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Abstract 

We propose a very general framework for hybrid control 
problems that encompasses several types of hybrid phe- 
nomena considered in the literature. A s ecific control 
problem is studied in this framework, leaing to an ex- 
istence result for optimal controls. The “value function” 
associated with this problem is expected to satisfy a set 
of “generalized quasi-variational inequalities.” 

1 Introduction 

Hybrid control systems are those that involve both con- 
tinuous dynamics and controls, as well as discrete phe- 
nomena. Some examples include computer disk drives 
(131, transmissions and stepper motors [lo], constrained 
robotic systems [2), and intelligent vehicle/highway sys- 
tems (191. More generally, such systems arise whenever 
one mixes logical decision-making with the eneration of 
continuous control laws, such as in modern flight control 
systems. 

In this paper, our focus is on the case where the con- 
tinuous dynamics is modeled by a differential equation 

.(t) = [(t), t 2 0. (1) 

Here, ~ ( t )  is the continuous component of the state tak- 
ing values in some subset of a Euclidean space. [ ( t )  is 
a controlled vector field that generally depends on z( t ) ,  
the continuous component u(t )  of the control policy, and 
the aforementioned discrete phenomena. The discrete 
phenomena generally considered are of four types: (1) 
autonomous switching, (2) autonomous jumps, (3) con- 
trolled switching, and (4) controlled jumps. 

In this paper, we study a model that subsumes all these 
phenomena and study an associated control problem. The 
paper is organized as follows. The next section details the 
above discrete phenomena. Section 3 reviews models of 
hybrid systems from the control and dynamical systems 
literature. Section 4 abstracts the phenomena found in 
hybrid systems to a unified framework that encompasses 
all the other reviewed models. Section 5 defines an opti- 
mal control problem in this framework. The existence of 
an optimal control for this problem is established in Sec- 
tion 6. Section 7 gives a formal derivation of the associ- 
ated generalized quasi-variational inequalities. In Section 
8 we solve some example problems using the developed 
theory Section 9 concludes with a list of some open is- 
sues. 

Finally, we collect some notation used throughout. 
First, we tnake use of the abbreviations ODES (ordi- 
nary differential equations), FA (finite automata/on), and 
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DEDS (discrete event dynamical systems; see [15]). R, 
R+, Z, Ibd denote the reals, nonnegative reals, integers 
and nonnegative integers, respectively. For x E R,  Lx 
denotes the greatest integer less than or equal to z, a n d  
in an abuse of common notation, rz1 denotes the least 
integer greater than z. N denotes the set {1,2,. . . , N } .  
f ( t+) ,  f(t-)  denote the right- and left-hand limits of f at 
t, respectively. 

This paper is a summary of [8], which will be published 
in full elsewhere. For lack of space, all proofs have been 
deleted from the present paper. See [8] for proofs and 
more details. Closely related issues occur in the study of 
piecewise deterministic processes [12]. 

2 Hybrid Phenomena 

In this section, we briefly examine the discrete phe- 
nomenon that arise in the study of hybrid systems. 

Autonomous Switching. Here the vector field <(.) 
changes discontinuously when the state z(.) hits certain 
“boundaries” [17, 181. The simplest example of this is 
when it changes depending on a ‘‘clock” that may be mod- 
eled as a supplementary state variable [lo]. An example 
of autonomous switching is the following: 

Example 2.1 Consider a control system with hysteresis: 

s = f(z, U) E M(2)  + U, 
where the multi-valued function H is shown in Figure 1 

H 
I ’  

Figure 1: Hysteresis function, H .  

Note that this system is not just a differential equation 
whose right-hand side is piecewise continuous. There is 
“memory” in the system, which affects the value of the 
vector field. Indeed, such a system naturally has a finite 
automaton associated with the hysteresis function If, as 
pictured in Figure 2. 

x ? A  

x < A  

x S - A  

Figure 2: Finite automaton associated with H .  

Autonomous Jumps. Here x(.) jumps discontinu- 
ously on hitting prescribed regions of the state space [2, 31. 
The simplest examples possessing this phenomenon are 
those involving collisions. 
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Example 2.2 Consider the case of the vertical and hor- 
izontal mo t ion  of a ball of mass  m in a room R under 
gravity with constant g .  Take R = [O,a] x [ O , b ] .  In this 
case, the dynamics  are given by 

x =U,, y = wyr U, = O ,  V, = - m g .  

Further, upon hitting the boundaries {(x, y) I y = 0 or y = 
b} we instantly set vy t o  -pug,  where p E [0,1] is  the coef- 
ficient of restitution. Likewise, upon hitting {(x,y) I x = 
0 or z = a }  v, is  set t o  -pvz.  

