [2}, DELFOUR-McCALLA-MITTER
T], BENSOUSSAN-DELFOUR-MITTER [1]). O

Corollaxy 1., If D in £(X) is a positive self-
adjoint solution of (3.6), then D = B. Moreover
for all x in X, the map t -+ (A(t)x,DA(t)x) is a

monotonically decreasing function of t and for all
x and y in X

(3.7) lim (A(t)x,DA(t)y) = (x,Dy}-(x,By). M@

0

Corollary 2. Any of the statements in Theorem 3.2
implies that

¥ x € V, lim HS(t)x = 0, and,
treo
(3.8)
¥ x€X, lim BS(t)x = 0. O

T
The above results_are specialized in the
following theorem on L“-stability.

Theorem 3.3. The following statements are equiva-
lent.

(1) A is LZ-stable;
(ii) There exists an element B of £(X) such
that

t
(3.9) ¥ x,y € X, (Bx,y) = lim [(S(t)x,5(t)y)dt;
toe O

(iii) There exists a positive self-adjoint
element D of £(X) such that

(3.10) A*Di + i*DA + i*i = 0 in L(V,V');

.(iv) The ?ype @y of the semi-group A(t) is
strictly negative;
(v) There exist u < 0 and M = 1 such that
for all xin Xand t 2 0

(3.11) [S(t)x] s M exp(ut) Ix]|.



{vi) 1lim S(t) = 0 in £(X). O
te

4. The optimal control problem in [0,=(

In order to make sense of problem (2.7) we
must check, that for each xg there exists at least
one v in Lzoc(o,w;u) such that the cost J(v,x5) be
finite. Tﬁls is precisely the stabilizability of
the pair (A,B) with respect to H.

Theorem 4.1. Let (A,B) be stabilizable with re-
spect to H, then there exists a unique control
function u in L{,.(0,=;U) which minim%zes J(v,sxg)
for a given xq over all elements of L{,.(0,=;U).
Moreover this control function u can be synthesized
via the feedback law

4.1) ut) = -N?

B*lx(t),

where T is a positive self-adjoint element of L(X).
The transformation I of X is also a solution of the
operator Riccati equation

(4.2) A*mi + i*mA + i*[H*H-TRO]i =0, in L(V,V'),

R=B"W 1B, O
In general 1 will not be the unique positive
self-adjoint solution of (4.2) and the closed-loop

szstem

(4.3) % = [A-RU]x, x(0) = x

0
will not be L%-stable.

Nevertheless a sufficient condition is availa-
ble in order to answer those two questions. It
makes use of the classical concept of detectability
as introduced by W.M. WONHAM {1].

Definition 4.,2. The pair (A,H) is said to be de-
tectable if the pair (A+,H*) is stabilizable (K? is
the infinitesimal generator of the adjoint semi-
group {S(t)*} of {S(t)}). O

Remark. We have just seen that when the pair (A,B)
is stabilizable with respect to H, it is_possible
to construct a constant feedback K = -N"“B*T in
£(X,U) in order to stabilize the pair (A,B). Hence
our definition 3.1 (i) is completely equivalent to
the more classical one.

The generalization of the results of W.M.
WONHAM [1] to the infinite dimensional case is due
to J. ZABCZYK [1].

Theorem 4.3. Let the pair (A,B) be stabilizable
with respect to H and let the pair (A,H) be de-
tectable., Then the closed loop system (4.3) is L2-
stable and 1 is the unique positive self-adjoint
solution of equation (4.2). O

Definition 4.4. (i) The pair (A,B) is stabiliz-
able with respect to H if there exists a feedback
K in £(X,U) such that the closed loop system

(4.4) X = (A-BK)x, x(0) = x

0

be L2-stable with respect to H and with respect to
K.
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(1ii) The pair (A,B) is stabilizable if there
exists a feedback K in £ (X,U) such that the closed
loop system (4.4) be Lé-stable, 0O

5. Relationships between controllability
and stabilizability

Assume for a moment that X = ]Rn, o= Rm,

Y = R~ and that the operators A and B are matri-
ces of dimensions nxn and nxm, respectively. This
is the so-called finite dimensional case, where
the concept of controllability is defined and
characterized as follows:

Definition 5.1.

trollable if

(5.1) Vx,€X,37T>0,3ve 120,10

The pair (A,B) is said to be con-

such that x(T;xO,v) = 0,

where x(t;x.,v) is the solution of the differen-
tial equatidn

Iic(t) = Ax(t) + Bv(t), t 20
(5.2)
lx(o) = X5 [}

Theorem 5.2.
lent:

(i) (A,B) controllable;

(ii) Given any spectrum o of a real nxn ma-
trix, there exists an mxn matrix K such that the
spectrum, o(A+BK), of A+BK is exactly o}

(iii) Rank [A,AB,...,An-1B] =n, O

This theorem now says that when the pair
(A,B) is controllable it is necessarily stabiliz-
able by feedback. The converse is obviously not
true.

