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A b s t r a c t .  Conventional edge linking methods perform poorly when 
multiple responses to the same edge, bifurcations and nearby edges are 
present. We propose a scheme for curve inference where divergent bifur- 
cations are initially suppressed so that the smooth parts of the curves can 
be computed more reliably. Recovery of curve singularities and gaps is 
deferred to a later stage, when more contextual information is available. 

1 I n t r o d u c t i o n  

The problem of curve inference from a brightness image is of fundamental  im- 
portance for image analysis. Computing a curve representation is generally a 
difficult task since brightness data provides only uncertain and ambiguous infor- 
mat ion about  curve location. Two sources of uncertainty are curve bifurcations 
(junctions) and "invisible curves" (e.g. the sides of the Kanisza triangle). Local 
information is not sufficient to deal with these problems and "global" informa- 
tion has to be used somehow. Methods based on optimization of a cost functional 
derived according to Bayesian, minimum description length, or energy-based 
principles [4, 9, 11, 12, 20] introduce global information by simply adding an 
appropr ia te  te rm to the cost functional. These formulations are simple and com- 
pact  but lead usually to computationally intractable problems. Moreover, it is 
often difficult or impossible to guarantee that  the optimal  solution of these cost 
functionals represents correctly all the desired features, such as junctions and 
invisible curves [16]. Curve evolution approaches, where the computed curves 
are defined to be the stat ionary solutions of some differential equation [7, 19], 
can be computat ionally efficient but  usually require some external initialization 
in order to converge to the desired solution. 

A way to exploit global information efficiently without the need of external 
initialization is to use a hierarchy of intermediate representations between the 
brightness da ta  and the final representation. The complexity and spatial extent 
of the descriptors in these representations increase gradually as one moves up in 
this hierarchy. Global information is introduced gradually so that  computa t ion  
is always efficient. 
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An intermediate representation used by most hierarchical approaches is given 
by of a set of points or tangent vectors obtained by locating and thresholding 
the maxima of the brightness gradient [1, 6, 15]. Linking and recursive grouping 
techniques exist to connect these points into polygonal curves [8, 3]. This ag- 
gregation is based on "perceptual organization" criteria such as collinearity and 
proximity [10]. Iterative procedures, such as relaxation labeling, have also been 
proposed to infer a set of curves from a set of tangent vectors [13, 5]. 

To guarantee that computation is efficient and robust, the hierarchy of rep- 
resentations should be "smooth". That is any two consecutive levels of the hier- 
archy should be "close" so that each level contains all the information necessary 
to reconstruct the objects at the following level efficiently and robustly. Consider 
for instance the following hierarchy: 

brightness data --+ tangent vectors 

--+ smooth curves 

--+ curves with corners and junctions 

--+ closed partly invisible curves 

-+ overlapping regions ordered by depth. 

Notice that the first stage of this hierarchy does not recover curve singu- 
larities (corners and junctions) nor invisible curves. These are recovered later 
when information about the smooth portions of the curves is available. Resolv- 
ing uncertainty in small steps allows the algorithm to make difficult decisions 
when more information is present. In fact, what is uncertain or ambiguous at 
some level of the hierarchy might become certain and unambiguous at a higher 
level when more global and contextual information is available. Also, to achieve 
robustness, it is important that uncertainties be not eliminated arbitrarily, as is 
done by many threshold-based methods. Rather, these uncertainties should be 
represented explicitly and propagated to the higher levels. Thus it is important 
to understand what can be computed reliably at any particular stage and what 
should instead be deferred until more contextual information is present. 

To illustrate this point, observe the output of the Canny edge detector fol- 
lowed by conventional greedy edge-point linking (figure 4, third and fourth 
columns). Every edge-point is linked to the neighboring point which is best 
aligned with the local estimate of edge orientation. If the thresholds of the edge- 
point detection algorithm are set to low values then many edges are completely 
missed (third column). On the other hand, if these thresholds are set to higher 
values, then more edge points are present but conventional edge linking fails in 
the vicinity of curve singularity and when edges are close to each other (fourth 
column). The algorithm is trying to make too many difficult decisions at the 
same time. 

