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Abstract 

We consider the control performance of an LQG sys- 
tem with a noisy analog feedback channel between the 
state-observation and the controller. To bound the per- 
formance, we use the sequential rate distortion function 
and the assumption of equi-memory. We then discuss 
the tradeoffs between control and communication costs 
and how to relax the equi-memory assumption. 
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1 Introduction 

Many modern control systems are employing multi- 
ple sensors and actuators that are geographically dis- 
tributed. There are many issues of coordination and 
communication that must be dealt with. It becomes 
important then to determine what the sensors should 
transmit to the controller and what channel rates are 
required to achieve a specified performance. 

In this paper we examine the classical LQG control 
problem under communication constraints. We can 
view this as a traditional control problem, except 
that we must design the observation equation subject 
to some constraints on the observation alphabet and 
power.[2] It will be shown that the unstable eigenval- 
ues of the plant are intimately related to the capacity 
requirements for the communication channel - if the 
the rate is less than some threshold, then the cost is 
necessarily infinity as it is impossible to even stabilize 
the system. 
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Such thresholding behavior reminds one of information 
theory where Shannon introduced the distortion rate 
framework. He showed that one can achieve entropy 
rates arbitrarily close to the rate-distortion function for 
suitably long lossy block codes. Unfortunately, long 
block codes imply long delays in communication sys- 
tems, which are unacceptable in control applications. 
To remedy this, we will introduce the sequential rate 
distortion function and use it to derive bounds on the 
performance of any LQG control system that involves 
a rate-limited communication channel. 

This paper is organized as follows: in section 2 we de- 
scribe the model. In section 3 we describe the commu- 
nication channel. In section 4 we discuss the encoders 
and their properties. In section 5 we describe the se- 
quential coding results we will need. In section 6 we 
put the pieces together to bound the LQG performance 
assuming that we have equi-memory. In section 7 we 
look more closely at  the role of equi-memory and dis- 
cuss how it can be relaxed by reinterpreting the cost 
on control actions. 

2 The Control Problem 

We consider the following control system: 

where {xk} is an Rd-valued state process. XC, is a zero 
mean Gaussian with variance Kxo.  {uk} is an Rm- 
valued control process and { W k }  is an &dimensional 
IID Gaussian process with zero mean and variance Kw. 
A E Rdxd ,  B E Rdxm and ( A ,  B) is controllable. 

Our objective function is the average infinite horizon 
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quadratic cost: 3 Communication Channels 

(2) 
Where Q E Rdxd is symmetric positive semidefinite, 
R E RmXm is symmetric positive definite, and ( A ,  Q f  ) 
is observable. These are the standard LQG assump- 
tions and can be found, for instance, in [4]. 

In addition, we have a communication channel with 
inputs a k  E d and outputs bk  E B. Our channel model 
is covered in section 3. 

Encoder 

t F 1 = ' F ! k  ........................................... I 

Encoder 

t F 1 = ' F ! k  ........................................... I 

............................................ 

Controller Decoder 

Definition 2.1 The information state at time k is 

XI,, a k  , b k ,  Y k ,  u k  are the state, channel input, channel 
output, decoder output, and control signal, respectively. 
Z k  is called the information space. 

= ( ~ , k - l , ~ k - '  , bk-1  , y k - 1  , ~ , k - ' )  E z k  where 

We assume all the primitive random variables 
{ X O ,  w k ,  v k ,  k 2 0) are defined on a common prob- 
ability space and are independent of each other. Af- 
ter specification of the control law, encoder law, and 
decoder law the information state, I k ,  becomes a well- 
defined random variable.[l3] 

Definition 2.2 The information space for the encoder 
at time k as Zf which is a coordinate projection of 1 , .  
The information state of the encoder at time k is I f  E 
Zf. The encoder, E ,  at time k is the map: 

&k :If X Rd 3 A 

where &k takes ( I f , x k )  H a b .  

Similarly, the decoder and controller are v k  : 

of all these information spaces is a part of the problem, 
and the actual encoder, decoder, and controller maps 
themselves are the solution. 

( I F ,  b k )  Yk and u k  : ( I U , k , Y k )  +b u k .  Specification 

In general this sort of distributed control problem is 
very difficult. There are, though, certain information 
spaces that allow for tractable solutions [13]. 

