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Abstract— The problem of sequential source coding is to
minimize the average entropy rate subject to a constraint on
the average distortion and a causality constraint on codewords.
This is cast as an optimization problem on an appropriate
convex set of probability measures. Existence and properties
of optimal sequential codes are explored. A sequential rate
distortion theorem is proved and a construction given to show
that in general, a “causality gap” exists.

I. I NTRODUCTION

The technology of distributed and networked control re-
quires understanding the behavior of interconnections of
communication and control systems. This requires a new
theory of Information which is dynamical and where the
constraints of causality and delays are explicitly taken into
account (see for example, Mitter, S.K., “Control with Limited
Information,” Eur. Jrn. Control, Vol. 7, pp. 122-131, 2001.).
Rate Distortion Theory, as developed by Shannon, is asymp-
totic in nature and tells us what the fundamental limitations
to reliable transmission subject to distortion constraints are.
In earlier work (S. Tatikonda, A. Sahai and S.K. Mitter,
“Stochastic Linear Control Over a Communication Channel,”
IEEE Trans. on Auto Control, Special Issue on Networked
Control Systems, Vol. 49, Iss. 9, Sept. 2004, pp. 1549-1561.)
the role of sequential rate distortion theory in obtaining
lower bounds to performance of LQG with communication
constraints has been demonstrated.

The aim of this paper is to cast the sequential source
coding problem in its traditional ‘rate-distortion’ framework
as an optimization problem on a convex set of probability
measures. This allows us to obtain interesting results about
the structure of optimal sequential codes and take the first
steps towards a ‘sequential rate-distortion theory’. See [11],
[12], [15] for related viewpoints. Our work differs from these
in its approach and also in that we do not impose any i.i.d.
condition on the source as in [11] or stationarity condition
on the source-code pair as in the other two (though we do
assume the source itself to be stationary). Similar techniques
have been applied in [2] to Markov decision processes.
Also, see [4] for a related but different perspective of the
sequential source coding problem for the special case of

Markov sources.
The paper is organized as follows: First, we review the

traditional formulation of rate-distortion theory. The next
section introduces our formulation of the source-code pair
as a probability measure on a product space. The latter is a
product of the countable product of the source alphabet and
the countable product of the code alphabet. A probability
measure on this space then corresponds to a canonical
realization of the joint source-code process. Since the source
is fixed, the marginal of this measure on the first factor
space (i.e., countable product of source alphabet) gets fixed.
The regular conditional law on the second factor space (i.e.,
countable product of the code alphabet) is then identified
with a possibly randomized encoding of the source. This
permits us to view the family of source-code pairs for a
fixed source as a family of probability measures on the above
product space with a fixed marginal. This set is closed and
convex with its extreme points corresponding to deterministic
codes wherein the aforementioned regular conditional law is
a.s. a Dirac measure. We shall be interested in the closed
convex subset corresponding to sequential or ‘causal’ codes
which satisfy an additional causality constraint: an encoding
is causal if at each time instant, the encodings up to the time
are conditionally independent of the future source outputs
given the past. The extremal elements of this set once again
correspond to the codes that are sequential and deterministic.
Codes that randomize between at most finitely many of these
are of special interest to us and are dubbed ‘finitely random-
ized codes’. This section proves various basic properties of
these sets of probability measures.

Section III introduces the two optimization problems of
concern here, viz., those of minimizing the average infor-
mation rate of the code and the average mutual information
of the source-code pair, both subject to a given bound on
the average distortion. While the former is the usual rate-
distortion problem, the latter is motivated purely by analogy
with Shannon’s rate distortion theorem which identifies the
two problems in the block coding paradigm. For a finite time
horizon, these problems amount to minimizing a concave
(resp. convex) function on a convex set. Using some facts



from convex analysis, the minimum in the former problem
can be shown to be attained by a finitely randomized code.
For infinite time horizon, the limiting time average may not
be defined and one must consider both thelim sup and the
lim inf in either case. Further, we can also consider the limit
of the minima of finite horizon problems as the horizon
extends to infinity. The main result of this section is that for
either problem, each formulation leads to the same number.