Uncertainty in edge linking occurs at bifurcations, namely points which can 
be linked to more than one other point. Notice that the paths from a bifurca- 
tion remain close to each other in some cases while in other cases they diverge. 
The first kind of bifurcation will be called stable and the second type divergent. 
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Stable bifurcation are typically caused by multiple responses to the same edge 
or uncertainty in curve localization. Divergent bifurcations can be either due to 
the topology of the curves to be reconstructed (e.g. junctions) or to noise and 
interference from nearby edges. Conventional edge linking does not distinguish 
between these different types of bifurcations and decides how each bifurcation 
should be disambiguated in a single step based solely on local similarity proper- 
ties. Instead, the approach described in this paper resolves ambiguity at bifurca- 
tions in more than one stage. The first stage, described in this paper, "disables" 
temporarily divergent bifurcations and recovers smooth curves by disambiguat- 
ing stable bifurcations. Curve singularity (junctions and corners) are left for a 
subsequent stage. 

There are three reasons why divergent bifurcations are initially disabled. 
First, this eliminates the risk that  a spurious path created by noise disrupts 
tracking of the true curve (see for instance the fourth column of figure 4). Sec- 
ondly, it simplifies the task of resolving stable bifurcations since tracking is re- 
duced to a one dimensional problem. Thirdly, the lost information about curve 
singularity is usually inaccurate because local edge-point detectors are known to 
have poor performance near singular points. 

2 Suppression of divergent bifurcations 

Let P be a set of points in R 2 which represent sampled estimates of the loca- 
tion of the curves (figure l(b)). In the experiments shown here this set has been 
obtained by locating the maxima of the brightness gradient in the gradient direc- 
tion to sub-pixel accuracy. The gradient and its derivative have been estimated 
by fitting linear and cubic polynomials to blocks of 9 to 12 pixels respectively. 
For each p E P, t~(p) denotes the estimated orientation of the curve given by the 
orthogonal direction to the brightness gradient and r denotes the gradient 
magnitude. 

Let S (figure 1(c)) be the set of segments obtained by connecting every pair 
of points in P estimated from adjacent blocks of pixels (each point is connected 
to 8 other points). Segments whose orientation differs from the estimated curve 
orientation at its endpoints by more than 6) = 40 ~ are discarded. 

As figure 1(c) illustrates the planar graph associated with the set of seg- 
meats S contains both stable and divergent bifurcations. Roughly speaking, sta- 
ble bifurcations are associated with collateral paths, namely paths which remain 
"close" to each other whereas divergent bifurcations occur when these paths di- 
verge. The definition below makes precise the distinction between collateral and 
divergent paths. The first part of the algorithm (table 1) computes a divergence- 
free subgraph of S by detecting pairs of diverging segments and "suppressing" 
the "weakest" segment of each such pair (figures l(d) and l(e)). 

For any polygonal path 7r whose segments are elements of S let Nw (~r) be the 
set of points in R 2 with distance from 7r less or equal to some w > 0 (w = 0.75 
in our experiments). The boundary of Nw (Tr), ~w (Tr), is decomposed into its left, 
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(e) Subgraph with no 
divergent bifurcations. 

(f) Final result. 

Fig. I .  The steps of the proposed algorithm. A set of points P (b) is computed 
by locating the maxima of the brightness gradient. A planar graph (c) is obtained 
by connected neighboring points. Figure (d) shows the lateral boundaries/~]~at(s) 
(gray) of every segment in s E S. Whenever the lateral boundary of some segment 
intersects another segment, the weaker of the two segments is suppressed. The 
resulting planar graph (e) does not contain divergent bifurcations. Finally, (f) shows 
the polygonal curves obtained by the procedure in table 2. 

right, bo t tom and top parts (see figure 2):/~w(lr) rig top left u/~ (~) = ~ (~) 
/3b~ Let also/~at(Tr) ----/~lweft(~ ) Y ~g(7[') (lateral boundary) .  

D e f i n i t i o n  1 Two paths lh, 7r2 (figure 2) are said to be independent  if 

~rl n Nw(Tr2) = ~r2 n gw(Th) = 0 (1) 

They are collateral if they are not independent and 

~ n ~ t ( ~ ' 2 )  = ~r2 n ~ t ( ~ r ~ )  = 0 (2) 

Finally, 7h, 7r~ are divergent if 

lat lat ~1 n ~ (~2) :/: 0 or ~2 n ~ ,  (~1) # 0 (3) 
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Fig .  2. Notation: Nw(Tr) denotes the w-neighborhood of ~r. The boundary of 
N.w(r /3w(Tr), is decomposed into four parts. The bottom and top parts are arcs 
of amplitude 120 ~ and radius w. The paths 7r and 7ri are independent because their 
distance is greater than w, namely 7t" 1 N Nw(Tr2) = r FI Nw(Trl) = O. 7r and 7r3 

~rig / \ are divergent because ~r3 N ~w tTr) ~: 0. Finally, 7r and 7r2 are collateral because 7r2 
intersects the boundary of Nw(Tc) only at/3~~ 

Then let (~w(?T1,71"2) be the boolean variable which indicates whether two paths 
are divergent or not. Thus, 5w(Trl,Tr2) = 1 if 7rl and 7r2 are divergent and 
~w (7rl, 7:2) = 0 otherwise. 