The following conditions are equiva-

When X, U and Y are infinite dimensional
spaces. Definition 5.1 can be retained, but con-
ditions (ii) and (iii) are difficult to generalize.
However the following straightforward result re-
mains true.

Theorem 5,3. The pair (A,B) is stabilizable if
the pair (A,B) is controllable. O

For the infinite dimensional problem, the
concept of controllability (to the origin) as in-
troduced in Definition 5.1 differs from the con-
cepts of exact or approximate reachability as
studied by H.0. FATTORINI [1} to [3], D.L. RUSSELL
{1] to [5], R. TRIGGIANI [i] to [6] and M. SLEMRGD
[1] to [4]. The last two authors have done an
extensive study of the relationship between the
two concepts of reachability and stabilizability.

6. Examples

We shall give in this section a few examples
for which the general theory developped here may
be applied.



6.1. Second order parabolic systeéms.

This type of problem is studied in full detail
in the book of J.L. LIONS [1]. The reader will
find in this reference numerous examples. Notice
that for such systems the operator A (and hence A*)
is stable. As a result the conditions of stabiliz-
ability and detectability are automatically veri-
fied.

6.2, First order hyperbolic systems.

Such problems have been studied by N. BARDOS
[1] and J.L. LIONS [1]. Under appropriate hypothe-
ses we can make sense of such problems for distrib-
uted controls.

6.3. Boundary control.

In many distributed parameter systems, the con-
control is exerted on the boundary and the previous
framework is not completely appropriate for that
situation. Boundary control problems have been
studied by D.L. RUSSELL [1] to [5], GRAHAM-RUSSELL
(1], R. DELVER {1] and H.0. FATTORINI {1].

In some instances it is possible to reformu-
late the problem in such a way that the boundary
control becomes a distributed control. This can be
achieved by lifting the original problem to a big
enough space that the control become distributed
(¢f. V.P. KHATSKEVICH {11, B. FRIEDMAN [1]).

Another approach has been suggested by A.V.
BALAKRISNAN [2]; it results in a distributed con-
trol problem with respect to the derivative ¥ and
the initial value v(0) of the original boundary
control v. Although our theory does not apply di-
rectly to these systems, similar methods can be
developped (see A.V. BALAKRISNAN [2]).

An interesting example of boundary control is
given by hereditary differential systems (cf.
DELFOUR-MITTER [1]). When we consider the system
in state form this system is controlled through a
differential equation on the boundary. This prob-
lem cannot be dealt with in the present framework
if we choose as state space the continuous function
or a Sobolev_space. However in the product space
M, = R® x L2(-a,0;R™) this problem reduces to a
distributed control problem and the above theory
can be readily applied (cf. DELFOUR-McCALLA-MITTER
[1]1). Detailed result on exact and approximate
reachability and the relationship with stabiliza-
bility are now available (cf. MANITIUS-TRIGGIANI

(1] to [3]).

References

A.V. BALAKRISNAN (1], Introduction to optimization
theory in a Hilbert space, Springer-Verlag,
Berlin, 1971.

[2], Identification and stochastic control of a
class of distributed systems with boundary noise,
in Control theory, Numerical methods and com-
puter systems modelling, A. Bensoussan and J.L.
Lions, eds, pp. 163-178, Springer-Verlag, New
New York 1975.

N. BARDOS [1], Th&se de doctorat d'état, Paris 1969.

749

A, BENSQUSSAN, M.C. DELFOUR and S§.K. MITTER [1],
Representation and control of infinite dimen-
sional systems, monograph to appear.

R.W. BROCKETT [1], Finite dimensional linear sys-
tems, J. Wiley, New York, 1970.

J.P. COMBOT [1], Doctoral dissertation, Purdue
University, Lafayette, Indiana, 1974.

R.F. CURTAINS and A.J. PRITCBARD [1], The infinite-
dimensional Riccati equation, J. Math. Anal,
Appl. 47 (1974), 43-57.

