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THEORY OF INEQUALITIES AND
THE CONTROLLABILITY OF LINEAR SYSTEMS

Sanjoy K. Mitter
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The primary objectives of this paper are twofold:
1) to present a theory of controllability applicable to
both finite and infinite dimensional linear control systems.
and 2) to show the relationship between the theory of in-
equalities of fundamental importance in mathematical pro-
gramming, and controllability which is of fundamental im-
portance in systems theory. It extends and generalises:
earlier results of Antosiewicz (1) and Conti (2).

Let X be a linear space with a locally convex

*
Hausdorff topology T and let X be its topological
*
dual. The natural pairing of X and X is represented

* “
as (X,X ) and the fixed bi-linear functional by (x,x ) .
The weak topology w for the linear space X with locally

*
convex Hausdorff topology is the topology w(X,X ) of the
* *
natural pairing of X and X and the weak topology for

* * *
X is the topology w(X ,X) of the natural pairing of X
end X [(3), Chapter 5: Sections 16 & 17].

Let U and X be linear speces with locally convex

* *
Hausdorff Topologies. Let <U,U ) and (X,X ) be their
natural pairings. Let T : U+ X be a continuous linear

* * *
transformation and let T : X =+ U be the adjoint linear
transformation.

Definition 1 [(L4), p. 246]: The polar A° in X
* *
of a subset A of X is defined by A° = {x €X :
*
(Z. ) € 1) .

*

If A is equilibré then A° is also given by
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o * * *
A = {x €X : |[{(x,x )| 21}
Let U and X be locally convex Hausdorff topolog-
ical spaces. U is to be thought of as the control space

and X the state space of a control system. Consider a
linear control system described by the operator equation

x=x + T(u) (1)

where x€X , u€uU , xo€X is a fixed element and

T : U=+ X is a continuous linear transformation. A wide
variety of linear systems may be described by this abstract
model.

As an example, we shall consider a linear differen-
tial system in a Banach space. Let U and X be real
Banach Spaces.

Let t >0 and 1 <p< » . We define LE(U) to be

the Banach Space of all U-valued strongly measurable
functions defined on [0, t] such that

t
J fJu)[[Bar <o ir 1<p<=
o]

and ess. sup. {llu(r)llu , 0<t<tl<o if p=w .

The Banach Space LE(U) is normed by,

t 1
X e i
lally = ([ Matolfyar P o 1epcs
o]
and ||uf|_ = ess. sup {|[J[w(T)[|;» 0T <t} if p=w.

In the sequel we shall assume that the space LE(U) ,

1 <p< o to be reflexive. This will be the case if U
is reflexive and separable or uniformly convex. The dual
* *
space [LE(U)] is isometrically isomorphic to L%(U ),
L4 S .
P a
Consider the linear differential system,
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x(t) = Ax(t) + Bu(t) (2)
with initial condition x(0) = xo€ X , where A is a lin-

ear closed operator with domain D(A) which is the infin-
jtesimal generator of a strongly continuous semi-group
7(t) 5 t > 0 , of linear bounded operators and B is a
]inear bounded operator mapping U into D(A) . We shall
say that x(+) is a solution of Eq. (2) with initial con~
gition x(0) = x €X if x(+) satisfies the integral
equation @

t

x(t) = Tt(xo) + I Ty Bu(t) ar (3)
o

vhere the integral in the right hand side of Eq. (3) is in
the sense of Bochner [(5), Section 3.7, p. 78].
For each t > 0 , define a linear bounded transforma-
tion
t

Rt s u-=~> I Tt-r Bu(t) dt

o

from LE(U) into X . Then Eq. (3) can be written as
x(t) = Tt(xo) + Rt(u) (4)

which fits our abstract model Eq. (1).

Necessary and Sufficient Conditions for Controllability

Consider the linear control system described by
Eq. (1). Let K C X be a closed convex set containing
the null element and let QCU be a convex set which is

*
compact with respect to the w(U,U ) - topology of U .

Let K° be the polar of K .
Definition 2: The system described by Eq. (1) is
said to be controllable with respect to (xo,Q,K) if there

exists & u€ such that x = X, + T u€K .

Our basic result is,
Theorem 1: The system described by Eq. (1) is
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controllable with respect to (xo,Q,K) if and only if
* * * ¥ o
(xo,x)—liMaxKu,Tx) :u€eQ]l, Vx €K (5)

The proof of the theorem will proceed via Propositions 1-4,
Proposition 1: The system described by Eq. (1) is
controllable with respect to (xo,Q,K) if and only if

there exists a u€Q such that
S * * o)
(xo+Tu,x)—1§_0,Vx€K . (6)

Proof: Since K € X 1is a closed convex set in a locally
convex Hausdorff topological space it is closed with re-

*
spect to the w(X,X ) - topology of X [(3), Chepter 5,
Proposition 17.1]. Since K contains the null element, by

the Bipolar theorem [(L), p. 248], K = (k°)° . Then from

the definition of a polar set, xo + T u€K if and only if
- * * o
(xo+Tu,x);l,Vx€K .