D e f i n i t i o n  2 A set of segments S is said to be divergence-free if it does not 
contain divergent regular paths, namely if for any pair of regular paths 7rl, 7r2 in 
S, 5~(7r1,~2) = O. 

For a definition of "regular" and a proof of the following results see [2]. The  
algorithm described in table 1, which extracts a divergence-free subset from S, 
hinges on the following proposition which "localizes" the notion of divergence. 

P r o p o s i t i o n  1 Let S be a set of segments such that the orientation difference 
between two connected segments is never larger than 60 ~ Then S is divergence- 
free if and only if ~w(Sl,S~) = 0 for any Sl,S2 E S. 

This proposition ensures that  the property of being divergence-free is equiv- 
alent to a local condition which involves only pairs of neighboring segments. 
Notice that  it assumes that  the orientation difference between two connected 
segments is < 60 ~ Thus, to apply this result one has to eliminate from the 
graph all the segments which violate this condition (lines 3-6 in table 1). 

The non-maximum suppression procedure described in table 1 computes a 
divergence-free subset S DF of S. For this purpose, a positive function r : S -+ R + 
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1 For every s r S 
2 a (s )  := 1 
3 For every sl ,s2 E S, sl, s2 connected, T(Sl ,S2)  > 60 ~ 
4 If r < r 
5 0/(81) : :  0 
6 S ' = { 8 e S  : 0 / ( s ) = l }  
7 For every sl, s2 e S' such that  5w (81,82) : 1 
8 If r < r 
9 0/(81) :----- 0 
10 S DF = {8 E S : 0/(8) = 1} 

Table  1. The non-maximum suppression procedure to eliminate divergent bifurca- 
tions. T(sl,  s2) denotes the orientation difference between the segments sl, s2. The 
variable 0/(s) is initially set to 1 to indicate that every segment is initially "active". 
The loop in lines 3-5 ensures that S t does not contain pairs of connecting segments 
with orientation difference > 60 ~ This guarantees that proposition 1 can be applied 
to S ~. The loop in lines 7-9 ensures that S DF is divergence-free by disactivating the 
weaker segment of any pair of inconsistent (i.e. divergent) segments in S ~. 

is used to decide which of a pair of segments should be suppressed. The function 
r used in our implementation is given by r - min(r r where PI and 
P2 are the end-points of s. 

P r o p o s i t i o n  2 The graph S DF defined in table 1 is divergence-free. 

If the length of the segments in S is bounded from above by some L > 0, 
then the two loops of the procedure need not be carried out over all pairs of 
segments. In fact, for each segment, it is enough to consider all the segments 
in a neighborhood of size L/2  + w around its midpoint. If we further assume 
that  the density of segments in the image is also bounded from above, then the 
complexity of the procedure is linear in the number of segments. The result of 
this procedure applied on the segments in figure l(c) is shown in figure l ie  ). 

3 C o m p u t i n g  t h e  l o n g e s t  p a t h s  w i t h  m i n i m u m  c u r v a t u r e  

After eliminating the divergent bifurcations, the remaining ones, which are sta- 
ble, can be disambiguated by computing a set of "maximally long" paths i n s  DF 
which "cover" every possible path in S DE (the notions of "maximally long" and 
"cover" are discussed more rigorously in [2]). The basic idea is as follows. When- 
ever a segment is connected to more than one other segment, the one which 
yields the "longest" path is selected. If this is not sufficient to remove all the 
ambiguities, namely there are two or more choices yielding "equally long" paths, 
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Fig .  3. Left: The segment s is connected to three other segments, st,  s2, 83 which 
yield three different paths 7rl, 7r2, 7r3. The algorithm in table 2 links s to s3. Right: 
The length of 7rt is greater than the length of ~r2. Yet. the path 7r2 covers 7rt while 
7rt does not cover rr2. 

then the one which minimizes the total  turn ( that  is the sum of the orientation 
differences of consecutive segments) is selected (see figure 3, left). 

