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Abstract. Representations of conditional statistics (densities) are
described for the problem of nonlinear estimation of diffusion processes.
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1. INTRODUCTION

Estimation of the values of one random pro-
cess x(t) in terms of observations of a re-
lated process y(t) is one of the fundamental
problems in engineering and other applied
sciences. In particular, the comstruction

of efficient representations for the esti-
mates has proven to be extremely difficult in
all but a few special cases. In the case of
diffusion processes x(t), y(t) related by
differential equations

dx(t) = £(x(t))dt+g(x(t))dw(t)
(1.1)
dy(t) = h(x(t))dt+dv(t)

(scalar processes, smooth coefficients, w(t),
v(t) are standard Brownian motions independ-
ent from x(0)) one can bring to bear on the
estimation problem analytic PDE methods,
probability-martingale techniques, Lie al-
gebraic~differential geometric methods, func-
tional integration representations, group
representation methods, and techniques from
asymptotic analysis among others. Many of
these approaches are discussed in the volume
(Hazewinkel, Willems (1980)), especially in
the papers by M.H.A. Davis, R.W. Brockett,
E. Pardoux, S.K. Mitter, J.S. Baras, among
others there, and in the papers Mitter
(1980), Baras, Blankenship (1980)

Mitter, Ocone (1979), Pardoux, (1979),
Blankenship (1980). The paper by Davis and
Marcus (1980) provides an especially useful
introduction to the nonlinear filtering of
diffusion processes which complements this
paper.

In the remainder of this section we set up
the filtering problem for diffusions. In
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Section 2 we discuss questions of existence
and uniqueness for the evolution equation of
the conditional statistics together with its
algebraic structure. In Section 3 we de-
scribe certain approximation methods for
treating nonlinear filtering problems.

The nonlinear filtering problem consists of
recursively computing estimates E{v(x(t))ly(@,
0ssst} where x(t) is a scalar diffusion pro-
cess and y(t) a scalar observation process
described by (1.1). We shall consider ‘only
scalar signal and observation processes for
simplicity. All results can be easily
extended to vector signal and observation
processes.

The fundamental quantity in this problem is
the conditional probability measure of x(t)
given y(s), 0ss<t, which we shall denote by
vt(dx). Consider now the conditional

expectation operator

T @) = Eo(x(e)]F)] (1.2)
where

?z = g{y(s),0ssst) (1.3)

and ¢ belongs to some appropriate class of
functions. Clearly we can write

nt(:.'ﬂ) = J:;a(x)vc(dx), (1.4)

that is as a linear functional. One of the
most significant recent developments has been
the emphasis on "unnormalized'" versions of
conditional expectations and probability
densities. As we shall see it is far more
convenient to analyze an unnormalized form

ct, which defines nt via
6 o
L ®)

ct(l)

ﬂtG;) = (1.5)

where 1 is the constant function with values




one everywhere. It is a direct consequence
of Girsanov's theorem (Stroock, Varadhan
1979) that o_ can be represented via the so
called Kallianpur-Striebel formula

ot@)-}uxu»-
t ¢ (1.6)
exp[f h(x(S))dY(S)—%f n (x(s))ds s (dx)
0 0

where | represents the path-space measure
over the paths of the signal process x(-).
We shall have more to say about this formula
in Sections 2 and 3.

This formula is non-recursive; however, one

can pass to a recursive equation in two steps.

First we have a "weak" differential form of
(1.6)

© @) =0 &pldtio, (hp)dy(t) i 7
Oo@) =m,)

where £ is the infinitesimal generator of
the x process in (1.1):

1 9. (5% 3
o1 (x)=58 (X)-a:itb(x)-*f(x)w(x) (1.8)

where m is induced by the initial distribu-
tion of XsPqe In a second step we consider

the formal adjoint to (1.7)

*
dv_ =2 v _dt2.v_dy(t)
t 0t 1t (1.9)

= formal adjoint of =(;0
(1.10)
£. = operator "multiplication by the
function h''

This is the Duncan-Mortensen-Zakai (DMZ)
stochastic p.d.e.

