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Abstract 

Eficient  edge detection algorithms such as Canny’s 
fail near curve singularities. Moreover, the standard 
linking algorithms used on top of these detectors often 
fail because of instabilities in the tracking process (due 
to multiple responses to the same edge and interference 
of neariby edges). W e  propose a hierarchical approach 
to edge detection based on  a graph stabilization method 
that allows bifurcation resolution in stages. Curve sin- 
gularitiies are recovered at the East stage by using “top- 
down” feedback to select the best curve connections. 

1 Introduction 

The simplest and most widely used method to detect 
edges in an image consists in seeking points where the 
brightness variation is above a threshold or locally 
maximum in the direction of the gradient [l, 8, 141. 
Curves representing edges are then obtained from 
these points by a “greedy” linking algorithm which 
links each point to one of its neighbors according to 
orientation similarity or maximum gradient intensity. 

One well-known limitation of this approach is that 
it fails near curve singularities such as corners and T- 
junctions. Another difficulty is that curve tracking 
can be “instable”, namely a small localization error at  
some point can disrupt completely the tracking pro- 
cess (see figure 1). 

Specialized techniques have been proposed to re- 
cover singular edge-points [4, 16, 151. However, these 
methods are computationally expensive because they 
require either filtering the image with operators tuned 
to all orientations [16, 141 or solving an optimization 
problem1 with several variables at every location in the 
image b$, 151. Moreover, the problem of integrating 
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Figure 1: Cainny’s edge detector algorithm with sub- 
pixel accuracy (center) followed by greedy edge linking 
(right). Edger; are tracked by choosing the neighboring 
edge-point most aligned with the local estimate of edge 
orientation. Notice that the algorithm fails near curve 
singularities and edge tracking is instable when multiple 
responses to the sane edge or marby interfering edges 
are present. 

these points into a unified curve representation is not 
addressed by these approaches. 

To make edge tracking more robust and less prone 
to instable behavior, one has to examine and integrate 
edge informat ion in large enough “contextual” neigh- 
borhoods. Relaxation labeling [?, 131 is a way of doing 
this. The approach suggested i n  [13, 191, which also 
estimates curvature, in capable (of representing multi- 
ple orientations at  the same point and therefore curve 
singularities. Their lateral maximization procedure 
presents some similariities to the arc suppression al- 
gorithm used here. Probabilistic relaxation methods 
have also beein proposed [6, 111. The main drawback 
of relaxation techniquies is that their iterative nature 
entails high computational costs. 

To include global information more efficiently, a hi- 
erarchical approach based on recursive grouping can 
be used [lo, 12, 5, 171 The idea. is to use a hierarchy 
of descriptors of increasing complexity and spatial ex- 

149 
1063-6919196 $5.00 0 1996 IEEE 

mailto:mitter@lids.mit.edu


(b) Edge-points. (c) Edge-segments. (d) Regular curves. 

I 

(e) Linked curves. 

Figure 2: T h e  hierarchy o f  descriptors computed from a 16 x 16 subimage of the  telephone in figure 8. 

tent. The descriptors at some level of this hierarchy 
are obtained by grouping elements in the represen- 
tation at the previous level. Grouping allows many 
descriptors to be replaced by a single token so that 
the contextual neighborhood can be progressively en- 
larged without causing a combinatorial explosion of 
the search space. Ambiguities and inconsistencies in 
the representation are gradually eliminated as one 
moves up in the hierarchy. 

A shortcoming of most existing hierarchical algo- 
rithms is that computation is purely “bottom-up” and 
relies completely on a symbolic edge-point represen- 
tation such as Canny’s. Moreover, the goal is often 
limited to finding large and global structures in the 
image at a coarse scale. 

The aim of this paper is to propose a hierarchi- 
cal algorithm for edge detection where top-down feed- 
back is used to select hypotheses about curve singu- 
larities. The final result is a curve representation of 
edges which includes also fine details such as corners 
and T-junctions. This hierarchy contains five levels 
(see figure 2): brightness data, edge-point hypotheses, 
edge-segment hypotheses, regular curves, linked curves. 
The lowest levels (2nd and 3rd) typically contain many 
ambiguities about edge localization (i.e. multiple re- 
sponses to  the same edge) which are resolved at the 
higher levels. The goal of the 4th level is to guaran- 
tee stability and smoothness of the tracking process. 
This is done by separating the problem of recovering 
singularities from the problem of edge tracking. The 
problems of graph stabilization and edge tracking are 
briefly described in section 2 (see [3] for a complete 
treatment). Finally, the 5th level recovers singularities 
and bridges small gaps by hypothesizing and testing 
all possible short-range curve connections (section 3). 
A brightness model is constructed for each hypothe- 
sis and tested against the raw data. This provides a 
“top-down” feedback into the final decision process. 
Experimental results are shown in figure 8. 