Notice tha t  the length of a path  is not the right measure to decide whether a 
pa th  covers or is "longer" than another path  (see figure 3, right). A more reliable 
way to check that  a pa th  7Q covers 7r2 is to test whether ~rl intersects top % 
In fact, one can prove that  if 1Q, rr2 are two regular paths in S DE having the 
same initial segment then ~rl n/3~~ = 0 implies that  7r2 covers 7rl in a precise 

~ t o p  fTr "~ sense [2]. Conversely, 7r1 fl ~,w t 2~ r 0 implies that  7rl covers 7r2. 
Let C(s) denote all the segments connected to s C S DF which form an obtuse 

angle with it. The algorithm computes three variables for each segment: 

- u(s) C C(s) is segment linked to s. 
- A(s) is the last segment of ~r*(s), where rr*(s) denotes the "best" pa th  start-  

ing at s. Initially, s is set equal to nil. 
- T(s) is the total  turn of 7r*(s). 

The segments of the the path  7r*(s) are s, u(s), u ( v ( s ) ) , . . . ,  A(s). The vari- 
ables v(s),  )~(s), T(s) are computed by a procedure link(s) which calls itself 
recursively on the elements of C(s). After the procedure link(s) returns, the 
variables u(s), X(s), ~-(s) have already converged to their final value because this 
problem is a special case of dynamic programming.  This approach is similar to 
the saliency maximization technique used in [17, 18]. However, the method pro- 
posed here is more computationally efficient since the procedure is called exactly 
once on every segment and no multiple iterations ef any sort are needed. A way 
to visualize the algorithm is to think tha t  the procedure link(s) explores all the 
possible paths originating from s but  it prunes the search every times it hits 
a segment which has already been solved. The procedure is described in table 
2 for the case where no close loops are present. The details to deal with close 
loops are explained elsewhere. Since each step can be done in constant t ime and 
the procedure is called exactly once for every segment (this is ensured by the 
condition at line 8) the procedure runs in linear t ime in the number  of segments. 

After the procedure link has been called on all the segments, all the bifur- 
cations have been disambiguated and every segment is linked to at most  one 
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Definition of link(s) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

If C(s) = 
;~(s) := s 
r ( s )  :=  0 
~(s) := nil 
return 

else 
For every s' e C(s) 

If A(s') = nil 
link(s') 

o *  = {s' e C(s)  : / ~ , ( A ( s ' ) )  n ~*(s")  = ~, s" e C ( s ) )  
v(s) = argmins, ec .  T(S') 
~-(S) = ~-(v(s)) + T(s, ~(s)) 
~(s) = ~(~(s)) 
return 

Table  2. The procedure link(s). The set C* contains all the segments s' E C(s) 
yielding a path Ir*(s') which is "maximally long" among the paths originating from 
s. In fact, if s' E C*, the top boundary of the last segment of 7r*(s'), A(s'), is not 
"cut" (i.e. intersected) by any other other path 7r*(s") originating from s. Note that 
the variables of all the segments in Ir*(s'), s" E C(s) have already been computed 
before execution arrives at line I0. The test top t flw ()~(s)) A~r*(s") = 0 can be done in 
constant time by detecting what segments intersect flt~ and then checking 
whether any of these segments has its variable A equal to some A(s'), s" E C(s). 

segment. To extract the paths explicitly one has to identify a good set of initial 
points. The details of how this is done are explained in [2]. 

4 E x p e r i m e n t a l  r e s u l t s  

The result of the algorithm on four test images are shown in figure 4, second 
column. The parameter w has been set to 0.75 for all the experiments. The other 
parameters (used to compute P) have been kept constant also. The results are 
compared against Canny's algorithm with sub-pixel accuracy followed by greedy 
edge linking, as implemented in [14] (smoothing scale -- 0.7) 

5 C o n c l u s i o n s  

To infer curves reliably and efficiently from a set of edge-points or tangent vectors 
it is necessary to deal with bifurcations appropriately and resolve uncertainties 
in the right context. We proposed a hierarchical scheme for curve reconstruction 
whose early stages are based on the distinction between stable and divergent 
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Fig.  4. The results obtained by the proposed algorithm are shown in the second 
column. The third and fourth column are the result of Canny's algorithm with two 
different sets of thresholds. The gray level of the edges is proportional to the mag- 
nitude of the brightness gradient. 

bifurcations. The first stage of this hierarchy, described in this paper, recovers 
only the smooth portions of the curves. Work is currently being done to design 
and implement the following stages which combine the representation computed 
by the first stage with more global information to recover junctions, gaps and 
to construct a region-based description of the image. Recently, some theoretical 
results have been proved which guarantee robust performance of the algorithm 
in reconstructing a class of smooth curve models. 
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