R. DATKO.[1], An extension of a theorem of A.M.
Lyapunov to semi-groups of operators, J. Math,
Anal. Appl. 24 (1968), 290-295.

{2], Extending a theorem of A.M. Lyapunov to
Hilbert space, J. Math. Anal, Appl. 32 (1970},
610-616.

[3], A linear control problem in an abstract
Hilbert space, J. Differential Equations 9
(1971), 346-359.

[4], Uniform asymptotic stability of evolution-
ary processes in a Banach space, SIAM J. Math,
Anal. 3 (1972), 428-445.

[S], Unconstrained control problem with quad-
ratic cost, SIAM J. Control 11 (1973), 32-52.
[6], Neutral autonomous functional equations
with quadratic cost, SIAM J. Control 12 (1974),
70-82,

[7], Some linear nonautonomous control problems
with quadratic cost, J. Differential Equations
21 (1976).

[8], The stabilization of linear functional
differential equations, internal report, 1976,

M.C. DELFOUR [1], Theosy of differential delay sys-
tems in the space M“; stability and the Lyapunov
equation, in Proceedings of the Symposium on
Differential Delay and Punctional Equations:
Control and Stability, Ed. L. Markus, Control
Theory Centre report No. 12 (1972), 12-15,

[2], Généralisation des $#&sultats de R. DATKO
sur les fonctions de Lyapunov quadratiques dé-
finies sur un espace de Hilbert, CRM-Report 457,
University of Montreal, January 1974.

{3], State theory of linear hereditary differen-
tial systems, to appear in J. Math. Anal. and

Appl.

M.C. DELFOUR, C. McCALLA and S.K. MITTER [1], Sta-
bility and the infinite-time quadratic cost
control problem for linear hereditary differen-
tial systems, SIAM J, Control 13 (1975).

M.C. DELFOUR and S.X. MITTER [1], Controlilability,
observability and optimal control of affine
hereditary differential systems, SIAM J. Con-
trol 10 (1972), 298-328.

[2], Controllability and observability for in-
finite-dimensional systems, SIAM J. Ccntrol 19
(1972), 329-333,

R. DELVER [1], Boundary and interior control for
partial differential equations, Canad. J. Matk,
27 (1975), 200-217,

N. DUNFORD and R.S. SCHWARTZ [1], Linear operators.
I, II, III, Interscience, New York, 1967.

H.0. FATTORINI {1], Some remarks on complete con-
trollability, J. SIAM Control 4 (1966), 686-¢54.



[2], On complete controllability of linear sys-
tems, J. Differential Equations 3 (1967), 391-
402,

[3], Controllability of higher-order linear sys-
tems, Mathematical Theory of Control, A.V.
Balakrisnan and L. Neustadt, eds., Academic
Press, New York, 1967, 301-311.

B, FRIEDMAN [1], Principles and techniques of
applied mathematics, Wiley, N.Y., 1956.

K. GLASHOFF and N. WECK [1], Boundary control of
parabolic differential equations in arbitrary
dimensions: supremum-norm problems, SIAM J.
Control and Optimization 14 (1976), 662-681.

K. GRAHAM and D.L. RUSSELL [1], Boundary value
control of the wave equation in a spherical
region, SIAM J. Control 13 (1975), 174-196.

E. HILLE and R.S. PHILLIPS [1], Functional analysis
and semi-groups, AMS, Providence, R.I., 1957.

R.E. KALMAN [1], On the general theory of control
systems, Proc. lst IFAC Congress, Moscow,
Butterworths, London, 1960.

[2], in "Contributions to the Theory of Optimal
Control", Bol. Soc. Mat. Mexicana 5 (1960},
102-119.

E.W. KAMEN [1], Module structure of infinite-dimen-
sional systems with applications to controlla-
bility, SIAM J. Control and Optimization 14
(1976), 389-408.

V.P, KHATSKEVICH {1], On the problem of the ana-
lytical design of regulators for distributed-
parameter systems under boundary-function con-
trol, Prikl, Mat. Meh. 35 (1971), 598-608 (Engl.
transl. J. Appl. Math. Mech, 35 (1971), 548-558
(1972)).

V. JURJEVIC [1], Abstract control systems: control-
lability and observability, SIAM J. Control, 8
(1970), 424-439.

J. HENRY [1], to appear.

J.L. LIONS [1], ContrBle optimal de syst&mes gou-
vern&s par des &quations aux dérivées partielles,
Dunod, Paris, 1968. (English translation,
Springer-Verlag, Berlin, New York, 1971.)

