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1. Introduction

In their seminal paper, Fujisaki, Kallianpur and
Kunita [1] showed how the bést .least squares estimate
of a signal contained in additive.white noise can be
represented as a stochastic integral with respect to
innovation process, the integral being adapted to the
observation process. The difficulty with this repre-
sentation is that in general this estimate is not
useful for computing the estimate since the innovations
process depends on the estimate of the signal itself.
In this paper we discuss representation of the estimate
directly in terms of the observation process. In
doing so, we derive new results on multiple integral
expansions for square-integrable functionals of the
observation process and show the connection of this
work to the theory of contraction operators on Fock
space. This letter development is due to Nelson and
Segal.

We also present several arplications of these
results to determining sub-optimal filters.

2. Multiple Integrals and Filtering
In this section, we shall discuss applications

of multiple integral expansions to the general fil~
tering problem. We will consider the 'canonical’
scalar filtering model:

—é h
under the assumptions
a) x.and W, are independent processes

b) for some T>0 EéTh2

ds + V_t (1)

(x,)ds<e (2)
c) Vi is a standard Brownian motion
If ft(x(.))=ft(xs,sfp) is a causal functional of the

signal x, and F{Ec{ys|0§§§p}5 sub-0-algebra generated
by ys,Ofgjﬁ, then we are interested in calculating the

optimal least squares estimate of ft(x('))

E{f (x )‘Fy} for t<T.
Definition 1 vy, defined in (1) and (2) is called an

observation semt-martingale.
Throughout, let iQ,F,P; denote the underlying proba-~

bility space.

Now E{f, (x) |p{}eL(n,y{,p)
by the definition of conditional expectation, and,
therefore, any method that represents elements of

(={Fz measurable rv's})

L(Q, Fy ,P) in a simple and consistent way, say by
expansion in terms of & simple class of functionals of
¥y can be applied to the optimal estimate, In

this work, we have adopted multiple integrals of
sr—
the form £%.f T 1k(t 5,508 )ay(s ). dy(sy)

as the basic objects of expansion. First, Yy is a
stochastic translation of Brownian motion and

through a change of measure, much Brownian theory can
be carried over. Secondly, iterated Integrals proyide
the natural concept of a polynomial in the y process
and thus they give a framework for considering best
quadratic, cubic, etc. syboptimal estimation pro-
cedures. Finally, when the kermel k of

—é é r'lkdy dys’ is separsble, & construction of

Brockett[Z] reallzes z, recursively as the solution

t
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to a stochastic differential equation,

Accordingly, after developing some theory of multi-
ple integral expansions we show how E{ft(x(.lllFi} can
be represented as a ratio of multiple integral
expansions. The chief theoretical result about multi-
ple integrals, the multiplication formule of theorem 2,
is then used in conjunction with this representation
to derive equations for the best suboptimal estimate
of any order. The Kalman filter is derived and the
quadratic filter discussed in detail as examples.

Multiple Integrals. Inwhat follows, let (b(t),Ft)
dencte a standard Brownian motion w,r.t. increasing
family of sub-CO-algebras F We assume famlliarity
with the stochastic 1ntegral f ¢ dv (s), whered_ (u) is

a measurable process adapted to (Ft)tzp.

s 2, NNy a2 n
Definition 2 Let feL°([0,T)")={feL."([0,T)")|f symmetric}

I(m) (f), the nth order multiple (or iterated) integral
up to t<T of f, is defined recursively by

1M (=10 Ves, e (3)

In (3), £(s,.) is the function of L2(LO,TJn_l) formed
by holding the first element of f fixed at s. Strictly
speaking, for (3) to meke sense it must be shown that

Iin-l)(f(s,n)) has a measurable version, but this can

easily be done by approximating f with separatle
St

functions. Let (f,g)—éné f(sl,..,sn)g(sl,..,sn)dsn..ds1

denote the inner product of Lg([O,T]n By applying
standard facts about stochastic integrals, the following
basic properties of the multiple integral are derived:

for any n end m, t<T, and feL2([0,T]?), ger?([0,T]®
a) E{I(n)(f)} =0 (1)

(m) 0 if m#n
(f)I " (gl= {l/n!(f,s) if m=n

Note also that I(n)(f) depends only on the values of
128,228, . (3) adopts the useful
convention of allowing f to be defined in all of