Controlled Switching. Here <(. changes abruptly in 

This can be interpreted as switching between different 
vector fields [21 . Controlled switching arises, for instance, 

fields: ? = f i ( z ) ,  i E g. 
Example 2.3 A simplified model of a manual  transmis- 
sion i s  given by [lo] 

response to a control command wit i an associated cost. 

when one is a1 / owed to pick among a number of vector 

xi = x 2 ,  x 2  = [-a(x2) + 4/ ( l  + U ) ,  

where XI is the ground speed, 2 2  is  the engine RPM, U E 
[0,1] as the throttle position, and U 6 {1 ,2 ,3 ,4}  is  the 
gear shift position. T h e  func t ion  a is  positive for  positive 
argument. 

Here z(.) changes discontinu- 
ously in res onse to a control command, with an asso- 
ciated cost fi]. 
Example 2.4 I n  a simple inventory management  model 
41 there are a “discrete” set of restocking t imes 01 < b, ’< . . and associated order amounts  a i ,  0 2 , .  . . . T h e  
equations governing the stock at any  given m o m e n t  are 
y(t)  = - p ( t )  + xi 6( t  - 0l)ai, where p represents degra- 
dation or utilization dynamics  and 6 is  the Dirac delta 
funct ion.  

Controlled Jumps. 

3 Review of Models of Hybrid Systems 

This section briefly summarizes five models of hybrid sys- 
tems developed from the dynamical systems and control 
point of view [18, 2, 17, 1, lo]. For sure, there are many 
others and no review is attempted here [14]. 

3.1 Tavernini’s Model 
Tavernini discusses so-called diflerential automata in [18]. 
He was motivated to study such systems as a means of 
modeling hysteretic phenomena such as backlash and fric- 
tion (c:f. Example 2.1). 

A diferent ial  automaton,  A, is a triple (S, f ,  U) where S 
is the state space of A, S = R” x Q, Q N is the discrete 
state space of A ,  and B“ is the continuous state space of 
.4; f is a finite family f ( . ,  q )  : R” -+ R”, q E Q, of vector 
fields, the continuous dynamics  of A; and U : S 4 Q is 
the discrete transition func t ion  of A. 

Let v, E u( . !q ) ,  q E Q. D;fine I ( q )  =,vq(Rn)\{qb, that  
is, the set of discrete states from 
q. We require that for each q E Q and each p E Z ( q )  there 
exist closed sets 

The sets LIM,,, are called the switching boundaries of 
the automaton A. Define Mq = UpGI( , )  Mq,p  and define 
C(q) z Rn\Mq. The equations of motion are 

reachable in one step 

M,.P = vq-l(P). 

.(t) = f ( z ( t ) , q ( t ) ) ,  d t )  = v(z( t ) ,d t - - ) ) ,  

with initial condition [z(O), q(0)lT E U q E Q C ( q )  x { q } .  
The notation t- indicates that the discrete state is iece- 
wise continuous from the right. Thus, starting at f&,i], 

I L 

Figure 3: Example dynamics of Tavernini’s model. 

the continuous state trajectory x(.) evolves according to 
x = f ( z , i ) .  If z(.) hits some aMi,j at time t i ,  then the 
state becomes [z ( t l ) ,  j ] ,  from which the process continues. 
See Figure 3.  

The switching boundaries are not allowed to be arbi- 
trary; several key assumptions are placed on them in [18]. 

3.2 Back-Guckenheimer-Myers Model 
The framework proposed by Back, Guckenheimer, and 
Myers in 21 is similar in spirit to the Tavernini model. 

in the continuous state space and setting of parameters 
when a switching boundary is hit. This is done through 
transition funct ions defined on the switching boundaries. 
Also, the model allows a more general state space. 

More specifically, the model consists of a state space 

The mode I is more general, however, in allowing “jumps” 

. ! ? = U S q ,  Q N { L ,  . . . ,  N}, 
q E Q  

where each S, is a connected, open set of R”. Notice that 
the sets S, are not required to be disjoint. 

The continuous dynamics are given by vector fields f ,  : 
S, -+ R”. Also, one has open sets U, such that U,  c S, 
and aU, is piecewise smooth. For q E Q, the transition 
functions 

G, : S, -+ S x Q 
govern the jumps that take place when the state in S, 
hits aU,. They must satisfy ?ri(G,(z)) E ur2(~q(a ) ) ,  
where 7rk is the kth coordinate projection function. Thus, 
;i(Gq(z)) is the “continuous part” and 7r2(G9(x))  is the 

The dynamics are as follows. The state starts at point 
20 in U,. It evolves according to i = f , ( z ) .  If x(.) hits 
dU, a t  time t i ,  then the state instantaneously jumps to 
state in U ? ,  where G(x(t1)) = ( & j ) .  From there, the 
process continues. We refer to this as the BGM model. 
See Figure 4, which is reproduced from [2]. 

discrete part” of the transition function. 

. .  ..- 

Figure 4: Example dynamics of the BGM model. 
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3.3 Nerode-Kohn Model 
In [17 Nerode and Kohn take an automata-theoretic ap- 
proack to systems composed of interacting ODEs and FA. 
Many cases of their approach are given, but here we only 
discuss their “evenbdriven, autonomous se uential deter- 
ministic model” (herein, NKSD [17, p. 333.  

control automaton, and interface. In turn, the interface 
is comprised of an analog-to-digital (AD) converter and 
digital-to-analog (DA) converter. See Figure 5. 