Clearly the choice of communication channel effects the 
design of the optimal controller and encoderfdecoder 
pair. One possible model is that of a a noiseless, delay- 
free, digital channel. We consider this model in [12]. 

Here we describe an analog additive white Gaussian 
noise (AWGN) channel with a power constraint. 

Definition 3.1 A n  AWGN channel is an analog chan- 
nel modeled as 

bk  = a k  + V k  

where A = B = Rd, and { v k }  is an IID Gaussian 
process with zero mean and variance K v  representing 
the channel noise. 

The information state and space of the encoder &k at 
time k are l f  6 (X,k-', U$-',a;-') and Zf = (Rd)k x 
(Rrn)': x dk respectively. Similarly for the decoder v k ,  
we have I? 5 (Yt-',  U$-',bt-')  and IF = x 

x Bk respectively. Note that the information we 
have at  time k + 1 contains the information we had at  
time k. 

Furthermore, to prevent degenerate solutions, we im- 
pose the following power constraint: 

for some total power P per time step. Shannon's clas- 
sical theorem shows that the maximum achievable rate 
R of this channel is 

where K A , k  = c m ( a k I Z i )  is the covariance matrix of 
the transmitted signal a .  For a rate R there is a unique 
power constraint P and vice-versa. 

4 Encoders and Decoders 

4.1 Equi-memory 

Definition 4.1 A n  encoder/decoder pair are said to be 
equi-memory if: 

1 There exist two maps : If + Zp and rz : 
IF -+ Zp such that rk(1f) = r$(Z?) for all k .  

2 The encoder has the structure: & k ( I f , x k )  = 
& k ( ( r k ( l f ) , X k )  and the decoder has the structure: 
v k ( I : , b k )  = v k ( r : ( I F ) ,  b k )  f o r  all k .  

In order to satisfy the equi-memory condition, we re- 
quire that the encoder's information state effectively 
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contain the past decoder output signals, Yk.' For dis- 
cussion on how to relax the equi-memory condition see 
[7] and our discussion in section 7 of this paper. 

4.2 Predictive Encoders 
Predictive encoders are commonly used in practice 
when encoding sequential data [7]. These are encoders 
that transmit across the channel a coding of the error: 
the true state of the system minus the decoder's best 
prediction of the state. We need equi-memory because 
the encoder needs to know the state estimate at the 
decoder in order to compute this error. 

Definition 4.2 A predictive encoder i s  a n  encoder 

ak = & k ( I f , X k )  = &k (xk - p f ( I t ) )  

where the predictor is  a m a p  P t  : Zf + Ed.  

The predictors are chosen based on the objective cost. 
For the quadratic cost we use the following expectation 
predictor: 

Pf(I,E) = E (xklrk ( I t ) )  

The key reason for the equi-memory assumption is that 
with it, for expectation predictive encoder/decoder 
pairs, the error e k  = Xk - Yk is independent of the 
control. [12] 

5 Sequential Lossy Coding 

In order to lower bound the error in state-estimation 
across a communication channel, we will define the in- 
formation theoretic sequential distortion rate function 
(SDR) function for Gauss-Markov processes: 

xk+1 = AXk -t wk (3) 

where Xk E E" and wk is an IID Gaussian process 
with mean zero and variance Kw. X O  is Gaussian with 
mean zero and variance K x o .  Notice that this is just 
equation (1) with the control set to zero. 

Fix the single-letter difference distortion measure 
d(z,  i) = (z - i ) ' M ( z  - 5) where A4 is symmetric and 
positive definite. 

Our goal is to encode the reconstructions Xk to mini- 
mize - I N - 1  

over all encoder/decoder pairs. 

While in general, this would require explicit noiseless feed- 
back from the decoder to the encoder, in many cases, it may be 
possible for the encoder to infer this information if it has physical 
access to the control signals. 

Definition 5.1 The mutual information between two 
random variables X , Y  with density p ( X , Y )  and 
marginals p ( z ) , p ( g )  is  defined as 
w, Y )  fi .l-P(., Y) 1% *d.dY. 