For certain algebraic considerations, it has
been established (Hazewinkel, Willems 1980;
Mitter, 1980; Baras, Blankenship, 1980;
Mitter, Ocone, 1979; Pardoux, 1980
Blankenship, 1980; Davis, Marcus, 1980) that
it is more convenient to consider the
Stratonovich version of (1.9) obtained after
doing a Wong-Zakai correction

*
v, = @22 ek 2,V dy ()
(1.11)
Yo = Po
We 'shall impose appropriate conditions of
£0, #£,, so that V_ becomes a well defined
probability densiEy in an effort to minimize
mathematical technicalities. We can then
rewrite (1.11) using the suggestive notation

oV

£ o B
— =& -5 LT+y ()L, )V
3t 0"t %) 1V i 5
Yo = Po

We consider equation (1.12) to be the fundda-
mental equation of nonlinear filtering and in
essence the nonlinear filtering problem is the
study of this equation in an "invariant"
fashion.

Relative to equation (1.12) it is worth point-
ing out one other fact. Clearly what is most
desirable is the fundamental solution of
equation (1.12). This can be obtained by
functionally integrating (1.12) via a Feynman-
Kac formula

t t
ct<a.s)-jexp(f h(xs)dys-sf b x ) ddisgg (dx)
0 0 (1.13)

where “aB is the conditioned x-process meas-

ure, the conditioning being x,.=x and xt-ﬁ.

0
We would like to discuss one other facet of
nonlinear filtering, viz. robust filtering
(Hazewinkel, Willems 1980). From the theory
of conditional expectations, there exists a
functional y:C(0,T)* R such that

Efp (xt)lffz] =y, hy = a.s. (1.14)

and uy has the same null sets as Wiener meas-

ure. Hence the set of functions of bounded
variation is a null set. Now in physical
situations all observations will have finite
bandwidth and hence will be of bounded varia-
tion and ¥ will be undefined for all physical
observations. Thus, what is required is an
extension of the functional y from C(O,T;py)

to all of C(0,T). This cannot be done unless
we eliminate the Itd-integral from (1.6).
This can be achieved by an "integration by

parts", and we can express ctﬁp) as

= y
ct(CP) J To,cBy(c)”o‘de (1.15)

where TZ ¢ is the y-dependent semi-group
Ll

associated with a certain multiplicative
functional transformation (Hazewinkel, Willems
1980) and By(t) is the operator multiplication

by exp[h(x)y(t)]. Computing the generator of
Tz ¢ amounts to obtaining a "robust" form of
’
the Zakai equation, an equation where there
are no stochastic differentials.
Computing the generator of Ti ¢ is of some
’

interest and it is useful to introduce the
ideas of multiplicative functionals of Markov
processes, and some special multiplicative
functions. The ideas here are due to Davis
(Hazewinkel, Willems 1980) and Mitter
(Hazewinkel, Willems 1980).

One then computes the generator of TZ ¢ 28
’

£§¢ =L, p+y(s) (adhio)ﬁp'ﬂiyz (s) (adi:ﬁo)‘f"!ihz
(1.16)

where (using the Lie brackett notation]




{ (adi£)?d (0)=[h
= £ (1) ()

,{,0]'9 (x)=h(x) (=i0<9) (x)-
(1.17)

and adéﬁo is defined recursively.

Indeed the above considerations suggest that
* 2
the Lie algebra of operators ﬂ[a{,o-% =€',1,=£1]

has an essential role to play in nonlinear
filtering theory. This is explored further
in Section 2.

2. THE FUNDAMENTAL P.D.E: EXISTENCE,
UNIQUENESS AND ALGEBRAIC STRUCTURE.

In this section we use methods from the
theory of partial differential equations to
analyze the basic stochastic p.d.e. in non-
linear filtering theory of diffusion proc-
esses, i.e. the Duncan-Mortensen-Zakai equa-
tion (1.9). We consider diffusions in un-
bounded domains. The existence of boundaries
introduces further complications and for this
reason such cases are not treated here.

In order to analyze (1.9) with elementary
methods we need some definitions and several
basic facts from the classical theory of
p.d.e.'s

Definition 2.1: wu(x,t) is a regular solution
of a p.d.e. if u is continuous iniRx[0,T}, if
the derivatives of u which appear in the
p.d.e. are continuous and satisfy the p.d.e.
at every point of iRx(0,T].