The model consists of three 1, asic parts: plant, digital 

Symbol, Symbol, 

Automaton 
% G I  Digital O E O  

~ 

I DA I Interface 

‘---I Plant l+--J 
Measurement, I I Control, 

Y E Y  U ( . )  E PU 

Figure 5: Hybrid system as in Nerode-Kohn model. 

The plant is modeled as 

4 t )  = f(.(t),.(t)), d t )  = W t ) ) ,  (‘4 
where ~ ( t )  E X C R“, u( t )  E U c R“, y E Y c Rp,  
f : X x U -+ R”, and h : X -+ Y.’ 

The digital control automaton is a quintuple 
(Q, I , O ,  v , ~ ) ,  consisting of the state space, input al- 
phabet, output alphabet, transition function, and out- 
put function, respectively. The functions involved are 
U : Q x I -+ Q and 7 : Q x I -+ 0. In eneral, Q ,  
I ,  and 0 are each isomorphic to subsets of l’? However, 
the interesting case is where these sets are finite, which is 
discussed below. The “dynamics” of the automaton are 
given by 

q k + l  = V(qk,ik), Ok = 7(Qk,ik). 

This automaton may be thought of as operating in “con- 
tinuous time” by the convention that the state, input, and 
output symbols are piecewise right-continuous functions. 
Then, the convention is that the state q ( t )  changes only 
when the input symbol i(t) changes. 

It remains to couple the plant and control automaton. 
This is done through the interface by introducing maps 
A D  : Y x Q -+ I and D A  : 0 -+ PU.  Here, PU denotes 
the set of piecewise right-continuous functions in U[’”). 

The A D  symbols are determined by (FA-state- 
dependent) partitions of the output space Y. These par- 
titions are not allowed to be arbitrary, but are the “es- 
sential parts” of small topologies placed on Y for each 
q E Q [6, 171. Analogously, to each o E 0 is associated an 
open set of PU. The D A  signal corresponding to output 
symbol o is chosen from this open set of plant inputs. 

In full, we have the system 

Above, t ]  denotes the time at which the input symbol last 

Assume the continuous state is evolving according to the 
change d . Briefly, the combined dynamics is as follows. 

‘We have lumped the control and disturbance signals of [I71 
into a single signal U. 

first equation and that the FA is in state q. Then A D ( . , q )  
assigns to output y(t) a symbol from the input alphabet of 
the FA. When this symbol changes, the FA makes the as- 
sociated state transition, causing a corresponding change 
in its output symbol 0. Associated with this symbol is a 
control input, DA(o) ,  that is applied as input to the dif- 
ferential equation until the input symbol of the FA again 
changes. 

3.4 Antsaklis-Stiver-Lemmon Model 
In [l], Antsaklis, Stiver, and Lemmon take a DEDS ap- 
proach to hybrid systems. Conceptually, the model is 
related to that of Nerode and Kohn. We refer to it as the 
ASL model. 

Like the NKSD model, the ASL model consists of three 
basic parts: the plant, the controller, and the interface. 
Again, see Figure 5. The plant is modeled as Eq. (2) ,  
with X = R”, U = R”, and Y = Rp. The controller is 
a discrete event dynamic system, thought of as operating 
in continuous time as in Section 3.3: 

d t )  = 4 q ( t - ) > i ( t ) ) >  o ( t )  = V ( Q ( t ) ) ,  

where q ( t )  E Q, i(t) E I ,  and o ( t )  E 0, the state space, 
plant symbols, and controller symbols, respectively. The 
sets Q ,  I ,  and 0 are unspecified in [l], but we take from 
context that they are each isomorphic to subsets of N. 
The maps are U : Q x I -+ Q and 

The plant and controller communicate through an in- 
terface consisting of two memoryless maps, D A  and AD. 
The first map, called the actuating function, D A  : 0 -+ 
R”, converts a controller symbol to a piecewise constant 
plant input: u( t )  = D A ( o ( t ) ) .  The second map, called 
the plant symbol generating function, A D  : R” -+ I ,  
is a function that maps the plant state space to  the set 
of plant symbols: i(t) = A D ( z ( t ) ) .  The function A D  is 
based upon a partition of the state space, where each ele- 
ment of the partition is associated with one plant symbol. 
The combined dynamics is similar to that of the NKSD 
model. 

: Q -+ 0. 

