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1. Introduction

In this paper I would like to give a
very partial account of integration theory in
Hilbert space and related questions of absol-
ute continuity which may be important in prob-
lems of stochastic realizatiom theory, linear
and non-linear filtering, detection theory and
quantum communication theory. This theory is
largely the creation of I.E. Segal and his
former students, notably Gross and Nelson. The
need for such a theory arose for the purpose of
putting quantum field theory on a rigorous
mathematical basis. The theory has a distinct
algebraic character and I believe is particu-
larly suited to the needs of stochastic system
theory. An account of this algebraic approach
may be found in SEGAL-KUNZE [1], SEGAL ([l] and
the bibliography cited there). This theo.y is
different from the work of the Russian school
(cf. GELFAND-VILENKIN) in the sense that
essentially Hilbert space techniques are used
and in general one works with "weak" processes
as opposed to "strict" processes. In this theory
non-linear functions of processes can be handled
and in particular certain non-linear functionals
of white noise can be given mathematical meaning.
The other approach to some of these questions is
due to GROSS (cf. GROSS [1l], [2] and the biblio-
graphy cited therein) where a countably additive
"extension" on a separable Banach space of the
finitely-additive Gaussian measure on a Hilbert
space is obtained. These ideas have recently
been modified and developed by Balakrishnman
(cf. for example BALAKRISHNAN [1], [2]) in a
series of papers related to detection and filter-
ing theory.

2. Segal-Gross Theory of Weak Processes

It is a known fact that there is no analog
of Lebesgue measure (i.e. a countably additive
measure which is translation and notation in-
variant) on an infinite dimensional Hilbert
space. In fact no such measure exists even when
invariance is relaxed to quasi-invariance. Such
an "invariant" measure however exists if we do
not insist on countable additivity.
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% Let V be a real topological vector space,
V its topological dual and let <.,.> denote the
pairing of V and V. A tame set is a set C of
the form

(2.1) ¢ = {x€V|(<x,yl>, ces <X,y 3) € A}

where A is a Borel set in R® and . EV*, j=1,2,..n.

If K is a finite dimensional “subspace of v
containing y.,...,y_ then C is said to be based
on K. The collectiBn of tame sets based on K
is a O-ring. Let R = KSK'be the ring generated
by (S gey*

A uon-negative set function u defined on R
is a tame set measure if

D uW =1 «

2) V finite dimensional subspace KCV , is
countably additive when restricted to the U-ring

K*

An equivalent concept is that of a weak

distribution. Let M = (§,A,P) be a probability

space. A weak distribution on J is an equival-
ence class of linear maps F : V' * RV(2,A,P). Two
such maps are,equivalent if for any finite set
Yysrees¥y € V , the joint distribution of
F.(yl),...,E (yn) in E" is the same for j=1,2,
3 " *A tame ¥unltion F on V is one of the form
F(x) = f(<x,% >,...,<X,y. >) for some Baire func-
tion on R® and for.some Finite sequence y.,...,¥y
in V°. If K is some finite dimensional subspace
containing Yyseeesy then F is: said to be based onK.
Let H be a rea& Hilbert space. For C a
tame subset of V based on K, define

Z 2
(2.2). u(@) = @M 2 £ exp (_ IJ;!I )dx

where A is a Borel set in K and n = dim K. It
is possible to enlarge H and obtain a countably
additive measure on a larger space which is in
a sense an extension of M.

Let f(x) = f(Px) be a tame function for some
finite dimensional projection P. Let ¢ be the
restriction of f to F = Range (P). Then ¢ is
Borel measurable on F and

' 3 |1 13

(2.3) Sfx)dux) = (2m) EfF ¢(x)esp (— 5 4%

where n = dim(F).

Let A = algebra of bounded complex-valued
functions on H together with their uniform limits
The integral defined in_ (2.3) can be_extended to
all of A as a continuous linear functional which
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we denote by E(f). A 5 ay t -algebra with unit
in the supnorm and hence A C(x) for some com-
pact Hausdorff space X. Let f » f be this iso-
morphism. Moreover E is a continuous positive
linear function on A and hence by the Riesz re-
presentation theorem