2 Stabilization of curve tracking 

As figure 1 illustrates, one the problems in reconstruct- 
ing curves from local observations is to make the edge 
tracking process stable. Namely, every path starting 
near a curve should remain close to  it. This is a diffi- 
cult problem in the presence of noise because stability 
is a global property (curves can be arbitrarily long) 
whereas the data is derived locally. The input data to 
the tracking algorithm (namely the data flowing into 
the 4th level of the hierarchy) can be represented as 
a vector graph (P,V,A)  where P is the set of edge- 
point candidates; V is a discrete vector field on P ;  
and A c P x P is a graph structure on P.  See [3] for 
more details. The edge-segments in figure 2(c) are the 
arcs of this vector graph (the orientation of the vector 
field is shown in figure 2(b)). Recently, we have devel- 
oped a theory on how to stabilize a vector graph by 
means of “arc suppression” so that all the arcs nec- 
essary to track curves are retained in the graph [3]. 
The proposed algorithm is capable to  reconstruct the 
set of all “true” regular curves r up to  some bounded 
localization error, under the assumption that distur- 
bances are also bounded. A key ingredient of this 
theory is the definition of a stable graph (see figures 
3 and 4). Roughly speaking, a graph is stable if ev- 
ery path 7r in it is an attractor, namely if every path 
T’ which contains a point in the attraction basin of 
T does not diverge from T. After computing a sta- 
ble and complete’ subgraph, the algorithm at the 4th 
level of the hierarchy extracts a set of disjoint paths 
by using dynamic programming to  minimize a total 
curvature cost. This set contains an approximation to  
every “true” curve. The computational complexity of 
the algorithm is linear in the cardinality of P.  

‘Namely, all the arcs necessary to reconstruct the true curves 
belong to this subgraph. 
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Figure 3: The path 7r in (a) i s  an attractor because 
every other path 7r’ containing a point q in U c N,(n) 
does not diverge from 7r. (Here Nw(7r) denotes the set 
of points with distance from 7r less than the scale pa- 
rameter w). More precisely, the maximal subcurve of 
T’ containing q and disjoint from the balls B,(pl) and 
S,(p,) (the curve between q- and q+) belongs t o  U .  
The path 7r in (b) is not an attractor (for the given UI). 

3 R,ecovering singularities 

The curve representation computed by the 4th level of 
the hierarchy is disconnected at corners (high curva- 
ture points), junctions and sometimes also far from 
edges singularities. A parameter which determines 
how difficult it is to  fix these disconnections is the 
size of these gaps. It turns out that many of these 
gaps are only a few pixels wide and therefore they 
can be “bridged” with local information only. Un- 
fortunately, local information is not sufficient to find 
always the correct result2. However, it makes sense 
to fill as many gaps as possible without resorting to 
global information which can lead to high computa- 
tional costs. This is consistent with the hierarchical 
point of view, according to  which global information 
should be introduced as gradually as possible and lo- 
cal processing should always be exploited maximally 

2See for instance the petals in the second row of figure 8 
where, due to the high density of curve terminators, curves are 
sometimes linked in the wrong way. 

Figure 4: (a): The attraction basin Uw(7r) constructed 
by the stabilization algorithm for the path 7r .  Its bound- 
ary is composed of four parts XJ,(7r) = ,&(7r) = 
,8;(n) U crh(p,) U j3 ; (7r )  U C T ~ @ ~ ) .  The two lateral 
components of this boundary aipe given by ,B$(7r) = 
U a E ~ , , 8 $ ( a )  where A, are the arcs of 7r and P,’(a) are 
the lateral segments of a shown in (b). Notice that the 
orientation of  the vector field at the end-points of  an arc 
(epl and O p 2 )  is used t o  determine the vertices of  i t s  lat- 
eral segments. Notice also that each point in Uw(7r) has 
distance from 7r less than w, that is, Uw(7r) C Nw(7r). If 
an arc of the graph intersects pzLI(7r), then a stability vi- 
olation occurs and the ~stabilizatian algorithm suppresses 
one of  the two arcs involved in the violation [3, 21. 

to provide global stages with as much information as 
possible. Then one can use feedback from these global 
stages to corrlect errors a t  the lower levels. The exper- 
imental results presented in figure 8 demonstrate that 
many gaps aind junctions can be reconstructed cor- 
rectly by using information in sinal1 neighborhoods. 