3.5 Brockett’s Models 
Several models of hybrid systems are described in [lo]. 
We only give his “type D hybrid system” here: 

4 t )  = f(.(tL4t),.bJ), 
P ( t )  = T ( Z ( t ) , U ( t ) ,  Z lPJ ) ,  

ZIP1 = 4 4 t I l 4 P l , ~ l p l ) l  

where z ( t )  E X C R”, u( t )  E U C R”, p ( t )  E R, vLpJ E 
V, z b J  E 2. Also, f : X x U x Z -+ R”, T : X x 
U x Z -i R, and U : X x Z x V -i Z. Here, X and U 
are open, and V, Z are isomorphic to subsets of N. The 
notation [t] denotes the value o f t  at  which p most recently 
became an integer. The rate equation T is required to be 
nonnegative for all arguments, but need have no upper 
bound imposed upon it. We denote such a system as BD, 
short for Brockett’s type D model. 

Brockett has mixed continuous and “symbolic” controls 
by the inclusion of the special “clock” or “counter” vari- 
able p .  The first equation denotes the continuous dynam- 
ics and the last equation the “symbolic processing” done 
by the system. The control u( t )  is the continuous control 
exercised a t  time t ;  the control is the pth symbolic 
or discrete control, that is exercised at  the times when p 
passes through integer values. 

The times when p passes through integer values can 
be thought of as the discrete event times of the hybrid 
dynamical system. Thus, we consider BD as a precise, 
first-order model of interactions of ODEs and DEDS. Wc 
may picture the dynamics as in Figure 6. 

Brockett also has a simpler “type B system” (herein, 
in which the third equation does not appear and v BBI rep aces z in the first two equations. He also generalizes 
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R" 

t ~ 2-1 

: I  ' p  
3.1 . I . ./' ,+I 
I/ ! 

i 

Figure 6: Dynamics of Brockett's BD model. 

BD to the case of "hybrid system with vector triggering" 
(herein, BDV), in which one replaces the single rate and 
symbolic equations with a finite number of such equations. 

3.6 Discussion 
At the risk of oversimplification, Tavernini, NKSD, and 
ASL use autonomous switching; BGM uses autonomous 
switchin and autonomous jumps; and BD uses a combi- 
nation of autonomous and controlled switching. 

It is not hard to see that the BGM model contains 
Tavernini's model. Simply choose S, = R", U, = Rn\M,, 
i E fV, and G(z) = (z,j) if z f One may also show 
that the NKSD model contains the Tavernini model (see 
[71). 

4 Abstract Model 

We first present our over-riding framework in generality. 
We refine it later when we set up our control problem. 
Our state space for z(.) is S = uEo S; where each S; is a 
subset of some Euclidean space Rd' ,  d, E N.' Notice that 
we allow the S; to overlap and the inclusion of multiple 
copies of t,he same space. We also specify a priori  regions 
A; , (? , ,  D; C S,, i E N. These are the autonomous j u m p  
sets, controlled j u m p  sets,  and j u m p  destination sets, re- 
spectively. Let A, C, D denote the unions U; A,, ui C:, 
U, I),, i E N, respectively. Let U, V be the sets of con- 
tinuous and discrete controls, respectively. The following 
maps are assumed to be known: 

0 vector f i e l d s  f ,  : S, x S: x U -+ Rdt,  i f N. 
transit ion m a p  G : A x V -+ D 

transit ion delay A,  : A x V -+ Ws 
impulse delay A2 : U*(C, x U,)  -+ Rf 

The dynamics of the control syst,eni can now be de- 
scrilied as follows. There is a sequence of pre-jum t imcs  
jr ,}  and another sequence of post-jump times {r,T satis- 
yinj; 0 = To 5 TI < rl < TZ < r2 < . . .  5 00, such that 

dn each interval [rJ-l ,  T ~ )  with non-empty interior, z(.) 

'The s ta te  dimension may change t o  take into account 
changes in dynamical description basd  on discrete events- 
controlled or autonomous---that change it,  e.g., component fail- 
ures or the  collision of two inelastir particles. 

evolves according to  Eq. (1) in some Si, i E N. At the 
next pre-jump time (say, ~ j )  it jumps to some Dk E sk 
according to one of the following two possibilities: 

0 z( r j )  E A;, in which case i t  must jump to z(Tj) = 
G(z(rj),vj) E D a t t i m e r j  = ~ j + A ~ ( z ( ~ . ) , o j ) , v j  E 
V being a control input. We call this phenomenon 
an autonomous jump. 

0 z ( ~ j )  E C; and the controller chooses to3 move the 
trajectory discontinuously to z(rj) E D at time rj = 
T,+Az(s(T~), z ( r j ) ) .  We call this an impulsive jump. 

As for the periods [ ~ j . ,  rj2, we shall follow the convention 
that the system remains rozen during these intervals. See 
Figure 7. 

* I  I 
I 1 

Figure 7: Example dynamics of our model. 

For t E [O,oo), let [ t ]  = maxJ{rj I r, 5 t } .  The vector 
field [ ( t )  of Eq. (1) is given by 

C( t )  = f*(z(t), 4t1, . .(t)), (3) 

where i is such that z ( t ) , z [ t ]  E S; and U(.) is a U-valued 
control process. 