E(f) = £ f dm , where m in this case is

The 1sm05?hlsm £ f can be
extended to tame functions in L (H,H) by demsity
such that (fg) = fg. Hence if f = char.fn.(4),
A a tame set, f is characterlstlc function of
some measurable set A and u(a) = m(&). Using the
Gelfand Transform, we can see that for f € A,
is an extension of f from H to all of X. Now A
and in fact H is such that m(H) z 0
Let H be identified with H . The continu-

ous linear functionals on H are in L“(H,u). To
the linear functional determined by y there
cgrresponds a measurable F(y)(.) on X. F : H >

1L4(X,m) is norm-preserving. It can be shown
(1) that, the map F completely determines the
extension £ » £, (2) the map f » f can be ex-
tended to all tame functions and (3) ¥ =
¢(F(y{)s+..,F(y )) where f(x) = ¢«x yl),...,
(x,y 5) The fBnctions F(y) on X are normally
distPibuted with variance Y|| and yl,...,y
are orthogonal, then F(y,),... F(yn) are in-
dependent. More concret& realizations of H
and the measure space (X,m) can be obtained,
for example

a) whereH =42",6 X = Rm, m the product measure
corresponding to Gauss measure on each coordin-
ate, b) H = HkO,l), X = C(0,1) with m = Wiener
measure. However it can be easily proved that
these various extensions are all measure theo-

retically isomorphic.

probability measure.

3. Abstract Wiener Spaces
and Absolute Continuity

The discussion above could be formalized
using the ideas of Abstract Wiener Space due to
Gross.

Let H be a Hilbert space and let u be the
tame measure given by (2.2). A measurable norm
3 finite
dimensional projection Po such that ¥ flnite
dimensional P_L,Po,

u({xaHl I|px||>e})>e.

Let E = completion of H with respect to
| |. E is a Banach space. The canonical
embedding i : H +~ E is compact. Identifying H
and H, we obtain by duality the embeddings

* *
E 9 H =Hc .k
i* i

E* can be identified with its image in H and
H with its image in E. The measure u has a
countably additive extension.p on the borel
fields of E. The triple (i,H,E) is called
Wiener sEace and p Wiener measure on E.

Now, E* would, be interpreted as functions
on E belonging to L°(E,p) and their L2-norm
equals the H norm. Hence the closure of E* in
L¢(E,p) can be identified with H*. If e ¢ H¥ .
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we denote by é the corresponding random variable
on E. Let P be a finite dimensional orthogonal
projection on H such that

= z <ei,x> e (ei)

i=]
n
orthonormal. in H, then P ='z eoe, defines a ran-
i=1

dom variable on E with values in H.

A function f on H with values in_a Banach
space F determines a random variable f on E with
values in F if for any sequence of finite dimen-
sional projection P~ I strongly in H the se~
quence of random variables fo P + f in measure
p on E.

Some Preliminaries

Let H be a real Hilbert space and let L(H)
denote the space of bounded linear operators on
H. Let I. denote the Bamach space of nuclear
operators on H under the norm T|K] = tr[(K*K)'i
I, is a *-ideal in L(H). Let I denote the Banach
space of Hilbert Schmidt operatdrs on H with norm
][KI] = [tr(k*K)]%. 12 is also a *-ideal in
L(H).

If K¢ I., the Fredholm detgrminant of
(I+K) is defified by det (I4+K) = 7 (1+Ai) where

i=1

the A; are the eigenvalues of K counted with their
multiplicities. If XK € I,, the Carleman Fredholm
geterminant of I+K is deflned by &(I+K) =

(1+X Ye© det (I+K) is an analytic function
on I and 6(I+K) is an analytic function on 12
7

Preliminary Lemmes

The following lemmes follow from the work of
Gross (cf. GROSS[1]).
Lemma 3.1 Let K € L(H). Then K determines a
random variable K on E with values in E. Y/
Lemma 3.2 Let B be a family of orthogonal pro-
jections converging to I strongly. Let Kel
Then (K°P ) is a Cauchy sequence in L (E,p,H)zand
Prob(Re H) = 1.

Suppose K ¢ 1 . Then in general <Kx,x>
and Tr(K) need not“exist. However <Kx,x> - Tr(K)
can be given a meaning as a real random variable
on E via stochastic extension.

In fact, for certain non-linear operators
K: E~+ H <Kx,x> - trK can be identified as a
random variable. In the above K is continuous
and its H-derivative (defined below) K is
Hilbert-Schmidt.