Section III shows that the equality in fact extends across
the problems if one is willing to restrict to finitely random-
ized codes. That is, the minimum oflim sup/lim inf and
the limit of minima for finite horizon problems for rate
minimization are all equal to each other and to the minima
of lim sup/lim inf for the mutual information minimization
problem if one restricts to finitely randomized codes in
the latter case. This captures in some sense the spirit of
Shannon’s rate distortion theorem for the sequential case,
because of which we call it the ‘sequential rate distortion
theorem’. The minima oflim sup/lim inf and the limit of
minima of finite horizon problems in the minimization of
mutual information that allows for arbitrary randomizations
are equal and upper bounded by the minimum of the cor-
responding entropy minimization problem mentioned above.
This inequality can be strict (leading to a “causality gap”),
as shown by a constructive counterexample in Section V.
Section VI concludes with some related remarks.

We shall now summarize our main results (Theorem 3.1–
Corollary 3.4 below). We consider a stationary source{Xn}
taking values in a finite alphabet and an associated process of
its encodings{Zn} such thatZn encodesXn, based ononly
the ‘history’ Xm, Zm,m < n, and possibly an additional
randomization device that does not, however, anticipate the
future outputs of the source. In other words, we shall be
looking at the probability measures induced by the source-
code pair on the product path space, with the ‘marginal’
corresponding to the source being a fixed stationary measure.
Such a point of view is not entirely new, being implicit
in the works of Gray et al. [10], [11], [12],sans the
sequentiality hypothesis. We shall be interested in particular
in the special subclass corresponding to finitely randomized
sequential codes, i.e., the codes obtained by randomizing
between finitely many deterministic sequential codes. It is
to be kept in mind that this randomization isa priori,
i.e., at time zero, the code once picked thus is deterministic
thereafter.

It is worth noting that in contrast to Shannon theory where
such randomization, if and when used, is purely a technical
device, it does make a nontrivial difference in the sequential
case, as we see below.

We shall be interested in the following quantities :
(i) infimum over all sequential codes subject to the dis-

tortion constraint, of thelim inf of the time-averaged
entropy (entropy rate) of codewords,

(ii) same as above, withlim sup in place oflim inf,
(iii) same as(i), with infimum over finitely randomized

sequential codes,
(iv) same as(ii), with infimum over finitely randomized

codes,
(v) limit (shown to exist) as the time horizon recedes

to infinity, of the infimum over all sequential codes
(equivalently, all finitely randomized sequential codes)
of the per letter entropy over a finite horizon, subject
to the distortion constraint,

(vi) same as(i), but with source-code mutual information
(s.c.m.i.) in place of entropy,

(vii) same as(ii) , with s.c.m.i. in place of entropy,
(viii) same as(iii) , with s.c.m.i. in place of entropy,
(ix) same as(iv), but with s.c.m.i. in place of entropy,
(x) same as(v), but with s.c.m.i. in place of entropy.

Our main result is that(i)–(v) and(viii)–(ix) agree with each
other, so do(vi), (vii), (x) and the latter are a lower bound
for the former.

The equality of(i)–(v), (viii)–(ix) is reminiscent of Shan-
non’s rate distortion theorem. Since finite randomizations
amount to taking convex combinations in the space of prob-
ability measures, what we have here is a statement that the
‘rate’ function is precisely what one obtains by taking source-
code mutual information for finite convex combinations of
deterministic codes, followed by the appropriate limits /
infimum.

At the same time, the gap between the equal quantities
(i)–(v) and (viii)–(ix) on one hand and(vi)–(vii), (x) on
the other can be a strict gap, as we show by a concrete
example. This shows conclusively that a ‘full’ rate distortion
theorem as in the block coding case (extended to a very
general class of sources in [13], see also [14] for some
related results for channel coding) is not possible. Of course,
with the additional constraint of sequentiality, one would
expect to lose some aspects of the Shannon theory for block
coding. Our main result together with our counterexample
underscores precisely what this loss is.

While the main aim of this article is to take some initial
steps towards a sequential rate distortion theory, going a little
beyond [15], it is also hoped that the novel ‘optimization’
formulation and the added insight it brings are of interest in
themselves.

A. Review of Traditional Rate Distortion Theory

Traditional Rate-Distortion theory is a well-established
area of information theory dealing with the lossy compres-
sion of data from random sources. By “lossy” we mean that
we allow the reconstructed data to differ from the original.
Once we allow differences, it is natural to want some way
of representing the fidelity of the reconstruction between a
source sequencexn

1 and its reconstruction/encodinĝxn
1 .