To avoid confusion, the shorthand G(z,  o; i) = (z'; j )  
is sometimes used to explicitly denote the transition from 
z E A; C S, (with discrete control IJ) to z' E DJ c Sj. 

We now show how this framework encompasses tht: dis- 
crete phenomenon of Section 2 and how it compares to the 
models of Section 3. 

Autonomous  and Controlled J u m p s .  These are 
clearly taken care of with the sets A, and C; 

Autonomous  Switching. We show that autonornous 
switching can be viewed as a special case of autonornous 
jumps. Consider the differential equation with parameters 
rC =I f ( z , p ) ,  where z E EX", p E P c Iw" closed. f : 
R" x P -+ R" continuous. Let, v : R" x P + P br: the 
function governing autonomous switching. For exaiiiplc, 
in the Taveruini model, v is the "discrcte dyriamics." 

Then, since R" has the universal extension property 
[16], we can extend f to a continuous function F : Iw" x 
R" -+ R". Now, consider the ODE: on B""": 

j: = F(z,<j, ( = 0, 

where z E R", 6 E R"', F : R" x Iw'" -+ R" continuous. 
Let, the transition functicjn be G : R" x P + R" x P with 
G ( z , p )  = (z, v ( z , p ) ) .  (Here, 1' is suppressed.) 

31t does not have to 
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Controlled Switching. A system with controlled 
switching is described by 

.(t) = f ( z ( t ) ,  U @ ) ) ,  2(0) = 2 0  E Rd,  

where U ( . )  is a piecewise constant function taking val- 
ues in U c Rm and f : Bd x U + Bd is a map with 
sufficient regularity. There is a strictly positive cost as- 
sociated with the switchings of U(.). In our framework, 
let x ' ( . )  = [ x ( . ) ,  u(.)IT be the new state process with 
dynamics 

.'e) = f ' ( x ' ( t ) ) ,  f ' ( . )  = I f  (.I, OlTI  

taking values in S = U,"=, S; where each Si is a copy of 
Rd x U .  Set C; = D; = S;, A; = 0 for i E N. Switch- 
ings of U ( . )  now correspond to impulsive jumps with the 
associated costs. 

Tavernini and BGM Models. Let primed symbols 
denote those in our model with the same notation as those 
for E3GM. It is obvious tha tour  model includes the BG_M 
model by choosing Si = Si, A; = dS; U dU;, D, = Ui,  
C, =: 0, and 

G'(x;j) = (m(G(2)); .rrz(G(z))) 

for r E Uj.  G' need not be defined on dSj\dUj, but 
for completeness we may define G'(s;j) = (x; j )  for x E 
dSj  \dU. Since BGM contains Tavernini's model, our 
model does as well. 

NKSD and ASL Models. Our m o e l  includes the 
ASL model. First, choose S; = R" x IW , i E I .  Then, 
note that the sets A D - ' ( i ) ,  i E I ,  form a partition of Y .  
Define the sets Mj = h - ' ( A D - ' ( j ) )  and define 

A ,  = U M,. 
~ # ~ , J E I  

Then define j ,  = [ f ,  0, 0, 01, with dimensions represent- 
ing x ,  q ,  2, and 0. The model is complete by specifying 

G(z; i) = ( 2 , 4 q ,  d ,  j ,  d4); j )  

if x E M, C A, .  Inclusion of NKSD is similar. 

BD model by choosing S = B" x B4 and defining 
Brockett's Models. Our model includes Brockett's 

i = [fl 77 0, 0, 011 

with dimensions representing x, q = p - lp], i = Ip], v ,  
and z .  Also, set A = W" x (1)  x B3, D = R" x {a} x pd3, 
and G((z ,1 , i ,u ,z) ,u ' )  = (s,O,i + l , v ' , u  x,z,u) . It is 

Automata. A variety of automata are automatically 
subsumed by inclusion of the Tavernini, BGM, NKSD, 
ASL, and Brockett models. 

clear that this can be modified to include L d  B an BDV. 

5 The Control Problem 

In this section, we define a control problem and elucidate 
all assumptions used in deriving the results in the sequel. 

5.1 Problem 
Let a > 0 be a discount factor. We add to our previous 
model the following known maps: 

0 running cost li : S; x S; x U -+ Et+. 
transition cost c1 : A x V + R'. 

impulse cost c2 : U,(C; x D )  + B+, satisfying for all 

c z ( z , y )  2 CO > 0, (4) 
c2 (z, y )  < c2 (5, z )  + e - a A 2 ( 5 + )  C 2 ( Z , Y ) I  (5) 

i, j E N the conditions 

for all x E C,, y E D ,  and z E DnC, .  
Thus, autonomous jumps are done at a cost of 

c l ( x ( r j ) ,  U,) paid at time rj; impulsive jumps a t  a cost of 
c2(x ~,),x(rj)) paid at time rj. Note that Eq: (4). rules 
out I rom consideration infinitely many impulsive jumps 
in a finite interval and Eq. (5) rules out the merging of 
post-jump time of an impulsive jump with the pre-jump 
time of the next impulsive jump. 