[O,T]n by & symmetric extension.
Multiple integrals are useful in constructing

Wiener's homogenecus chaos expansion, which as an
example of the general theory presented later, decomposes

v) E 1

f(sl,u,sn) for s

Le(Fz) into a direct sum of Hilbert space tensor
Indeed if H =R, HnE{Ién)(f)lfeLe([O,T]n)} n>1

a simple application of (4) &) and b) demonstrates that
Hn is a Hilbert space for every n and that Hnlﬁm for

n#m [where L is defined in the sense of the inmer
product {x,y)=Exy]. 1In fact we have more:
Theorem 1 (Ito-Wiener)

2,y

L (Ft)-Hoe Hi@ H® ......

That is, for ¢€L (Ft) kernels {k =
¢-k W

products,

=0 exist such that

® ) (5)
Proof. See Ito [§ and Kallianpur [4.

Theorem 1 suggests the following natural gquestion.
Suppose feL ([0 7]%) and gst([O,T]m). Is it then true
that I(n)(f) )(g)en (F ) for t<T, and if so, what
are the kernels {k;}, as 1n (5), such that I:(f)I:(g)
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=k +Zl_l il)(ki)? Our answer, which will become a

principal tool of investigation, requires some
preliminary notation.

Definition 3 i) P, Ei}l denote the projection of
L2([O,T]n) onto L2([O 7™

(P b)(s 8y sn> n! wss( h(sﬂ(l)’"
where S -permutatlon group onn letters.
ii) Let O<k<min(m,n) felL ([o T1"), gel ([o ™)
(fﬁk(t)g)(sl’"’snﬂn—ak) (6)

Lot t
S Trp ey oes Jelrras s oy

(fek(t)g)(slnsm+n_2k)=(Ph+n_2k[fﬁ (t)el)(s

sﬂ(n))

1"5min-2k) (7)

To illustrate, if n>m=k, then uslng the symmetry of
f and g,(fem(t)g)(sl e k L g f(rl. TpaS1e8, m)
It is useful to think of the fune-
tions £ and g as tensors, for, in fact L2([O,T]n)

§L2[O,T]ﬁnﬁL2([O,T]) (n times). Therefore, as inspec~
tion of (6) and (7) suggests, 0_(t) may be interpreted
as g k-fold symmetrized tensor contraction,

xg( rl.-rm) drm..dl‘l ’

Theorem 2. Let £eL°([0,T1%), geL?([0,T]™), Then
Iin)(f)lﬁm}s)eﬁ%F:) for t<T and,

1{®) (£)1{®) (g)=piinmn) (mn-2k)y minglkeg (4)0] @

Before sketching a proof, let us first demonstrate
that the 1,h.s. of (8) is well-defined,

Lemms 1. Let fELg([O ,71%), ger’([0,T1™). For 2T
£6,(t)geL 2([o,T™"-%k)
o tact o (06l ol PleE,

where C depends on m, n and k,
Proof. Let |S |= cardinality (S ) and j=m+n-2k,

9}

Using Cauchy-Schwarz repeatedly:

H <Jsl) 2
IE0§04B< 37 Tres(s |E‘ )"SW(J)”U
and
lon,  aory oy )N =Fe £ 852y 28n(y)

x[é "é f(sl..sr,sﬂ(l)..)g(rl

<enelelflelf
mus o (elell, < IEULLI2 e 2

Jikl
Proof of theorem 2%: Only a sketch will be given, as
details are involved and unrevealing. First, it
suffices to treat the case when f and g are separable,
since we can use lemma 1 to approximate general
f andg by separable functions. This makes questions
concerning the interchange of dt and db(t) integrations
easy to resolve. The case n=l, m=1 follows directly
by applying Ito's differentiation rule. Indeed, Ito's
rule yields in general

{2 ()1 (g) = £11™ ()1 (25, ) Yav(e) +

(“)<f (‘“ 1)( (s2))ap0(s) + ££1{7 ) (2(s,.))

x Iin l)(g(su))ds

Using (10) we can implement the following two stage
induction scheme to prove the theorem for all m and n,

9'5."( ))dr dl'}

(10)

*Apparently, Japanese workers have also recently
proved theorem 2-by means of functional analytic-
techniques due to Hida (Perscnal communication from THida)
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)drkndrl