The local algorithm for curve linking described here 
uses three in;puts: the brightness image; the set of 
edge-points P from the 2nd level of the hierarchy; and 
the regular curves froin the 4th level. The search for 
curve connections, called links, is conducted from the 
end-points of simple curves, called terminators. Three 
types of links are possible. 

0 T-T link. This is a direct link from a terminator 
tl to  another terminator tz. It consists of one 
“central” segment (bridge) IZ plus two segments 
tlpl, t2p:!, caliled extensions, lying on the curves 
which t l ,  t 2  are terminators of (see figure 5). 

- -- 
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Figure 5: 
around a link. 

The regions used t o  estimate the brightness 

0 T-M-T link. This is a link between two termina- 
tors via a “mediator” point m. An element of P ,  
in order to be a mediator, has to lie outside all 
the attraction basins of the computed curves (see 
figure 6). The bridge of this link consists of two 
connected segments, t lm, mt2. The total number 
of segments (including the extensions) is 4. 

-- 

0 T-C link. This is a link from a terminator to a 
point of a curve which is not a terminator. The 
algorithm examines these links only if a valid link 
of the other two types is not found. 

In this implementation, the search for a mediator, ter- 
minator, or curve point is conducted in the 5 x 5 neigh- 
borhood of each terminator (see figure 7). 

To determine whether a particular link from a 
terminator is a good hypothesis, the brightness on 
each side of the link is examined. More precisely, 
let bpft (A), bpft (A), b’,’ght (A), bight  (A) be the average 
brightness on the four “corners” of the link A E A t ,  
where At is the set of all T-T and T-M-T links from 
the terminator t (see figure 5). A homogeneity cost on 
each side of the link is defined as follows: 

JhSom(X)  = IbI(A) - b;(A)I, s = left,right 

The geometric cost of the link is given by: 

Jgeom(A) = ~1 . length(/\) + c2 * turn(A) 

where turn(A) is the total turn (curvature) of the 
link. Thus the total cost on each side of the link X 
is Js(A) = Jhom(A) + Jgeom(A) .  These two cost func- 
tions are minimized separately so that a left and a 
right link are obtained for each terminator t :  

As(t )  = argminJS(A), 
AEA* 

s = left,right 

Figure 6: The mediators (large dots) are edge-point 
hypotheses which lie outside the attraction basins of the 
computed regular curves. 

To avoid inconsistent groupings, only links which are 
optimal at both terminators are included in the final 
representation. More precisely, the link XIeft(t) is kept 
only if Aright(uleft(t))  = t ,  where deft@) is the termi- 
nator at the other end of the link AIeft( t ) .  Similarly, 
Aright(t) is kept only if Xleft(uright(t))  = t. If after this 
final step a terminator is not linked to any other ter- 
minator, then the algorithm looks for an optimal T-C 
link by minimizing a similar cost function. 

4 Conclusions 

It is often believed that to improve edge detection 
beyond the performance attained by local algorithms 
such as Canny’s one has to resort to  either iterative 
and computationally expensive methods such as [13] 
or to methods which require human intervention, such 
as snakes [9, 181. In this paper we have proposed a hi- 
erarchical approach to edge detection which yields im- 
proved performance over Canny’s algorithm by using a 
sequence of local, non-iterative procedures which have 
linear computational complexity in the number of im- 
age pixels. Two key ingredients of this approach are 
stabilization of edge tracking and model-based feed- 
back to reconstruct curve singularities. 

To improve edge detection even further one has to 
add more levels to the hierarchy so that more global 
information can be used efficiently. For instance, to  
improve detection of the flower petals in the second 
row of figure 8 one can include region descriptors into 
the process so that curve groupings which give rise 
to  closed and convex boundaries are favored over oth- 
ers. Also, one can increase gradually the gap size at 
which curves are grouped to deal more robustly with 
occlusion and shadows and to recover objects with “in- 
visible” edges. 
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Figure 7': 
links. The last one is a link t o  a point on a curve (T-C link). 

The set of candidate links from a particular terminator. All links except the last one are T-T or T-M-T 
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Fignrc 8: Experimental results. The second column is the result of Canny's edge detector followed by greedy 
edge linking. The third column is the set of regular curves obtained by the proposed algorithm (the specific 
implementation of this part of the algorithm is the one described in [2]). Finally, the last column shows the result 
after curve singularities have been detected. 
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