In addition to the costs associated with the jumps 
as above, the controller also incurs a running cost 
of l i (x ( t ) ,  ~ [ t ] ,  u( t ) )  per unit time during the intervals 
[ I ' j - l , r j ) ,  j E N. The total discounted cost is defined 
as 

e - " t k ( x ( t ) ,  x [ t ] ,  u(t))  dt + e - a u i c l ( x ( g ; ) ,  vi) 
J l l  

1 

where T = R+\(Ui[7,, {a,} (resp. {C}) are the suc- 
cessive pre-jump times for autonomous (resp. impulsive) 
jumps and (i is the post-jump time for the j t h  impulsive 
jump. The decision or control variables over which Eq. 
(6) is to be minimized are the continuous control U(.), the 
discrete control {vi} exercised at the pre-jump times of 
autonomous jumps, the pre-,jump times {C;} of impulsive 
jumps, and the associated destinations { x ( < i ) } .  

Our framework clearly inrludes conventional impulse 
control [ 4 ] .  

5.2 Assumptions 
Throughout the sequel, we make use of the following fur- 
ther assumptions on our abstract model, which are col- 
lected here for clarity and convenience. 

For each i E N, the following hold: Si is the closure of 
a connected open subset of Euclidean space Rdi,  d; E N, 
with Lipschitz boundary 13s;. A ; ,  Ci, D; c S, are closed. 
In addition, dA;  is Lipschitz and contains as;. 

The maps G, Ai ,  A2, ci, c2, and k are bounded uni- 
formly continuous. The vector fields f ; ,  i E N, are 
bounded (uniformly in i), uniformly Lipschitz continu- 
ous in the first argument, uniformly equicontinuous with 
respect to the rest. U ,  V are compact metric spaces. Be- 
low, U ( . )  is a U-valued control process, assumed to be 
measurable. 

All the above are fairly mild assumptions. The follow- 
ing are more technical assumptions. They may be traded 
for others as discussed in Section 9. However, in the se- 
quel we construct examples pointing out the necessity of 
such assumptions or ones like them. 
Assumption 1 d ( A , , C ; )  > 0 and infiEpdd(A,,D;) > 0, 
d being the appropriate Euclidean distance. 
Assumption 2 Each D; is bounded and for each i, there 
exists an integer N ( i )  < 00 such that fo r  x E Ci, y E 
D j ,  j > N ( i ) ,  c z ( x , y )  > sup, J ( z ) .  ( J  is the cost-to-go 
function, defined below.) 

Assumption 3 For each i, d A ;  i s  an oriented C'- 
manifold without boundary and at each point x on d A ; ,  
f , ( x , z , u )  is "transversal" to aA; for all choices o f t ,  U .  

By this we require that (i) the flow lines be transversal in 
the usual sense4 and (ii) the vector field does not vanish 
on 8 A ; .  
Assumption 4 Same as Assumption 3 but with C; re- 
placing A ; .  

4Transversality implies that aA, is ( d ;  - 1)-dimensional. 
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6 Existence of Optimal Controls 

Let J(z) denote the infimum of Eq. (6) over all choices of 
U ( . ) ,  { T J ~ } ,  {C}, { r ( d ) }  when z(0) = 2. We have 

Theorem 6.1 A f inite optimal cost exists f o r  any  initial 
condition. 
Corollary 6.2 There are only finitely m a n y  autonomous 
j u m p s  i n  f inite t ime .  

To see why an assumption like Assumption 1 is nec- 
essary for the above result,s, one need only consider the 
following one-dimensional example: 

Example 6.3 Let Si = [0,2], A ,  = {0,2}, and 
f;(.;;) = -1 for each i E N. Also for each i, define 
C,  = 8, D; = l/i’ and G(Ai,  .) l / ( i  + 1)’. Finally, let 
A , ( . , , )  E 0 and cl(,,.) E 1 .  Starting in S1 at z(0) = 1, 
we sec that z ( ~ ~ ~ ,  l / i2 )  = 1 / ( N  + 1)’. Since the s u m  of 
i n v e r ~ e  squares converges, we will accumulate a n  infinite 
number of j u m p s  and infinite cost by t i m e  t = a2/6. 

Next, we show that J ( z )  is attained for all z if we ex- 
tend the class of admissible U ( . )  t,o “relaxed” controls. 
The ‘Lrelaxed’’ control framework [20] is as follows: We 
suppose that U = P(U’) ,  defined as the space of proba- 
bility measures on a compact space U‘ with the topology 
of weirk convergence [5]. Also 

fz(x,z, U )  = j -  f:b, 2, U)U(dY), E N, 

k(z, 2,  U )  = j -  k’b, z ,  U)U(dY),  

for suitable { f , ! }  and IC’ satisfying the appropriate con- 
tinuity/Lipschitz continuity requirements. The relaxed 
control framework and its implications in control theory 
are well known and the reader is referred to [20] for de- 
tails. 