1) implies the case (m,n)={k+1})
k-1 j) (x,j-1) and (k-1,3-1)

a) The case (m,n)=(k,
b) The cases (m n)=(k
imply the case (k,J

Equation (8), the multiplication formula, is actu-
ally a generalization of similar looking Hermite
polynomial identity

By ()b (x) = sin(mn) (@@ rraBiyh, (0 @
where h_ (x) 'éE%lE e_x2/2(d /dxn)ex /2' To understand

the connectlon, observe that the polynomials hm(x)
provide an alternate means of constructing the
In fact, if {¢i}:=l
is a complete orthonormal basis of L2 [0,T]) an

- t
GnA.Spanﬁﬁ 1 p f . i3 )( s)ab( s))|p1+ +p_=n,i 5l

pairwise unequal}
then Ito [ 3 ] has shown that H ‘G .
(See alsoKellisnpur [ 4 1)
I_En)(f)eHn is a generalization of a Hermite polynomial.
The slight discrepency between the factors in (11) and
(8) arises from the normalizations involved in the

(n) and ﬁk.

(8) has consequences that relate directly to the
theory of contractions on sums of Hilbert space tensor
products presented in a later section. The point is

that the multiplication formula can be used to study
the integrability of kth order moments of the integral

decomposition of theorem 1.

denotes closure).

Thus a typical element

definitions of hn’ I

Iém)(f), and,indeed, & direct application of (8) using

lemma 1 and g recursion argument yields:

2,7
Theorem 3 Let n>1 and feL°([0,T]")}. For any k>1,
there exists M k>0’ independent of f, such that

E[I n)(f)]Zk Hﬂl

—m,X
Now, Segal [ 5 ] has previously derived (12) by temsor
product operator arguments, and, in addition, proves
there exists a constant ¢ such that M(m,k) may be

2ckn . (12)

(12)

replaced by k His argument thus connects
to a deeper general theory.
Theorem 3 has an interesting corollary.

® ; 2, n
Theorem 4 Let {f } , and f be functions in L ({o,T17)

Then 1im [rd -f'ﬁ 0 iff Hm ElI (n)(f )- I f)]

iff lig E[Ié )(f )-I(n)(f)] =0 for any or all k.

Proof By (b) E[I (n)(f )= I(n) 2l tIE

Using (12) completes the proof.

In the applicsations, we shall want to discuss
multiple integrals not with respect to Brownian motion,
but to an observatlon semi-martingale Vir We again

denote these integrals by Ign)(f) without explicitly
indicating the dependence on Tis which should be

clesr from the context of their use, The simplest
definition of such an integral uses a result stated in
theorem 5; namely, under condition (2) there exists

a measure P_ on (2,F) such that i) e is Brownian

n (Q,F, P }, and ii) P and P are mutuelly absolutely

contlnuous
Definition U For fel ([O ?)
in (£)=4° s(n-l) (slnsn)dy(sn)"dy(sl)

is a r.va.s. equal to the Brownian multiple integral
defined on (Q, F, Po).



Itn)(f) is a well-defined r.v.
Also, as further argument will show,

By absolute continuity,
n (R, F, P).
Itn)(f) equaels the iterated integral defined directly

n (R, F, P) in the manner of definition 2, and thus the
'natural' interpretation of Iin)(f) as an iteration

is preserved. It immediately follows from definition k4
that the multiplication formula holds for the obser-

vation seml-martlngale case. Likewise, if Jo(dP ) <o
then E[TX 2] %% =z dP (e 2 E@:F—’ (n) (N F
L 0 T

shows that theorem 3 extends as well.
Finally, it is important to compute the mean and
variance of 1ntegrals with respect to yt

Lemms 2 Let E é ds) <®, Then for k<m and
fer? IO,T]

. k 2 2

i) E[It(f)] SMkIH[k (M};does not depend onf)

1) E[TN(e)] = ét--és(r'l)f(sI--sr)E{h(xsm)..h(xs&;}dm.d@

Proof The proof proceeds by induction on the order
k, and the induction stops at k=m because of the

condition E(é'thz(xs )ds

presented for lack of space,

)n<w. Details will not be

Filter expansions and applications, We will now
show that the Kallianpur-Striebel formula, (13),
for the optimal estimate can be developed into a
representation of the estimate as a ratio of two mult-
iple integral expansioms.  This technique bears compar-
ison to the work of Eterno [6 ], who derived simular
expressions in an effort to approximate the conditional
distribution of the signal given the observation
process. Here we focus on the use of the expansion
to derive equations for suboptimal filters.