Since the encoders which achieve the classical D( R)  
curves ([3] gives the stationary case, in [ll] we discuss 
generalizations to unstable processes) are not causal, 
we proceed to define the sequential distortion rate func- 
tion (also called the prognostic epsilon entropy function 
[8].) Here the minimizing conditional law must be se- 
quential. A conditional law p(ii.;"Izi.;") is sequential if Xi 
is independent of X j  V j  > i given X i .  In order to get a 
lower bound, the idea is to "relax" the problem and op- 
timize over conditional laws and not the deterministic 
quantizers. 

Definition 5.2 
D N , S e q ( R )  = infp(xy,xy) & E d ( X r ,  X y )  such that 
&I(X,"; X y )  5 R and p ( X y I X y )  is sequential. 

Definition 5.3 Dseq(R) = limsup,,, D,,seq(R) 

The asymptotic performance of these functions in the 
vector and high rate case can be found in the upcoming 
paper [12]. 

For the scalar case we have: 
K M  

D s e q ( R )  = { m* if > l o g A  
if R 5 logA 

Note here that R > logA for the scalar reconstruc- 
tion to have finite distortion. More generally, to 
have finite distortion we must transmit at least R 2 

max{O,logai(A)} bits every time step. The lin- 
ear system can thus be thought of as ' L p r ~ d ~ ~ i n g ' 7  this 
many bits of information at each time step. 

6 Using Sequential Distortion Rate to Bound 
Performance 

Now, we have all the pieces in place. It remains to 
choose the metric used for the quantization, and the 
control law. Clearly, the control signals will be a 
function of the past controls and decoder outputs - 
I; {Y;-', U,"-'}. 

Lemma 6.1 If the encoder and decoder are equi- 
memory  and predictive then the information state of 
the decoder is  a su f ic ien t  statistic for the state of the 
system. 
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Theorem 6.1 The control problem separates into a 
state estimator and a certainty equivalent controller. 

The proof is given in p21 and relies critically on the 
above lemma. The optimal controller is 

7.1 Reinterpreting the cost on control - the 
plant as a “channel” 
We now reconsider the role of the cost on the control. 
In a physical system, the values for the control vari- 
ables and the plant state are in general fundamentally 
incomparable quantities expressed in different under- 
lying units. So rather than viewing R as an a-priori 
given cost term, it is more realistic to view it as filling 
the role of a Lagrange multiplier on a more fundamen- 
tal underlying constraint of the form ,??(U2) I P2. For 

uk(Yk) = - (B‘KB + R)-’B‘KAYk. 

where K satisfies the following Riccati equation 

K = A‘(K - KB(B’KB + R)-’B’K)A + Q. 
the purpose of simplicity, we will consider U in B-units, 
thereby setting B = 1 .  Furthermore, letting D be the squared-error distortion 

accrued by the encoder/decoder pair, it turns out that 
the average is t r ( K K w )  + t r ( (A‘KA - + Noticing that the encoder has access to past values 
Q ) D )  of X ,  we can see that it effectively observes uk + wk 

where uk is subject to a power constraint and wk is 
white Gaussian noise. Thus, we can view the plant 
as an AWGN channel, and nominally define a rate 
R2 = flog 1 + 2~. . For this nominal rate RI to 
be meaningful, we must see whether it behaves like a 
“rate.” Is there a minimum rate R2 that we must have 

if R > log A in order to have finite cost? Recall that we have already 
if R 5 logA shown that R1 > logA is required. 

Thus, Cost 2 t r ( ~ ~ w )  + D ~ ~ ~ ( R )  (4) 

where the sequential quantizer is optimized for the 
weight matrix (A‘KA - K + Q). 

In the scalar case, we thus have: 

Ave. Cost 2 

( 4 
K K w  + K w ( $ ~ ~ ~ ~ + Q )  

When there is no cost on control, R = 0, we get K = Q 
and for the scalar problem we get: 

i f R > l o g A  

if R 5 logA 
Ave. Cost 2 

It turns out that we can get the bounds above to hold 
with equality if we use the AWGN channel.[9] It is 
“matched” to the problem at hand. 

7 Equi-memory Reexamined 

In some fashion the encoder must be able to contin- 
uously monitor the error between the true state and 
the decoder’s estimate of the state. In order to under- 
stand the situation better, let us concentrate on the 
scalar case, with the power-constrained AWGN chan- 
nel from the encoder to the controller. However, let 
us suppose that there is no direct connection between 
the controller and the encoder. The question arises, 
can we still stabilize the system while meeting the rate 
constraint on the channel? 