Theorem 6.4 A n  optimal trajectory exists for any  initial 
condition. 

It is easy to see why Theorem 6.4 may fail in absence 
of Assumption 2: 

Example 6.5 Suppose, for example, k ( z , t , u )  a, and 
c1 (z ,u )  E pi when z E Si, c ~ ( z , y )  E y,,j when z E Si, 
y E S, , with ai, ,&, y;,j strictly decreasing with i, j .  It is 
easy to conceive of a situation where the optimal choice 
would be to “ump to  infinity” as fast  as you can. 

The theorem may also fail in the absence of Assumption 
3 as the following two-dimensional system shows: 

Example 6.6 Consider 

. l ( t )  = 1, * z ( t )  = U ,  Zl(0) = zz(0) = 0,  

with U E [ O , 1 ]  and cost 

Som e-t  min{lzl(t) + zz(t)l,  1oz0}  d t ,  

with the provision that the trajectory j u m p s  t o  [lo1’, lo1’] 
on  hitting a certain curue A .  For A,  consider 

Ihe line segment ( 2 1  = 1, -1  5 2 2  5 0} ,  a G’- 
:manifold with boundary; 

the circle ( (21, 2 2 )  I (xi - 1)’+ ( 2 2  + 1)’ = l } ,  a C’- 
manifold without boundary, but the vector field ( 1 ,  U )  

with U = 0 is not transversal t o  it at ( 1 , O ) .  
It i s  easy to see that the optimal cost i s  not attained in 
either case. 

Also, it is not enough that the flow lines for each control 
be transversal in the usual sense as the following one- 
dimensional example shows: 

Example 6.7 Let SI = Sz = R+. Consider 

f 1 ( z , y , u ) = - z + u ,  f z ( z , y , u ) = O ,  [-1,01, 

with running cost min{K, 121) and G(0, ’; 1) E ( K ;  2). 
Choosing, for example, K > 1 one  sees that the optimal 
cost cannot be attained for any 1 2 z(0) > 0. 

Coming back to the relaxed control framework, say that 
TA(.) is a precise control if U ( . )  = 6, ( . ) (dy)  for a measurable 
q : [ O , m )  -+ U’ where 6, denotes the Dirac measure at 
t E U‘. Let M denote the set of measures on [0, T ]  x U’ of 
the form d t  u(t ,  dy) where U ( . )  is a relaxed control, and MO 
its subset corresponding to  precise controls. It is known 
that MO is dense in M with respect to the topology of 
weak convergence [20]. In conjunction with Assumption 
4, this allows us to deduce 
Theorem 6.8 Under Assumpt ions  2-4, for every e > 0 
a n  c-optimal control policy ezists wherein U(.) i s  preczse. 

7 The Value Function 

In the foregoing, we had set [O] = 0 and thus z[O] = 
z(0) = 20. More generally, for z(0) = z o  E Sio, we 
may consider z[O] = y for some y E Si,, making negligible 
difference in the foregoing analysis. Let V ( z ,  y )  denote the 
optimal cost correspondin to this initial data. Then in 
dynamic programming pa$ance, ( 5 ,  y )  V ( r ,  y defines 

explore some properties of this value Lnction; 
In view of Assumption 3, we can s eak of the right side 

of dA; as the side on which f i ( . , . , . p i s  directed towards 
dA,,  i E N. A similar definition is possible for the right 
side of dC; (in light of Assumption 4). 

Definition 7.1 (From the right) Say  that ( z n , y n )  -+ 
( z m , y m )  from the right in u,(S, x S,) if yn -+ y ,  and 
e i t h e r z ,  -+ zoo $! Ui(dAiUdC,) o r x ,  -+ z, E U,(dJ4,U 
dC;) f r o m  the right side. 

V is said to be continuous from the right if ( z n , y n )  -+ 
(z,,~,) from the right implies V ( z n , y n )  -+ V(z,,y,). 

Theorem 7.2 V is  continuous f r o m  the right. 

For brevity, let V ( t )  denote V ( z ,  t ) ,  C = ui(C, x Si), 

and 

F ( z ,  Y U )  P = V ( z ,  Y 1, fi (2, Y, 21)) - a V ( z ,  Y )  + k ( 2 ,  Y ,  U). 
system of generalized 

quasi-variational inequalities (GdVZs) V( . ,  .) is expected 
to satisfy, which are formally derived in [8]. For (z,y) E si x si, 

On IJ,(A, x Si), 

the “value function’’ for our control roblem kv e next 

We now propose the followin 

min F ( z ,  y ,  U )  5 0 .  (7) 

~ ( z ,  y )  5 min U { c1(x, U) + e - a A l ( z , u ) ~  (G(z, .I)} . 

~ ( z ,  y )  5 min { cZ(2, z )  + e-aA++) V ( 4 )  > 

(8) 

On C, 

(9) 

(10 )  

= € D  

( v ( z , y )  - minzcD {cz(z, z )  + e - a A 2 ( z , z ) ~ ( z ) } )  
. (min, F ( z ,  y, U ) )  = 0. 