Recall the filtering problem 1)-2), Denote
h(x(s)) by n(s),

)IFi}by 5?2), and define
—1/2£th2( s)ds].

£ (x(+) vy £(t), and E{f(t
L(t)=exp[ {*n(s)ay(s)

Also, define a new measure P_ on (Q,F) by
dp 4 ° .2
E§O= exp [—é-h(s)dw(s)—l/?é r°(s)ds].

Theorem 5 Under the hypothese of (2)
i) P_ is a probability measure and P and P

o’
are mutually absolutely continuous with

ir _
‘dPo?L(T)'
Under P_ yit)

ii) is a Brownian motion independent
of x(t).
i1i) =x(t) has the same distribution under Pas

under P

iv) (Kallianpur, Striebel)
E{e(t) |[F}=E {2(t |Fy}/Eb{dP |7} (13)
=E_{£(£)L(t) |F M/E {L(¢ t)|F ),

Proof See Wong [7 ],

Let Lr—l

(69205 L% n(s )un(s )ils day(s Dudy(s ),
Theorem 6 a) Partial expansion

Suppose EII n2(s)as]” <== and E[£? (sX{ h?(s)dsf]@
2e(8)+25y 180 [y ool (801 (0) 7Y (20)
123, 1) Lijo[L,(t_lp{J

)=EL2(t)n(s; )-n(s,)

Then f(t)‘

where kj(t, s ] and

1°%)

13(51”53)=E[h(51)"h(sj)]
b) Full expansion. If E[exp[éthz(s)ds]kw and

fz(t)exp6th2(s)ds<m, then

e(t) = EE(E)AL, Ié‘”[k]
1+£? 11 [1J > (15)

where kJ and 1, are as above and the infinite series

both converge in the Ll(P) norm.

Remarks

1. The kernels kj and 1, depend only on the

J
apriori distribution of x(t).

2. The condition E{exp[éthz(s)ds]}<w in (6) places
strong restrictions on the growth of the moments of

é h s)ds. Moreover

dy(s)- f h (s)ds |Fx}
=E°exp[—£ h (s)ds]EO{exp2£ h(s)dy( s)IF:}
T 2
=Eoexp[é ¥
since éTh(s)dy(s) conditioned on

variance The(s)ds.

3. Theorem € can be generalized without difficulty to
vector valued processes.
Proof of theorem 6; For lack of space we give only an

heuristic sketch. The principal ides comes from
observing that, by using Ito's differentiation rule

an(t)=n(t)L(t)dy(t).

L(5)=1+{ n(s)L(s)ay(s)
By iterating (16)

L(t) -1+£ h(s +£ [5n(s)n(r)L(r)ay(r)dy(s).

Continuing such iterstion ad infinitum
formal expression

Eo(aﬁg) =EE {exp[2f h(s)

(s)ds]

F: is normsl with

In other symbols,
(16)

we derive the

L(t) 1+Y f {3371 nle)-n(s )ay(s,)mdy(sy). (A7)
Now substitute (17) into the term E [L(t)Iﬁc’]. Ve get:

B, [ FY 1148y B {(5[%01n(s, )-h(s, day(s ) )-ay(s )| B])
=1+23° 1£ 53718 _{n(s,)- h{s, ) ¥ Yay(s pray(s)
SEOMIANCS ReICH R (sj)}dy sj)-.dy(sl)
=1+Z;°=11£j)(13). (18)

The second equality uses a stochastic 'Fubini' theorem
found, for example, in Iiptser and Shirysyev [g 1; for
the process ¢{s) adapted to the Brownian motion
(bt’ Ft) and satisfying E[£T¢2(s)ds]<m
T by _ T b
E{f ¢sdb(s)lFt}-g E[¢S|Fsldb(s)

The third equality follows from Theorem 5 ii)and iii),

and the fourth equality by definition. By & similar
calculation,
By (£(6)1(8) [F]}=1e2]_ T ,(03)(1( ), (19)