The problem of controllability has thus been reduced
to finding necessary and sufficient conditions for a feasi-
ble solution for an infinite system of linear inequalities
to exist. .
Let (X,Tl) be a real Hausdorff topological vector

space and let R Dbe the space of reals.

Definition 3: Let CC X be a convex set. A func-
tion f : C + R 1is said to be guasi-convex on C if for
any r €R , the set

K= {x€C : f(x) <r} is convex.

The function f is said to be guasi-concave if the
inequality is reversed.

The functions are said to be strictly quasi-convex
(quasi-concave) if the inequalities are strict.

In a recent note Ky Fan (6) has proved certain geo-
metric theorems regarding quasi-concave lower-semicontinu-
ous functions. For our purposes we state one of the theo-
rems in the following specialised form

Proposition 2: Let Cl,02 be non-empty compact con-

vex subsets in a real Hausdorff topological vector space
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x . Let fl:CGCQ-’R and f2:01x02->R satisfy

the following conditions:
(1) For every fixed xlé"Cl 2 fl(xl,x2) is a

lower-semicontinuous function on C and for every fixed

2
x2502 s f2(xl,x2) is a lower-semicontinuous function on

2 . ,
(2) For every fixed x, € C, » fl(xl,x2) is a

quasi-concave function on Cl and for every fixed

xle Cl 5 f2(xl,x2) is a quasi-concave function on C

2

Let rl,r €R . If for every x2€C there exists

2
c
Xy Cl such that fl(xl’x2) >r

2 3

1 and for every

xle C, » there exists an x2€C2 such that f2(xl’x2) > r,

then there exists a point (il,§c2) € c, x C, such that

£,(x5%,) > )
and .
fz(xl,xe) >r, .

Proposition 3: Let C be a compact convex subset
of a Hausdorff real topological vector space X . Let

n
Pn=(a=(al, an) fa; 20,i=1,2,..n, .Zlai= 1} ;
1=

Let 8 » i=1,2, ... n be a family of real-valued lower-
semicontinuous functions on C such that
n
izl a; g (x)
is quasi-convex on C for all a = (al,...un) € P . Then
the system of inequalities,
gi(x)io, isd; 2 v n (7)

has a solution in C if and only if there exists an xEC

such that
n

izl a; g;(x) <0, (8)
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for all a = (al, .. un) €EP .

Proof: The only if part is trivial.
To prove the if part, define two functions

¢:CxPn->R and w:CxPn—»R by,

n
o(x,0) = - p(x,a) == ] a; g; (x) (9)

i=1

From the hypothesis of the theorem ¢ is quasi-concave on

C . Also, clearly ¢ is a lower-semicontinuous function
of a and ¢ is a lower-semicontinuous function of x

and a concave function of a . From condition Eg. (8) of
the theorem, for any ¢ > 0 and any aePn there exists

an x€C such that ¢(x,a) > - ¢ . Since ¢(x,a) =
- y(x,a) the two inequalities ¢(x,a) > - ¢ and y(x,a)
> ¢ cannot be simultaneously satisfied. Hence by Proposi-
tion 2, for every e > O , there exists an xECC such
that y(x,a) < e, Va€P .

For a given ¢ > 0 , consider the set CE = {XEC :
gi(x) <e, i=1,2,...n} . Ifve canprove that
N Ce # @ , where § is the empty set, then the theorem

e>0
is proved.
Since we have shown that for every € > 0, there

exists an x€€C such that w(xe,a) <e, YVa€P ,
putting

a=1(1,0, «... 0) , (0,1, 0, ... 0)
etc. successively we obtain

gi(xe)ie , i=1,2, «ec.n .

Hence Ce = {x€C : gi(x) < ¢ is non-empty. Since
each 8; has been assumed to be lower-semicontinuous CE
is closed. Ce is also bounded and hence it is compact.
We also have for 0 < e' <€ , Cs'Cce and hence

N C, #9¢ [(4), p. 21]. Hence there exists an x€C

e>0
such that Eq. (7) is satisfied.
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gemark: If there exists an x€C su

AL s ch th i

satisfied, then there exists an X€C sucgttggt., g i
n n

Min Z a.g.(x) = a.g.(x) <0 =

ng i=1 173 izl i®5 — Y \' a= (Cll,...un)e Pn

Proposition 4: Let C be a com
pact convex s
of & r?al Hausdorff topological vector space X Ezietl
be an index set. For any k > 0 , IkC: I is tée set
, ={i:4i=1,2, ...
A 5 25 k} . Let {gi}ieI be an infinite

family of real-valued lower-semi .
-semicont :
such that for any k > 0 ontinuous functions on C