We will be primarily interested in classical
solutions here. Extensions to distributional
solutions etc. are rather straightforward
(see for example Pardoux, 1979). On the
other had we wish to include, unbounded f,g,h
(c.f. (1.1) in the theory due to important
practical examples of such type. Furthermore
since u(-,-) is a probability demsity it

clearly belongs to ﬁnCRx(O,T)), u(~,t)eLIGR),
for each te[0,T] and is nonnegative.

We will follow an indirect route in the
analysis of the stochastic p.d.e. (1.9). To
avoid consideration of a stochastic p.d.e.,

we introduce following (1.14)-(1.16), an
integrating factor and consider instead "path-

wise solutions'" (Davis, Marcus, 1980). Thus
letting
p(x,t) = exp(-h(x)y(t))v(x,t) (2.1)

we see that p satisfies formally the p.d.e.

w0 4

—p (x, t)+(y(t)a x)h'(x)+
a"'(x)-f(::)>§§<x,n>+{§y2(c>a*(x)h'(x>2+
y(£) Ga" GoR' " G+a” ' (OB ()-GO ()
1,2, . 1% 1

-5h (x)+§a ") -£T(x)p (%, 1)

P (x,0)=p0(x),

where we have made the simplifying assumption
y(0)=0. To simplify later cemputations we
introduce the notation
*
a (x): = gz(X)
* * *
b (x,t): = y(t)a (x)h'(x)+a "(x)-f(x)
* *
Fero): = B ma eon e’

1 % *
+ y(t) GGa (x)h"(X)+a '(x)h' (x)-

- f(x)h' (%)) - (x)=—a ()£ (%),

(2.3)

The significance of the transformation (2.2),
which brings the fundamental equation to its

so called "robust form", is that we are now
faced with a classical p.d.e. parametrized by
the observation paths. In particular for a
given sample path yeC[0,T] (2.3) is a linear
parabolic p.d.e., and therefore classical
p.d.e. methods can be applied in analyzing
existence, uniqueness, regularity of solutions.

We can now make precise what we shall under-
stand as a solution to the stochastic p.d.e.
(1.9) or (1.12).

Definition 2.2: v(x,t) is a regular solution o
of (1.9) or (1.12), if for each yeC[O0,T],

(i) 1t belongs to L @®x(0,T)) and to
LL@R) for each te[0,T);

it is related via an exponential
transformation (2.1) to a non-neg-
ative regular solution of (2.2).

(i1)

This route to analyzing the unnormalized
conditional density in nonlinear filtering of
diffusion processes has been followed pre-
viously by Davis (1980) and Pardoux (1979),
although they emphasized different construc-
tions than ours. Furthermore their results
cover cases where the system parameters, i.e.
the functions f,g,h are uniformly bounded.

So in a certain sense the results presented
here are extensions to unbounded coefficients.

Classical p.d.e. results useful in nonlinear
filtering can be found in Aronson and Besala
(1967), which are extensions of earlier
results by Krzyzankki (1962), Szybiak (1959)
and Bodanko on existence and uniqueness of
regular solutions to linear parabolic p.d.e.
with unbounded coefficients.

Using such results we see that under some
widely used conditions on f,g,h of (1.1),
existence, uniqueness and regularity of (2.2)
hold. Specifically consider °

The coeff1c1ent functions f,g,h
as in (2.3)):

Hypothesis 1:
of (1.1) satisfy (a*(x)= g

(1) f»g.h:fx,gx,hx,gxx,h

continuous on compact subsets of ;
For some (=A>2, there exist positive

constants G, G GZ,F F + M Hl,H2 such

are Holder
x
(ii)

that



It is not difficult to show that under rea-
& sonable assumptions on x(-) and h, v (x,t) is
]gxx(x)lscz(lx|2+l)(3k z)la,lf(x)lSF(lx[2+l)%, a.s. finite.