Now (18) and (19) can be substituted in
£(t) =E, {£(£)1(¢) | H/E {L(t) |F})

to formally derive theorem 6, b). The partial expansion
if proved by carrying out the iteration procedure of
(16) only a finite number of times. The various
hypotheses in theorem 6 merely guarantee that the

steps in each calculation are valid,



3. Applications
The explicit formulas (14) and (15) can be applied

to the design of suboptimal filters in various ways.
For example, one naive approach would be to truncate
the numerator and denominator of the ratio at finite
orders and use the result as an approximate filter.
As noted in the remarks after theorem 6, the kernels
of the expansions do not imvolve the observations y(-)
and so can be computed off line. Theoretically then,
it is possible to construct the truncated filter.

This design, however,is difficult to analyze and assess;
a more interesting use of theorem € involves finding
estimates that are multiple integral expansions of
finite order.

Definition 5.
c(t)=c (t)+ bl

a) An expression

(™) (g_(¢))

'l t
with cn(t)EL2 [0,71%) is called an rth order expan-
sion of y(.).
b) An rth order expression a{t), satisfying

E[£(t)-a(t)1%< B[£(t)~c(t)]?

for any other rth order c(t), is called the best rth
order estimate of £(t).

The best rth estimate will be denoted by f(t) (with
r understoocd), and its kernmels by a.o 12 .a .

Given an order r, how can we find f(t), that is
how can we determine a ,a,,..,a % As it turns out, we
can apply the multipllgatlon foFmula to the filter
expension to write integral equations for the kernels
a . Begin by considering the product f(t)Eo[L ]Fy]

of the estimate with the demominstor of (13). If
B[ {"n%(s)as]?
t)[Fy] in (1L) applies, and
(n)
)Il+>: ety (1)

n
tHE(DEIL, ()7 ). (20

then the expansion of E
£(¢)E, [L(9|FY 1=[a_(£)+I] "11;

* EO{LZr(t 7 H1=g, (¢ +i?3 t

The g , n=1,..3r are calculated from an(t) and 1n(t)
by use of the multiplication formula.

Theorem 7. Suppose E[éThz(s)dE]gr<"0 s Efe(t)<“

and Efg(t)[fThz(S)dS]2r<“

(“)(an(t)) is the best rth order

~ r
Then T(t)=a (t)+Z =1 t

estimate 1ff

g, (t)=Ef(t) (21)

g,(t,s;..s )=E{r(t)n(s, ). .nls =k , 1<ner.
Proof: We must show that

Bl £(t)-£(£)1%<El£(t)-c(t) 12 (22)

for a1l nth grder expensions e(t) iff (21) nolds.
Recall that f(t) may be interpreted as the projection

of £(t) onto L2(Q, p-'g P)
theorem implies

Thus the projection

EL£(2)~F(t)1%=E[ £(£)-8(2) 1248 [3(1)-F(¢) 1°

+ 2E[£(6)-2(4) 1[B()-F(£ 1=l £(9) -2t 2+l £(+) F(£ )12

Applying this caleculation to the r.h.s. of (22) also,

(22) holds iff

E[2(£)-F(t)1°<BI}(t)-c(£)1° (23)
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for all c¢{t)., But according to lemms 2, the set of rth

order expansions in y(*) is a Hilbert space, and thus,

spplying the projection theorem agein, (23) holds iff
E[F(£)-F(¢)le(t)=0 (2L)

Now substitute the

M}
| to(y

for all rth order expansionms c(t).
expression (13) for £(t) inmto (24):

£ 1£(£)L(t )Py }-F()E {L(t)
E {L(t)[F}}
=282 WI[E {£()n(e) |7 )-F(0)E {1(t) |[FHe(t)

=E [E {£(6)L(t) | }-F(0E {L(t) |7 He(t)]

E[F(£)-F(t)le(t)=E]

(25)
second equality in (25) uses the identities

st IR=12, I R

IFy}]

vhich are easily demonstrated.

E {L(t

Now under P, y(*) i

a Brownian motion and integrals-of different orders
are orthogonal. Thus, using (20) and

E, 5t ]Fy}-Ef lI,(cn)(kn)+Eé{f(t)LI_(t)l'r"',’c'}
in (25),

E[E(t)-£() le(t)=E_[B2(t)-g+2_ 1{™) (k__g )le(t)

+_[£(t)e(£)E_{L, (t)]FH] (26)

|Fy}]

An application of lemma 2 show that the second and
third terms of the r.h.s of (26) are zero for all c(t).
Clearly, the first term can be zero for all nth order
c(t) iff k =g for O<n<r, end this completes the proof.