I e g (x)
. h S §
i
€ Ik
is quasi-convex f
> or all mt-:Pk . Then the system of in-
equalities,

gi(x) <0, ie€r (10)

r;:;ggol;tiox in C , if and only if for any finite set of
10 Ky e knGI and for any aéPn » there

exists an x€C such that

n
izl a gki(x) 0 (11)

The proof of the theorem is i

omitted for the sake of b i
Analogues of these theorems for finite dimensional ok
may be found in Berge (7). SRS

Proof of Theorem 1

B 7 .
o i y assumption QC U is a convex set which is
w(U,U ) - compact. The left hand side of Eq. (6) is con-

Rgl)lous o;x hQ and h?n?e it is w(U,U*) - continuous on Q
3/s p. 154, Proposition 17.3). Hence from Propositions 3

and 4 there exists a
€ :
only if u€N such that X + Tu€K if and

2 * * *
uMénQ izl ai[(xo,xi)+(u,T (xi)) -1] <o (12)
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*
holds for eny finite number of xie k° and for any

= R e .
a (ul, un) P But

S * * *
izl o [(x % )+ (u,T (x;)) = 1]

n
PRIEREH xy) *+ (u,T (@ %)) - 1

n % % B
Kxo’izl oy x; )+ (u,T (ir)':l a; x;)) - 1]

Since x2 is convex, putting

n
x'= z a xfex° 4

s i"i

i=1
we obtain the desired result.

As a direct consequence of Theorem 1 the existance of
minimum norm and best approximate controls can be estab-
lished and moreover expressions for the minimum norm and
minimum miss distance can be obtained in terms of the sys-~
tem data.

Controllability in the Presence of a Disturbance

Let U and W be reflexive Banach spaces and let X
be a Hilbert Space. Consider the linear system

X =X # T(u) + S(w) (13)
where T : U+ X and S : W+ X are continuous linear
transformations and X is a given element in X . w is

to be thought as a disturbance acting on the system. Let
the controller restraint set be Q= hxellzllullu < p}

and the disturbance set be

R, = {d€x : a= Sw,llSwa <o} .

Let the target set be
K={x€X:||x - dexf_c}
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vhere xd is the null element in X .

Theorem 2: Let the system (Eq. (13)) be controllable
vith respect to (xo,Q,K) in the absence of disturbances.

Then the perturbed system is controllable with respect to
(xo,Q,K) if and only if

o< e—Max[O,Sup{I(xd-xolx*)l-D [IT*(x*) [l *® °
U

*
le l' x = 1}]
X
proof: The perturbed system is controllable if and only if
Min Max [IlTu +d - (x,-x) ] < ¢ N
uen d€q a™ %)l < ()

I+ a- Geg-x.) iy

iA

lally +]Tu - (xq = x )]y

A

o+ H'I‘u - (xd = xo) ”X

Let
a= U(Tu+xo-xd)
[[Tu + x - x

o

allx
It is clear that d is the maximising d in Eq. (1) and

Max [”Tu+d-(xd—xo)HX]=o+HTu+xo-x

uen d“X :
u

Hence the perturbed system is controllable if and only if

uMlgu[ e X = Xgllx) +oce .

From the controllability conditions it may be shown that

: _ *
u%;gu[llTui-xo-xd[|x]-Max[0,Sup{[(xd- xolx )|

~olIT (x) || L]
U

and hence the theorem is proved.
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ON THE EXISTENCE OF SATISFACTORY CONTROL
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Study of the sensitivity of optimal control
have indicated a need for ensuring a sufficiently
small variation of the performance over a given
range of variations of the disturbances. This is
provided by the so-called satisfaction approach
to the control problem in which the objective con-
sists in finding a control which will ensure a
satisfactory performance over a range of distur-
bances.

In the present paper we shall give some con-
ditions for the existance of the satisfactory con-
trol and will also indicate how these conditions
can be used in a constructive way for a procedure
to arrive at a strategy leading to a satisfactory
control.

Consider at first the problem of controlling
a system with disturbances.

Let X3.,Xp and X3 be real normed linear

‘ spaces and M, U and Y are subsets of X1.X2 and X3,

respectively. Let the system S be a mapping

§: M X U= Y and the behavior of S be evaluated
by the performance functional G: M x Y — R where
R is the real line. Furthermore, let

Sy = s|{m} x U ; G, = Gl{m} x U

vhere m ¢ M. A mapping H, can be then defined

Hm: U — R, such that

H (u) = G, (s, (0))
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