J.L. LIONS and E. MAGENES [1], Problémes aux limi-
tes non homogénes et applications, Vol. 1 et 2,
Dunod, 1968; Vol. 3, Dunod, 1969, Paris.

D.L. LUKES and D.,L. RUSSELL [1], The quadratic cri-
terion for distributed systems, SIAM J. Control,
7 (1969), 101-121.

A. MANITIUS and R, TRIGGIANI [1], Function space
controllability of linear retarded systems: a
derivation from abstract operator conditions,
Internal report CRM-605, Centre de Recherches
Mathématiques, Université de Montré&al, Canada,
March 1976,

[2], New results on functional controllability
of time-delay systems, Proc. 1976 Conference on
Information Sciences and Systems, The John
Hopkins University, Baltimore, Maryland (1976),
401-405.

750

[3], Function space controllability of retarded
systems: a derivation from abstract operator
conditions (announcement), Proceedings of
International Conference on Dynamical Systems,
Univ. of Florida, Gainesville, Florida, 24-26
March 1976, Academic Press (to appear).

A. PAZY [1], On the applicability of Lyapunov's
theorem in Hilbert space, SIAM J. Math. Anal, 3
(1972), 291-294.

A.J. PRITCHARD [1], Stability and control of dis-
tributed parameter systems, Proc. IEEE (1969),
1433-1438.

{2], The linear-quadratic problem for systems
described by evolution equations, Control
Theory Centre Report no. 10.

D.L. RUSSELL [1], The quadratic criterion in
boundary value control of linear symmetric
hyperbolic systems, Control Theory Centre
Report no. 7, 1972.

[2], Quadratic performance criteria in boundary
control of linear symmetric hyperbolic systems,
SIAM J. Control 11 (1973), 475-509.

[3], On the boundary-value controllability of
linear symmetric hyperbolic systems, Mathemati-
cal theory of control (Proc. Conf., Los Angeles,
Calif., 1967), pp. 312-321, Academic Press,

New York, 1967.

[4], Nonharmonic Fourier series in the control
theory of distributed parameter systems, J.
Math. Anal. Appl. 18 (1967), 542-560.

[5], A unified boundary controllability theory
for hyperbolic and parabelic partial differen-
tial equations, Studies in Appl. Math. 52
(1973), 189-211.

[6], private communication.

M. SLEMROD [1], The linear stabilization problem
in Hilbert space, Journal of Functional Analy-
sis 11 (1972), 334-345,

[2], An application of maximal dissipative sets
in Control Theory, J. Math. Anal, Appl. 46
(1974), 369-387.

[3], A note on complete controllability and
stabilizability for linear control systems in
Hilbert space, SIAM J. Control 12 (1974), 500-
508.

[4]. Asymptotic behavior of Cy semigroups as
determined by the spectrum of the generator,
Rensselaer Polytechnic Institute internal
report, January 1975,

R. TRIGGIANI [1], Extensions of rank conditions
for controllability and observability to Banach
spaces and unbounded operators, SIAM J. Control
and Optimization 14 (1976), 313-338.
[2], On the lack of exact controllability for
mild solutions in Banach space, J. Math. Anal.
Appl. 50 (1975), 438-446.
[3]1, Delayed control action controllable sys-
tems in Banach space, Control theory Centre
Report No., 33, University of Warwick, England.
{4], On the stabilizability problem in Banach
space, J. Math, Anal, Appl. 52 (1975), 383-403,
[5], Controllability and observability in
Banach space with bounded operators, SIAM J.
Control, 13 (1975), 462-491.
[6], Pathological asymptotic behavior of control
systems in Banach space, J. Math. Anal, Appl. 49
(1975), 411-429.



R.B. VINTER and T.L. JOHNSON [1], Optimal control
of non-symmetric hyperbolic systems in n varia-

bles on the half-space, MIT-Report (unpublished).

J.C. WILLEMS [1], Least squares stationary optimal
control and the algebraic Riccati equation, IEEE
Trans. Automatic Control AC-16 (1972), 621-634,

W.M., WONHAM (1], On a matrix Riccati equation of
stochastic control, SIAM J. Control 6 (1968),
681-697.

J. ZABCZYK [1], Remarks on the algebraic Riccati
equation in Hilbert space, J. Applied Math. and
Optimization 2 (1976), 251-258.

751