A/2 2. .\N/4 Theorem 2.3 (Baras,Blankenship 1980). Suppose
Jh(x)lSH(lxl +1) » (1.1) has a weak solution on .<x[0,T], and that

(A-1)

IS(X)ISGQXI2“'1)(24\)/4'18,((*)15@1(1?(12+1)XM’

b
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A (0 |sH, (x| 2+t
(2.4)

lhx(x)lsﬂl(lxl 41y

for all (x,t)exx[0,T].

We have then the following existence result
for (2.2).

Theorem 2.1 (Baras, Mitter, Ocone (1980))
Suppose Hyp. 1 holds and that g(x)#0 in R.
Then for some Tg>0, the fundamental solution
M(x,t;8,7T) of (2.2) exists for all x,EeR,
OsTs tSTO and

fr(x: t;g sT )dESMeG (X)

=

where
[l (| %) 241)+4112, 1f A=0

G(x) =
Lk(lxlz+l))‘/2; if 0SAS2

and M,k are positive constants. Moreover
M(x,t;$,7)20 and it is the fundamental solu-
tion of the adjoint equation to (2.2) as a
function of (§,T).

Theorem 2.2 (Baras, Mitter, Ocone (1980)):
Suppose hypothesis 1 holds and that

g()zy (| x| 1) 2HI/4
(x,t)erx[0,T].

non-negative regular solutions of (2.3) on

for some ¥>0 and all
1f pl(X.t). pz(x,t) are two

T
P( hz(x(s))ds)=1. Then the stochastic Feyman-
0

Kac formula (2.6) provides a well defined a.s.
finite representation for v (x,t).

Note that v (x,t), as given by (2.6) will sat-
isfy the DMZ equation (1.9) in a weak sense.
There is no claim for uniqueness in Theorem
2.3.

A uniqueness result different than that of
theorem 2.2 can be stated. It is clear that
via appropriate transformations it suffices
to consider the case where f=0, g=1. Then by
a rather standard exponential transformation,
and a classical maximum principle argument
one can show that solutions to (1.12) are
unique provided

[hGO)|/[n' x) |+ as | x|+
2 (2.7)
[R°G| /|t () |+ as |x|+
Note that this condition includes polynomial
nonlinearities, in the observations.
Instead of computing the conditional density
from (1.9) (1.12), one may only be interested
in computing some conditional "statistic"
s(t)=E{¢ (x(t))|#Y}. There are several ways
one can compute such statistics, but the most
widely understood way is via a finite dimen-
sional stochastic system driven by the obser-
vations:

dz(t)=F(z(t))dt+G(z(t))dy(t),s(t)=H(z(t)).
(2.8)
We shall call (2.8) a finite dimensional non-
linear filter. A natural question is then:
Given (1.1) when can we say that there exists

Rx(0,T] with the same initial data then

(or not) a statistic s(t) that can be described
Dl(x,t)=p2(x,t) in Rx(0,T].

by a nonlinear filter like (2.8)? For a
special type of statistic, Brockett (1978) was
able to provide an interesting answer. The
argument goes as follows. Suppose we restrict
our attention to analytic functionals of the
process, meaning s(t) is an analytic functional
of p(x,t). 1In (2.8) z(t) is usually vector
valued. Then we can view the map from obser-
vations y to the statistic s as an input-out-
put map, which has two realizations. One is
via the conditional density equation (1.9)

and the other is via the filter (2.8).or

dz(t)={F(z(t))~% G, (z(£)6(z(t))]de+G(z(t))dy(t)

(2.9)
Brockett (1978) then, by analogy with finite
dimensional linear analytic realization theory,
conjectured that the two Lie algebras:

hom
2.4Lf - L2 2} 32 a(F- 26,6,) (2.10)
should be homomorphic. Moreover once the hom-
morphism is known a statistic, evolving accord-
ing (2.8) can be constructed. This observation
created a stream of recent work, which aims at
understanding the ideal structure of the so

called estimation algebra (the left hand side SELT
of (2.10) (see Hazewinkel, Willems 1980). g

We note that theorems 2.1, 2.2, cover the
linear case, where f(x)=tx, g(x)=8, h(x)=yx,
«,p,Y constants, while for example the results
in Hazewinkel, Willems (1980); Pardoux (1979),
do not. 1In Baras, Mitter, Ocone (1980),
vector analogs of these results are given.