Let UC E be open. A function f : U + F,
F Banach is H-continuous at x € U if the function
g(h) = f(xth) defined on (Uix}) N H is contin-
uous at the origin in the induced (Hilbert) top-
ology. f is H-differentiable at x if g is Fréch-
et differentiable at the origin in H. It can
then be shown (cf. RAMER).
Proposition: Let UC E be open and let K : U+ E
be such that (i) K(U) € H, (ii) the H-derivative

at x, K : U~> L(H,E) is continuous and Hilbert-
Schmidt® Let (e ) N be an orthonormal basis in
n
HsuchthateeE, Vi. Let P_ =35 e Qe, :
noL5 i i
E 7 E . Then 1



1) {an(x)} = {<PnKx,x> - tr(l’nK)x }m:N is
a Cauchy sequence in L2 (E,p).
(i1i) There exists a subsequence (nk) such that

{ank(x)-} converges almost everywhere on U to

a random variable on U. Denoting this random

variable by <Kx,x> - trK_, if (mk) is any
* kEN

other sequence for which (a_ (x)) is Cauchy

a.e., then a_ (x) > <Kx,x> =~ ter a.e.
(iii) <Kx,x> - ter does not depend on the
choice of basis (e,) in H. g

2 en

Absolute Continuity -and Computation
of the Radon-Nikodym Derivative

Case I (Translation)

Theorem 3.1 (Segal)

Let (i,H,E) be an abstract Wiener Space
and let p be standard Wiener measure on E. Let
eEZEandletTe : E*>E : x" x+ e. Then the

transformed measure p Te and p are mutually ab-
solutely continuous if and only if e € H. The
R - N derivative of pTe with tesp%ct to p is

|

the random variable >
)
Remark:
If E = C(0,1;1u ) where u_denotes Wiener

measure then H = a1(8,1; uc)., tge Sobolev space
with Gaussian measure.

exp (-é - 2

Case II (Linear Transformation)

Theorem 3.2 (Segal-Reldman)

Let (i,H,E) be an abstract Wiener Space
and p standard Wiener measure. Let q be a Gaus-
sian measure on E” with covariance Q. Then p andq
are either mutually singular or mmtually ab-
solutely continous. They are mutually absol-
utely continuous if and only if there exists a
K €I ,, symmetric, such that the quadratic
form %}(x) on E* is of the form Qx) = <(I+K)xx>.
The R - N derivative of q with respect to p is
the random variable on E given by1

-1 Y/

i‘i:l D77 explah, A +1) 8, ). 7

It is possible to use Theorem 3.2 to prove
Theorem 3.3

Let (i,H,E) be abstract Wiener Space and
let p be the standard Wiener measure on E. Let.

T =1+ K be an invertible linear transformaticn
on E with K € L(E,H). Then K[B € 12 and (K(H)~ =

K. Thean the R - N derivative of the transformed
measure pT with respect to p is given by

18(T) |expl-(<Kx,x> - trK) - %|Kx|?] a.e.

The affine case could now be proved using
Theorem 3.1. There is a non-linmear version of
Theorem 3.3.

Theorem 3.4 (Ramer)

Let (i,H,E) be an abstract Wiener Space and
p be standard Wiener measure on E. Let ' UC E be
open and let T : I+ K : U~ E be a continuous
non-linear transformation such that
(1) T is a homeomorphism of U onto an :open
subset of E.

(ii) K(@U)C Hand K : U+ H is continuous.
(1ii) For each x € U, the H-derivative of K at
X, Kx exists, is Hilbert-Schmidt and Kx : U+ 12
is continuous and IH + Kx is invertible.

Then p and the transformed measure pT are
mutually absolutely continuous as measures on U.
The R - N derivative of pT with respect to p is
given by

|6(Tx)|exp[-(<l(x,x> - ter) -1§|Kx|2]a.e xeU.

b

Remarks:

(1) As mentioned earlier <Kx,x> - tr(Kx) is a
random variable. It is intriguing to see the
appearance of the term tr(K,) which bears a
striking resemblance to the Wong-Zakai correction
term relating the Ito and Stratanovich integral.
(11) Consider the Kalman Filtering problem

dxt = Fxtdt + det
dyt = thdt + dn_t , where wt and ht are

standard Wiener processes assumed to be inde-
pendent.