Eq. (10) states that at least one of Eqs. (7), (9) must be 
an equality on C. Eqs. (7)-(10) generalize the traditional 
quasi-variational inequalities encountered in impulse con- 
trol [4]. We do not address the issue of well-posedness 
of Eqs. (7)-(10). The following “verification theorcxm,” 
however, can be proved by routine arguments. 
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Theorem 7.3 Suppose Eqs. (7)-(10) have a “classical” 
solutaon V that i s  continuously differentiable ‘lfrom the 
right” in the  first argument and continuous in the second. 
Suppose z(.) is an admissible trajectory with initial data 
( Z O , Y O )  and U ( . ) ,  {vi}, {G}, {C , { T , } ,  {r;} the associ- 

(i) For a.e. t E ‘IT, i such that z ( t )  E Si, 
ated controls and jump tines, suc 3, that the following hold: 

F ( z ( t ) ,  z[t],u(t)) = min, F ( z ( t ) , z [ t ] ,  U). 

(ii) For all i, V(z(~;) ,z[ui])  = 
cl(z(ai), ut) + exp{-aAl(x(oi), vi)}V(G(c(oi), vi)). 

( i i i )  For all i, V(z(Ci),x[Ci]) = 

cz i:x(Ci) > (C)) + exp{ -aAz (z (Ci) 1) }v(z(C:)), 
Then z(.) is an optimal trajectory. 

8 Example Problems 

Here, we give solve some example problems in our frame- 
work. First, going back to Example 6.7 we have 
Example 8.1 Consider Example 6.7 except with the con- 
trols restricted in [-1, -e], 0 < e < 1. Then the flows are 
transversal and do not vanish on A1 = JO} for any U .  
In this case, the optimal control exists. or example, if 
K > l/-E, one can show that U(.) E --E is optimal. 

More interestingly, consider the system of Example 2.1.  
As a control problem, consider minimizing 

We first solve for V(x,s  = H(x)) and then U. By symme- 
try, we expect V(-A, 1) = V(A, -1). From the GQVIs, 
we expect V to satisfy 

min, ( - ~ V ( z , ~ ) + V ~ ( c , s ) . f ( ~ , ~ ) + k ( z , u ) }  = 0 ,  

where s can take on the values f l  and c represents the 
cost associated with the autonomous switchings. 

We have solved these equations numerically for the case 
c = 0, a = 1, A = 0.1. The resulting control U, plotted 
against x (for s = 1) and q,  is shown in Figure 8. As the 
state is increasingly penalized, the control action increases 
in such a way to “invert” the hysteresis function H .  

V ( h ,  1) = c + V(A, - l ) ,  V(-A, -1) = C +  V(-A, l ) ,  

U 

Figure 8: Optimal control U versus 2 and q, for the 
case a = 1, c = 0, A = 0.1. 

9 Conclusions 

We examined the phenomena that arise in hybrid systems 
and reviewed several hybrid systems models from the lit- 
erature. We then proposed a very general framework for 
hybrid control problems that encompasses these hybrid 
phenomena and the reviewed models. A specific control 
problem was then studied in this framework, leading to 
an existence result for optimal controls. The “value func- 
tion” associated with this problem is expected to satisfy 
a set of “generalized quasi-variational inequalities.” 

The foregoing presents some initial steps towards devel- 
oping a unified “state space” paradigm for hybrid control. 
Several open issues sug est themselves. We conclude with 
a brief list of some of t i e  more striking ones. 

0 A daunting problem is to characterize the value func- 
tion as the unique viscosity solution of the GQVIs Eqs. 

0 Many of our assumptions can possibly be relaxed 
at the expense of additional technicalities or traded off 
for alternative sets of assumptions that have the same ef- 
fect. For example, the condition d(Ci ,A,)  > 0 could be 
dropped by having c2 penalize highly the impulsive jumps 
that take place too close to A, .  

0 Example 6.6 shows that Assum tion 3 cannot be 
dropped. I t  remains open how to rerax Assum tions 3 
and 4. This might be accomplished through aJditiona1 
continuity assumptions on G, A I ,  and c1. 

0 An important issue is to develop good computational 
schemes to compute near-optimal controls, which is cur- 
rently a topic of further research. (See [ll] for some re- 
lated work.) This is daunting in general as [7] shows that 
the hybrid systems models in Section 3 can simulate ar- 
bitrary Turing machines (TMs), with state dimension as 
small as three. I t  is not hard to conceive of control prob- 
lems where the cost is less than 1 if the corresponding 
TM does not halt, but greater than 3 if it does. Allowing 
an initial impulsive jump that would result in a cost of 
2 ,  finding the optimal control is equivalent to solving the 
halting problem. 

0 Another Possible extension is replacing the S, by 
smooth mani olds with boundary embedded in a Eu- 
clidean space. See [9] for some related work. 
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