There are of course several theorems of this
type, that one can give based on classical
p.d.e. results. An important point to make,
however, is that existence of solutions (1.9)
(1.12) can be established quite easily for
fairly general coefficients by probabilistic
arguments. This route is based on certain
martingale properties of the Kallianpur-
Striebel path integral representation of solu-
tions (1.6). '

Then let:

® =o{w(s),v(s),x(0),0ssst] . (2.5)
It is a direct consequence of the Kallianpur-

Striebel formula that ¢

v(x.t)=Ex{v0(x(t))exp[I h(x(s))dy(s) -

1t o 0
5 Jo hZ(x(s))ds]u (dx)] (2.6)



3. APPROXIMATION METHODS

Synthesis of nonlinear estimators using lim-
ited computational resources is a critical
problem in engineering and the applied sci-
ences. While it is possible that the algebra-
ic structure of the DMZ-equation will reveal
novel finite dimensional, recursive filters
in specific cases, it is not unlikely that
most of these will be mathematical curiosities
that do not contribute to the synthesis prob-
lem in any major way. Rather the algebraic
structure of the DMZ-equation in particular,
and of nonlinear estimation problems in
general will be of value to the extent that
it enables the construction of useful approx-
imations to specific nonlinear filters.

Given this prolegomenon, we shall examine two
approximation methods for nonlinear filters:
(i) approximate evaluation of the function
space integral for the conditional density;
and (ii) techniques for the asymptotic anal-
ysis of filtering problems containing param-
eters.,

A. Accurate evaluation of stochastic function

space integrals

In the system

dx(t)=f (x(t)dt+g(x(t)dw(t)
(3.1)
dy(t)=h(x(t)dt+dv(t), OStsT

suppose that g(x)#0 everywhere so that x(t)

is equivalent under a change of measure
(Girsanov transformation) to a Wiener process,
say z(t). Let (z(t),y(t)) be the process in
the transformed system. An estimate of z

given v{ is evidently equivalent to an esti-

mate of x. Since z is a Wiener process the
function space integral (equation (1.13))
which represents the conditional density is a
Wiener integral, that is, an integral versus
Wiener measure on C([0,T]). Hence, its
evaluation or approximation is especially
simple. To see this consider the stochastic
Wiener integral

T
I= EieXP[J" V(x(s)dy(s)]} (3.2)
0

Here V is a smooth function, y is an It8
process, and the expectation is relative to
Wiener measure. (So I is a random variable
with sample space the path space of y.) Now
if F is a functional on C([0,T]) the Wiener
integral IO=E£F(x)} is defined as the sequen-
tial limit

I3

I= lim | da, ... da F(z )
maxit.-t. l*O ) 1 noosx
i i1 n
R
I1=i=n

(3.3)

2
n exv[-(aj-aj_l) /2(tj—tj_l)]

4 n/2

j=1 [Zn(cj-tj_l)]

where Kt <t.<...<t =T and z__ is a polynomial
172 n sX

function on [0,T] passing through x at t=0.
If one chooses quadratic interpolation for-
mulas for the Brownian paths (an idea due in
this context to A. Chorin), expands the func-
tional F in a Taylor series, and then uses
the Gaussian-Wiener measure to explicitly
evaluate the terms in the expansion of the
integral, the approximation

E{F(x)}-n’n/ZJ Fn(ul.-...un)exp(—ui-...-ui)

n
R (3.4)

-2
5 dul...dun+0(n )

follows. The analysis in (Blankenship,Baras
1980) is an extension of this process to
Wiener integrals of the stochastic functional

F(x)=exp[JTV(x(s)dy(s)]. From Theorem 4 of

0
(Blankenship, Baras 1980)

T
sxexp[f V(x(s))dy(s)1)

=(2ﬂ)-n/2I exp[iz V(x, +vI/(20) By, .1}
s S i-1

R0 (3.5)
.exp[(-ui-...-uf‘_l-vz)IZ]dul...dun_ldv-i-en
where (Elenlz)%=0(n-2) (expectation over the

paths of y). This formula together with the
results of Chorin (1973) for the case dy(s)?ds
lead to simple accurate approximations in
filtering problems. We illustrate this with
two generic examples.