Then by passing to the Innovations Repre-
sentation

dyt = H:_:tdt -+ -d\)t

where ﬁ; = “E(’xtl Fty) and Ve is the Innovations
process (which is a.standard Wiener process)
and noting that
x, =j:K(t,s)d\{s, with

2
K(*,*) ¢ L°({0,t]x[0,t]; .L»(Rp;Rn))., -we are in
the situation of Theorem 3.3. A "causal" re-
presentation for :the R - N derivative could be

obtained by invoking the Krein Factorization:
‘Theorem in conjunction with Theorem 3.3. cf.

HITSUDA where the reverse process is Tollowed).
4, The Free Quantum Field and Kalman Filtering

In the previous section we have indicated
how starting from a Hilbert space H with Gauss
measure of unit variance n on. it we can. construct
a Banach space E and a measure. y. which is count-
dbly additive on the borel setsof E such i is an
extension of n in a certain precise sense. In-
tegration of functions on H and questions of ab-
solute continuity can be answered by passing:
to the Banach space by an appropriate stochastic
extension. There is a purely Hilbert space
point of view due to Segal which may turn out to
be more important for the needs of System Theory.
Due to lack -of space we do not give a detailed
exposition of this theory here. This theory is



needed to show the equivalence of various repre-
sentations of the free quantum fieldl viz.
(1) The particle representation which involves
the symmetric tensor products of a complex Hil-
bert space H with itself, (ii) the wave repre-
sentation (functional integration) in the space
L2(H') of a real part of H and (iii) the complex-
wave representation in which a space K of entire
anti-holomorphic functions on H are involved.
The intertwining operators between the various
representations. requires absolute continuity con-
siderations and the use of the Fourier-Wiemer
Transform. Mathematically, the field is diag-
onalized in the functional integration.repre-
sentation whereas the particle numbers are diag~
onalized ‘in ‘the tensor product representation.
In the complex wave representation the creation
operators achieve a Kind of diagonalizationm.
Brockett (cf. BROCKEIT) has recently shown
that the group with 4 generators H, P, Q, E with
the commutation relations

[H,P] =-@, ({H,Q] =P ,[P,Q] = E with

the rest zero plays an important role in Kalman
Filtering theory. This group has been called
the Harmonic Oscillator Group (cf. STREATER).
The group generated by P, Q, E, the Heisenberg
group, is a subgroup of the oscillator group.
The -oscillator group is not nilpotent but solu~
able. Streater has obtained -all the continuous
unitary irreducible representations of the Har-
monic Oscillator group. He shows that if complex
Lie algebras are allowed then one can obtain the
Bargmann~Segal representation of the harmonic
oscillator by holomorphic functions using the
technique of Kirilov. In this representation the
creation operator C(z) is multiplication by z
and the annhilation operator , 2

C"(z) is 9z

Segal (cf. SEGAL [ 2 ]) has explicitly given the
intertwining operators between the holomorphic
and real representations. It would .thus appear
that the Zakai equations for 'the unnormalized
conditional density corresponding to the Kalman
filtering problem.defines a "field" which is an-
alogous ‘to the "free quantum field".

Definition:

A concrete free Boson field over a given
complex Hilbert space H, denoted as $(H) is a
quadruple (K,W,T,V) consisting of

(i) a complex Hilbert space K,

(ii) A continuous mapping z W W(z) : H + U(K),
the space of unitary operators on K satisfying
the Weyl relations

W(z)W(z')

exp(% Im<z,z">W(z+z'), Vz,z'€H,

(ii1) A continuous representation I -from
U(H) +~ U(K) satisfying

TWWE)TU) L = Wwz) , YU e U@), z € B

1. The free quantum field is an infinite assem-
bly of non-interacting harmonic oscillators.
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(iv) A umit vector v € K having the properties
that T(U)v=v VU € U(H) and W(z)v, z € H

span K topologically

(v) [ is positive in the sense that if A is

any positive self-adjoint operator on H, then
dl'(A) is positive where for any positive self-
adjoint A in H dI'(A) is the self-adjoint gemerator
of the one-parameter unitary group [U(eitA)ltER]

Let H' be a real Hilbert space and let g de-—
note the centred Gaussian weak distribution on H'
with variance 1. We define a positive linear
functional E (expectation) on the algebra A(H')
of all bounded tame functions on H'. Let L¢(H',g)
be the completion of A(H') with respect to the
inner product <f£,f'> = E(ff'). Let € denote the
canonical homomorphism of A(H') into L<(H',g).