+E [ (t)E {£( t)L

The equations (26) are actually integral equations
for the kernels an(t) of the best rth order estimste,

since the gn(t), 0<n<r, are found from an(t),ogpsy,

by the formula(8).To illustrate, if r=1, 1l(s)=Eh(s) and

Ef(t)=g_(t)=a_(t)+[ e, (t,u)En(u)aw
Ef(t)h(5)=gl(t,5)

(s)+al(t,s).

Solving for ao(t),

=ao(t)Eh

8, (t,5)+{ e, (t,u)cov[n(s) ,h(u) lau=cov[£(t) ,h(s)].

1

This is the familiar Wiener-Hopf equation for the best
linear estimate. In the best quadratic (r=2) case, the
equations become more complicated. They are, assuming
Eh(s)s0, Ef(t)=0 for simplecity,

t)=—ét£ul..a2(t, u;, u,)Eh(u )n(u,)ds ds; (27a)
8, (t,8)=E£(£)n(s)={ e, (£,u)En(s)n(u)au
£ 8, (t,u, u,)covin(s) hlu; Inlu,y) laudu,  (27D)
a,(t,s,,8,)=cov[£(t),h(s,),h(s,)]
-, (t,u)covln(s, ) h(s,) h(u) Jau
—{lay(t,5 En(s h(u)4a,(t,5,,0)En(s, h(u) Jau
"I st

,ul,uz)cov[h(sl),h(sE),h(ul)h(uz)]duzdul(QTC)



[In (27}, cov Yxl,..Xr]EE(XJ—EXl)...(Xr—EXr).]

(27) shows how the kernels of different orders are
dependent on one another. Though not a standard
integral equation, (27) may be reduced, by using the
sclution of a related linear estimation problem, to a
single integral equation for a,. For fixed t this
equation is of Fredholm type f6r a,(t,*,*') and can
be solved by standard methods. We shall not go into
this theory here.

The multiplication formule can also be used to
derive the Kalman filter. Consider the simple case

ax(t)=an(t) =x(0)=0

dy{t)=x(t)at+aw(t)

where b(") and w(‘) are independent Brownian motions.

Then we can show that the optimal filter is
?(t)=éta(t,5)dy(S)

where
8

(t,s)+£tal(t,u)Eb(u)b(s)=Eb(t)b(s). (28)

The proof is simply to show that a(t,s) can be chosen
so that

_t oe(e)er® 1 © ()
. ?it)-g a(t,s)ay(s)=Ee(6)+r,_ 1,7 (k) /2427 T (1 JHog)
fFatt,oav(e)taary, 10 0 ) 1me (02407 180 (). (30

By expanding the 1.h.s of (29) using (8), and
equating kernels of different orders we derive the
infinite set of equations.

Jalt, ) (0)1, j+ay (£, )0, (2], =k,.
It can now be shown that if (31) is satisfied for

J=1, it is satified for all j>1, a result following
from the identity for Gaussian random variables:

(31)

lj(sl"sj)=Eb(sl)"b(sj)

=2 _peov(bls, Jb(s,))E[b(s,) . 0ls, ) )o(s, ). 0(s,)]

Sie1 3

(see Miller [ 9 ]. This derivation is somewhat formal
because the condition for the full expansion in (29)

to hold is that E[expétbe(s)ds]<®, which is valid
only for small t.

4. Relationship to Second Quantization
(After Segal and Nelson).

Let H be a real Hilbert space and let F:H+RV(Q,A,u)
be the unit Gaussian determined randem field. If

fl..,fn are orthonormal in H and ¢ is a Bounded Baire

function on Rn, then

L /2
6¢(F(fl),..,F(fn)-(zw)n/2£n¢(x)e‘ dx
For concreteness (,A,u) may be c?osen 30 be countably
<1l/o —x2/2
infinite copies of (R,B(R), (2m) 27X /Cay),
If E donotes expectation on (Q,A,u) then
E(F(fl)--F(f2n+l))=O (32)
B(F(f,)..F(£, ))=2[£, , £ 1O £ 1 (33)
1 1 n n
where the sum is over all pairings of 1, ""2n’ i.e.