Conisder

dx (t)=tsx(t)dt+x(t)dw(t) ,x0>0
; (3.6)
dy (t)=x(t)dt+dv(t), Ost=T

This violates g(x)#0, but it is accessible to
a simple transformation.

Let z=anx. Then, using the It8 calculus
z(t)

dz(t)=dw(t), dy(t)=e de+dv(t),
(3.7)
Zy= U with density 99
The DMZ equation in the new coordinates is
<2
z = o z~ £ =
d§ =tr—,§ dt+e’§ dy(t),5,(2)=q,(2) (3.8)

oz
Because the Laplacean appears in (3.8) the
underlying measure u in the representation

formula (1.13) is Wiener measure. In the
"backwards' form (Pardoux 1979)

T (2(s)42)

§t(z)=E{exp[[ dy(s)-
% (3.9)
(T
g 2O 4510 (2(1)42))
t




Here §T(z)=¢(z) and d; is a backwards Ité

increment and the expectation is over Brownian
paths z with z(t)=z. It is not obvious that
(3.9) is well-defined; however, using results
onstochastic integrals with respect to semi-
martingales, one can show that (3.9) is finite
almost surely (samples of y). Using (3.5)

and Chorin's formula it is clear how to
approximate §t(z) arbitrarily well. We will

omit the obvious expression.

A second example considered in Blankenship,
Baras (1980) is

dx(t)=f(x(t))dt+dw(t), dy(t)=x(t)dt+dv(t),
OstsT. (3.10)

B. Asymptotic Analysis of Filtering Problems

Suppose now that the opetators;£0;£l in (1.9)

depend on a parameter ¢>0 and that the oper-
ator limit Géggﬁi
€+0. This is clearly the case when the
message process X is weakly stochastic
(g(x)eg(x)), or the observation noise is
small (v(t)~v(t)), etc., in (3.1). In the
papers (Blankenship 1980; Blankenship, 1978)
a methodology is developed for an asymptotic
analysis of such problems, especially when

)*Gﬂg;ig) is "natural" as

the limit system Gﬁg;{g) corresponds to a

Kalman-Bucy system. We will illustrate this
analysis with a single example-weak parametric
noise.

Consider the scalar system

ax® (£) = ax® (t)dt+bdw(t)+/ex* (t)dn(t)
3 € (3.11)
dy (t)=ex (t)dt+dv(t), OStsT

where (a,b,c) are constants, €>0, and v,w,n
are independent, standard Brownian motions.

As €+0 the pair (xe,ye) approaches, in
distribution, a Gauss-Markov process (x,y) to
which the Kalman-Bucy algorithm may ge

applied. To estimate x° (t) given Jz for e

small, we use a perturbation argument based
on this "limiting filter".

The DMZ equation for (3.11) is

*
d:i%%cetdt-i:ﬁloidye (t), £ f=(cx) £

(3.12)
750 I L 182 2 4,0
o —— - —_—— =/
0f=5-—f¢ ai (xf)tes = 5 (x f).~O tcA
ox ox
Také the ansatz Giasg+eci+ ... and substitute
in(3.12). Equating powers of ¢, this gives
0_,0*% 0 0. ¢
dctaio cttﬁfstdy (t) (3.13)

which is the Kalman-Bucy algorithm with ye as
an input, and

K o080, .- k. g k=1, ., _
do t-[.-{.o ctdtﬁ,ldtdy (t)]+ﬁat dt,k=1,2,...

(3.14)

Evidently, co, a Gaussian density, is the
fundamental solution of (3.14). Therefore,
(3.14) can be integrated explicitly in terms
of various moments of a Gaussian for any k.
We will omit the self-evident expression; see
Blankenship (1980) for details.

Convergence of the asymptotic expansion for
o® can be shown by writing the evolution

; & k=oe -(c 0+eo 1+ +e ko k) and

I AR At Sl t
exploiting simple estimates based on the
Gaussian density 02.

equation for ©

While it is evident that an asymptotic anal-
ysis can yield new information about certain
nonlinear filtering problems, the practical
and computational limits of the methodology
are, as yet, unknown.
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