If H is a complex Hilbert space, it has also
the structure of -2 real Hilbert space with inner
product- equal to the real part of the complex
inner product in, H. In this way, we can define g
on H and hence L“(H,g). From the work of Segal,
we know LZ(H,g) can be regarded as the completion
of the algebra P'(H) of functions of the form

f(x) = p(Re<x,el>,...,Re<x,en>)

p a real polynomial and the e, are orthonormal.

In addition to P', one can also consider the
algebra of functions

£(x) = p(<x,e;

polynomial function on ¢? and complex conjugates
of the above. Let P(H) denote the last mentioned
algebra.

In the complex-wave representation the repre-
sentation space K is the closure of P(H) in
L2(H,g). Segal has shown that the elements of K
can be identified as functions well defined at
every point of H and which satisfy an L“-bounded-
ness condition. We do not go into the details
of the construction of W and ' of the Weyl System
here. It can be shown that there exists a unique
(upto unitary equivalence) Weyl System. It is
however worthwhile stating explicitly the form of
the "creation" and "annhilation' operators.

>,...,<x,en>) , pPa

Definition:

For any representation ¢ = (K,W,[iv) of the
free Boson field over the given Hilbert space H
and for given vector z € H, the creation operator
for z denoted by C(z) is defined as the operator
(dw(z) - idW(iz)), where dW(z) denotes the self
adjoint generator of the one-parameter group
{W(tz)|teR}. The annhilation operator for the
vector z, denoted by C*(z) is defined as the
operator 1 (dW(z) + idw(iz)

Nl

Theorem (Segal)

The operators C(z) and C*(z) are closed,
densely defined and mutually adjoint. In the com-
plex-wave (anti-holomorphic) representation, C(z)
has domain consisting of all FeK such that

<z,'>F(i) € K. C(z) is the mapping
FC)PVT T <z,*>F(*). C*(z) has domain consist-
ing of all Fe K such that F_£K where Fz

Lin E(utes) - F(u)

e+0 €

C*(z) is the mapping



Fr -V2i{ F,. Z

The Particle Representation

Let H' be a real Hilbert space and let
H be its complexification. Let HO® be the n-fold
symmetric tensor product of H with itself. We
give H™® the inner product

<Sym glg. - @8> Sym flo. . .@fn> =

%<gn(1),fl>... <gn(n),fn>

where T is a permutation of (1,2,...n) and Sym
is the symmetrization operator

Sym £@..-8F, = z fap ®f ()

m

Let F be the weak centred Gaussian dis-
tribution of unit variance on H'. Associated
with H'is a probability space (2,BM), where B
is generated by F(f), £¢ H and if f_ ,...,f
are orthonormal in H*' and ¢ is a Bai%e funcBion
on R%, then

LHECED, - FCE DA =
X
l - —
(2n)n/2 J;n b(x)e 2 dx

Let LZ(H') denote LZ(Q B,u)

Let S (H' )n be the closed linear span in
1.2 (H') of all elements of the form F(f_ )...F(f )
m <n and_let S(H' ) be the orthogonal comple-"

ment of § (H' ) 1n s @' ) For fl,...,fn

in H, Define : F(f )...F(£,) : to be the
orthogonal projecti%n of F 1)...F(fn) on S(H')n.

Then it is easy to see that
. s B
: F(fl)...F(fn) : + Sym ff&--<9fn
extends uniquely to a unitary mapping from S(H')n

onto HdD . We identify S(H') 6 with via this
mapping. Segal showed that §%H§ span L ).

Hence LZ(H') = ZB@ .
n=qn
Let I'(d) denote z Hn@ .
n=0

This is Fock space.
I'{H) is intrinsically

attached to the structure of H as a real Hilbert
space. Hence if U : H' + K' is an orthogonal
mapping of one real Hilbert space into another
it induces a unitary mapping ['(U) : T'(H) -~ I'(K).
On S(H)n’ ') is U®...@U (n-factors). The

ideas of Fock space are important in filtering
theory an Arelated to Wiener's homogeneous chaos.
For a recent application see MARCUS-MITTER-OCONE.

5. Conclusions

The mathematics used in quantum field
theory may have applications to modelling of
stochastic systems and filtering theory. In
this paper -1 have concentrated on ideas sur-
rounding the free quantum field. I believe
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ideas of non-linear quantum field theory, for
example, those developed in SEGAL [ 3 ] have ap-
plications in non~linear filtering theory. But
this we have to leave for the future.
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