Definition 1.1: A distortion measureis a family of func-
tions ρn(xn

1 , x̂
n
1 ) which all take values in the positive real

numbers. The family is called aper-letter distortion measure
if there exists a functionρ(x, x̂) called thesingle-letter dis-
tortion functionsuch thatρn(xn

1 , x̂
n
1 ) = 1

n

∑n
k=1 ρ(xk, x̂k)

for every positive value ofn.
We restrict our attention to per-letter distortion measures

and are concerned with the average per-letter distortion



1
n
E[ρn(Xn

1 , X̂
n
1 )] and its asymptotic properties. By “com-

pression” of the data, we want to capture the idea of size.
The traditional way to do that is to consider the sequence to
be generated by a random process and to evaluate theentropy
of the sequence of random variables. We restrict ourselves to
finite alphabetrandom sources which produce symbols from
a finite setS.

Definition 1.2: The entropy of a sequence of random
variablesXn

1 is denoted byH(Xn
1 ). For a single random

variableX , conditioned on another variableY , we represent
the conditional entropyby H(X |Y ) =

∑
(x,y) P (X =

x, Y = y) log(P (X = x|Y = y)) whereP (X = x, Y = y)
is the probability of the eventX = x, Y = y and P (X =
x|Y = y) is the probability of the eventX = x conditioned
on the fact that the eventY = y has occurred. It turns out
that H(Xn

1 ) =
∑n

k=1H(Xk|Xk−1, Xk−2, · · ·) (where we
use the convention thatXi = an arbitrary fixed element ofS
for negativei). Theentropy rateH(X) of a random process
is defined to belimn→∞

1
n
H(Xn

1 ) if the limit exists.
All logarithms in this paper are taken in base 2. Entropy

is motivated as a measure of size by the following lossless
coding theorem.{0, 1}∗ is the set of all finite binary strings.

Theorem 1.1:[6] There exists a sequence of functions
(called deterministic encoders)Fn which mapxn

1 ∈ Sn into
variable length binary strings from{0, 1}∗ such that

lim
n→∞

1

n
E(length(Fn(Xn

1 ))) = H(X)

and furthermore there exists a sequence of inverse functions
(called deterministic decoders)Gn so thatGn(Fn(xn

1 )) = xn
1

for all stringsxn
1 ∈ Sn.

Traditional rate-distortion theory often focuses onmem-
orylesssources: those for which the{Xk} are independent
and identically distributed. Then, using Huffman codes, one
can achieve within one bit of the average entropy and thus
the per letter expected length of the encoding is in fact within
1
n

of the entropy. (Recall that Huffman codes are uniquely
decodable prefix codes.) Furthermore,H(X) = H(Xk) ∀k
since conditioning is irrelevant.

Given the above definitions and motivations, we want to be
able to characterize the minimal entropy rateH(X̂) required
to achieve a certain average distortion betweenX andX̂ .

Definition 1.3: A deterministic source encoderof block-
lengthN is a functionFN from source sequencesxN

1 ∈
SN into reconstruction sequenceŝxN

1 ∈ ΣN . FN , a de-
terministic source encoder of block-lengthN , is consid-
ered to bememorylessif there exists anF1, deterministic
source encoder of block-length1, such thatFN (xN

1 ) =
[F1(x1), F2(x2), · · · , F1(xN )].

Theorem 1.2:[6] For a memoryless random source{Xk},
define

R(K) =
inf

P (X̂=x̂|X=x)|
∑

x,x̂
P (X=x)P (X̂=x̂|X=x)ρ(x,x̂)≤K

I(X, X̂)

where I(X, X̂) = H(X̂) − H(X̂|X) is the mutual infor-
mation betweenX and X̂ if they were related by the joint

distribution that had the specified marginalP (X = x) and
conditionalP (X̂ = x̂|X = x). Then,∀K, ǫ we have∃N
and∃ deterministic source encoderFN such that the average
distortion 1

N
E(ρN (XN

1 , FN (XN
1 ))) ≤ K and the average

output entropy1
N
H(FN (XN

1 )) ≤ R(K)+ǫ. Furthermore, no
encoders exist which have average output entropy less than
R(K) while still having average distortion less thanK. In
addition we can restrict ourselves to fixed-length codewords.

Notice that the encoders used here are block encoders and
are thus not generally causal. That is, for block encoders
X̂k can depend onXk+m wherem > 0. This is not always
an issue since in applications like lossy image compression,
when the samples are distributed in space and so causality
is not important. However, in the cases where the{Xk}
represent samples of a random process evolving in time, the
non-causality of the encoders in the above theorem can be a
problem, especially if the underlying application has a “real-
time” flavor to it. For these, we require a general definition
of causal encodings:

Definition 1.4: A causal deterministic source encoderF
is an infinite sequence of functions[f1, f2, · · ·] such thatfk

maps source sequencesxk
1 ∈ Sk into a single symbol̂xk ∈ Σ

which is the reconstruction at timek. A memoryless encoder
is one for whichfk(xk

1) = fk(xk) meaning that the encoding
of a particular source symbol does not depend on previous
symbols.