i1<,..<in; il<jl""’in’dn’ and
(il’jl""’in’jn) is a permutation 1,...2 .
1P(0,A,1) is denoted by IP(H) andT(H) denotes

12(H). I'(H)<n be the closed linear span in T'(H)
of 8ll elements of the form F(fl)...F(fn) with m<n
and let I‘(H)n dencte the orthogdnal complement of
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T(H)<n_l in F(H)<n. For f,,..,f in H we define the

Wick polynomial:

:F(fl)...F(fn):
to be the orthogonal projection of F(fl)...F(fn) into
F(H)n. In the special case, where H is one dimensional
and hence r(H)=L2(R,B(R),(zw)‘l/ee'xz/edixr(H)n is the
one dimensional subspace spanned by the nth Hermite

polynomial and :x": is the nth. Hermite polynomial
normalization so that the leading coefficient is 1.
We have the formula

L:F(e) . F(g ) e, :F(gy ). Flg ) : ]

n
=Zﬁ[fﬂ(l)’g,]“[f (n)sgn]- (3)4)
where the sum is over all permutations mof 1,...n.
If all the f's and g's are equal, we get
© 2 wx?
[:F(f)n:,F(f)n]=% l/QL”(:xn:) e /gdx=n!. (35)

Let H, be the complexification of E (and let B

denote the n-fold Hilbert space) symmetric tensor

product of H1 with itself. On H2 we define the inner

product such that

lsym(f,2.. .81, ) Sym(g, @. . g ) =R [f qpe ] L5 ()08 ] (6

Sym (fl...an)=%12ﬂfw(l)ﬁ...ﬁfﬂ(n). (31

where

From (34) and (36), that the mapping
(F(£,). . F(£): Syn(fi2...0f )

extends uniguely to the unitary operator from T(H)n onto

H . We use this mapping to identify F(H)n and E _.

Analogous to the fact that the one~dimensional Hermite

_ —-
polynomials span L2(R,B(R),(2ﬁ) l/ze X /2dx), Segal proved

(38)

©

r(e)=I _E.,
for arbitrary real Hilbert space H. I'(H) is Fock Space.
If the random field F(f)=/fdB, where

feLQ(R)=H and B is the standard Wiener process, the el-
ements of T'(H)_ are multiple Wiener integrals (in the sense
of Tto). n

The space I'(H) is intrinsically attached to the
structure of H as a real Hilbert space. Thus if U:B+K
is an orthogonal mapping of one real Hilbert space
into another, it induces a unitery mapping T(U):T(H)>T(X),
where on H_, F(U)=Ug;f6§3. Similarly if I:H+K is an

isometric embedding then it induces an isometric embed-
ding T(I): T(H)*T(X) and similarly for an orthogonal
projection E:H*K. If A:H*K is a contraction then
T(A):T(H)*T(X) is defined to be the direct sum to

. > = L. . 1
T(A)n.Hn Kn’ where T(A)n A§;f0§é Now any contraction

A:H+K can be decomposed as

B L K — KEH

\\\é;ﬁb ///;%
X
where I, U and E are as sbove.

Hence T'(A)=T(E)T(U)T{I). Now T(A) is doubly
Markovian in the sense that

a>C+T(A)0>0

T{A)1=1

Er(A)a=Ea. (39)
Any doubly Markovian operation is a contraction from
P to 1P,

It turns out thatl'(A) has stronger contractive



properties and the precise statement of this is an im-
portant theorem of Nelson. Before we discuss this
result it is useful to recall that conditional

expectations on LQ(Q,A,u) can be characterised as linear
positivity preserving operators which are idempotant,
of norm <1 and preserve constants. We also know that
for p [1,»], p#2, all linear operators T on LP(QR,A,u),
which are idempotent, contracting and such that Tl=l
is necessarily a conditional expectation.
Theorem 3.1 {Nelson ercontractivity Theorem).
Let A:B¥K be a contraction. Then T'{(A) is a

contrection from Lq(H)*Lp(K) for 1<q<p<® provided that
g-Ly1/2
Wi (10)

If (40) does not hold then I(A) is not a bounded
operator from LY(E)IP(X).
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