We notice that if there is no cost on the control, there 
exists a L such that B L  = -A. This is a “minimum 
variance” controller. The encoder then observes the 

is exactly what the expectation predictive encoder uses 
to compute the transmitted signal. Hence, we do not 
need any other link from the controller to the encoder 
- the plant itself can act as the link. Equi-memory 
becomes redundant. 

State xk = AXk-1 -AYk-1 +wk = AEk-1 +wk. This 

To find the minimum rate on Rz,  we relax the con- 
straint on R1.  By boosting the powerlrate on the 
channel fi-om the encoder to the controller, we ap- 
proach x k  = Xk with no error. Since the optimal 
control law is linear, we can write uk = -/2Xk. Thus, 
E(V2) = 1zE(X2).  So, the limiting closed loop sys- 
tem is Xk+l = ( A  - l z ) x k  + Wk, and it is clear that 
E ( X 2 )  = &. Thus, E ( U 2 )  = a. w e  
can minimize this expression by setting 12 = *. So, 
E(U2) is bounded below by (A2 - 1)Kw.  This gives 
us Rz > logA as a requirement for stability. 

It is important to note that the situation is not com- 
pletely symmetric between R1 and R2. While the per- 
formance strictly improves as we increase RI, there is 
an upper bound for Rz. If we relax the constraint and 
optimize, we find that 12 = A is the choice that min- 
imizes E ( X 2 ) .  We can compute E(U2)  for the closed 
loop system (setting K w  = 1 = K v  as a part of the 
choice of units), resulting in E(U2)  = ~ z _ - A A ? ~ - ; ~ l .  

A ~ + ~ - z A ~ z - ~ ~ ~  Thus, RZ I f log ( 1 - ~ 2 2 - 2 R 1  )- 
This upper-bound value for R2 also represents some- 
thing else. If R2 has this value, then the equi-memory 
assumption is no longer needed to achieve optimal per- 
formance. Thus, the role of the equi-memory assump- 
tion becomes more clear - it exists to allow us to en- 
code the data on channel 1 without having to consider 
any rate limitation on the “channel” through the plant. 
In fact, given a fixed R1 constraint, for scalar plants the 
signal sent through this channel depends only on the 
realization of the wk and v k  processes. It does not 
depend on Rz at all. 
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7.2 Trading off the two rates 

Equimemory vs No Equimemory for A=l . l  

will be the gap between the no-equimemory scheme and 
the equimemory bound. 

0 The case of arbitrary R3 requires some sort of 
nonlinear signaling scheme over channel 3. 

Channels 2 and 3 together can be viewed as a vector 
channel with separate per-channel power constraints. 
We know that except in degenerate cases, no linear 
scheme can be optimal for such a situation.[lO] In gen- 
eral, as R3 gets larger, the performance curve will ap- 
proach the equi-memory bound.[l2] 

0.2 0.4 0.6 0.8 1 1.2 1.4 
R1 

In the above plot, we have plotted curves showing the 
RI, R2 tradeoff by marking the edge of stability (the 
lower bound on R2) and also the “Minimum Variance” 
scheme (the upper bound on R2). It is within the gap 
between these two that the role of equi-memory be- 
comes significant. 

To understand that role, we propose the explicit consid- 
eration of a third channel directly connecting the con- 
troller to  the encoder. with rate constraint R3. This is 
considerably more complicated, and we have only be- 
gun to understand its properties.[l2] However, this is 
what we know so far: 

0 R3 = 00 is the equi-memory case. 

0 Even if R3 = 0, the fundamental limits that R I  > 
logA and RI  > logA are tight since by letting 
one rate tend to infinity, we can let the other 
approach log A. 

A workable suboptimal scheme for R3 = 0 can be ob- 
tained by fixing the controller and decoder as is, and 
using a Kalman filter at the encoder to estimate the 
decoder state from observations of X and knowledge 
of past inputs to the channel between the encoder and 
decoder. In the plot, the faint line shows that such a 
scheme can stabilize the system without using too much 
additional rate relative to the equi-memory case. In 
general, the smaller A is, the greater (proportionately) 
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