Definition 1.5: The rate-distortion performanceof a
source encoderF (mapping source sequencesx∞1 into x̂∞1 )
is the pair (RF ,KF ) where RF = limn→∞

1
n
H(X̂n

1 )
is the average output entropy rate andKF = limn→∞
1
n
E(ρn(Xn

1 , X̂
n
1 )) is the average distortion.

For memoryless sources and causal deterministic source
encoders, the performance region is completely characterized
by a general result due to Gilbert and Neuhoff.

Theorem 1.3:([15], Theorem 3) For the encoding of
memoryless sources, causal deterministic source encoders
have an operational rate-distortion performance curve which
is the lower convex envelope of the operational rate-
distortion performance of memoryless encoders. Moreover
one can achieve any point on this performance curve by
time-sharing between two memoryless encoders.

In [15], the above result is proved for deterministic en-
coders, which are of primary interest in the real world.
However, given that the spirit of source encoding resembles
constrained optimization problems, where the usefulness of
“mixed strategies” and randomization [2] is well established,
we consider in this paper the generalization of source en-
coders to include randomized encoders. First, we need to
carefully define randomized sequential codes and introduce
the idea offinite randomization.

II. T HE STRUCTURE OFSEQUENTIAL CODES

Our source will be a stationary stochastic processXn, n ≥
1, taking values in a finite alphabetS. (The possibility
of allowing more generalS, which is indeed possible for
most of our results, will be briefly commented upon in the
discussion at the end.) At each timen, we have an encoding



of Xn into aΣ-valued random variableZn, Σ being another
prescribed finite alphabet. (SinceS andΣ are finite, they are
trivially compact as well.) ForN = 1, 2, . . . ,∞, denote by
SN ,ΣN theN -fold product ofS,Σ resp. with the product
topology and the associated product Borelσ-field. Given an
infinite stringx∞

∆
= [x1, x2, x3, . . . , ], we shall denote byxn

the vector[x1, . . . , xn] and byx̃n the string[xn+1, xn+2, . . .]
for n ≥ 0. Finally, for a Polish spaceχ,P(χ) will denote the
Polish space of probability measures onχ with the Prohorov
topology ([3], Chapter 2), and the notationL(. . .) will stand
for ‘the law of . . .′.

ForN as above, we specify the sourceXN by specifying
L(XN ) = νN ∈ P(SN). DefineD ⊂ P(SN × ΣN ) by

D = {µN ∈ P(SN × ΣN ) : µN (dx,ΣN ) = νN (dx)},

i.e., D is the set of probability measures on the product
spaceSN × ΣN whose marginal on the factor spaceSN

coincides with the prescribedνN . In particular, forXN , ZN

as above,L(XN , ZN ) ∈ D. Conversely, eachµN ∈ D can
be disintegrated as

µN (dx, dy) = νN (dx)qN (x, dy),

where the mapx ∈ SN → qN (x, dy) ∈ P(ΣN) is
the regular conditional law specifiedνN -a.s. uniquely ([3],
pp.41). We can identify this map with a possibly randomized
encoding scheme that generatesZN given XN . Thus we
have a one-one correspondence between the elements ofD
and possibly randomized encodings ofXN . For most of what
follows, we haveN = ∞.

Lemma 2.1:D is compact convex inP(SN × ΣN ).
We now introduce some distinguished subsets ofD.
Definition 2.1: The encoding schemeqN (·, ·) is said to

be deterministic if qN (x, dy) is a Dirac measure (i.e.,
support(qN(x, dy)) is a singleton) forνN -a.s.x.

Definition 2.2: Call the encoding schemesequential if
for each n ≥ 0, the correspondingZn is conditionally
independent of future source outputs̃Xn given the past
source outputsXn · Dseq ⊂ D will denote the subset of
D corresponding to sequential codes andD′

seq its further
subset that corresponds to deterministic sequential codes.

It is worth noting that this specification does not charac-
terize the joint law of(XN , ZN).

Lemma 2.2:Dseq is convex compact.
For n ≥ 1, let Γn = L(Xn, Zn−1),Φn =

L(Xn, Zn), xn → pn(xn, dx) the regular conditional law
of Xn+1 given Xn (prescribed νn-a.s. uniquely) and
(xn, zn−1) → ψn(dz/xn, zn−1) the regular conditional law
of Zn given (Xn, Zn−1) for n ≥ 1 (prescribedΓn-a.s.
uniquely). HereZ0 = an arbitrary fixed element ofΣ by
convention. ThenΦn is defined recursively by

Φn+1(dx
n+1, dzn+1) =

Φn(dxn, dzn)pn(xn, dxn+1)ψn+1(dzn+1/x
n+1, zn), (1)

by virtue of Definition 2.2.
We now digress briefly to recall a key result from [1]. Let

S1, S2 be Polish spaces equipped with their Borelσ-fields

andQ ⊂ P(S1 ×S2) the set of probability measuresµ such
that µ(dx, S2) = ν(dx) for a prescribedν(dx) ∈ P(S1).
Clearly,Q is closed convex. LetQe = {extreme points of
Q} andQD = {µ ∈ Q : µ(dx, dy) = ν(dx)v(x, dy) where
v(x, dy) is a Dirac measure forν-a.s.x}.

Lemma 2.3:[1] Qe = QD.
Corollary 2.1: The set of extreme points ofDseq coin-

cides withD′
seq .

Lemma 2.4:Eachµ ∈ Dseq is the barycenter of aξ ∈
P(D′

seq), i.e.,
∫
f(µ′)dξ(µ′) = f(µ) for all affine f :

Dseq → R.
Remark: That D′

seq is measurable (in fact,Gδ, i.e., a
countable intersection of open sets) follows from Corollary
2.1 above and Corollary 27.3, p. 138, [5].

Definition 2.3: A µ ∈ Dseq will be said to beasymptot-
ically deterministicif the correspondingψn(dz/Xn, Zn−1)
a.s. converges to a possibly random Dirac measure onΣ as
n→ ∞.

Let µ ∈ Dseq and ξ ∈ P(D′
seq) as above and

L(X∞, Z∞) = µ. Then we can viewξ as a ‘prior’ on
the ‘parameter space’D′

seq in a Bayesian set-up as fol-
lows: Clearly, µ(dx, dy) =

∫
ξ(dα)α(dx, dy). Let γ be

a D′
seq-valued random variable with lawξ0

∆
= ξ and for

n ≥ 1, let ξn(dα/Xn, Zn−1) denote its regular conditional
law given the canonically defined(Xn, Zn−1). We view
γ as an unknown parameter and its lawξ0 as a prior
on Dseq, and ξn’s as the corresponding posteriors. For
η ∈ Dseq , let ψη

n(dz/xn, zn−1) denote the corresponding
ψn(dz/xn, zn−1), n ≥ 0. Thenψα

n(dz/xn, zn−1) is Dirac
a.s. forα ∈ D′

seq and

ψµ
n(dz/Xn, Zn−1) =∫

ξn(dα/Xn, Zn−1)ψα
n (dz/Xn, Zn−1), n ≥ 0.

Lemma 2.5:

ξn(dα/Xn, Zn−1) → δγ a.s.,

whereδu is the Dirac measure atu. Equivalently,

E[f(γ)/Xn, Zn−1] → f(γ) a.s., f ∈ Cb(D
′
seq).

Definition 2.4: A µ ∈ Dseq is said to be finitely ran-
domized if the correspondingξ is finitely supported (i.e.,
the correspondingγ takes only finitely many values). Let
D̃seq denote the subset ofDseq corresponding to finitely
randomizedµ’s.

Corollary 2.2: Every finitely randomizedµ is asymptoti-
cally deterministic.

This is a straightforward consequence of Lemma 2.5.
Lemma 2.6:D̃seq is dense inDseq .
Alternatively, one can use Corollary 2.1 and the Krein-

Milman theorem ([5], pp.105).

III. T HE OPTIMIZATION PROBLEM

In the traditional rate distortion theory ([6], Chapter 13),
one seeks to minimize the average entropy rate subject to
an upper bound on average distortion, over the set of all
possible encodings. Given our identification of sequential



codes with an appropriate convex set of probability mea-
sures, this suggests that we cast the sequential version of
the rate-distortion problem as a constrained optimization
problem over this set. This is what we do in this section.
Shannon’s rate distortion theorem ([6], Chapter 13) identifies
this constrained minimization of entropy rate with another
constrained minimization, viz., that of mutual information
between the source outputs and the codewords, in an asymp-
totic sense. With this in view, we also consider the ancillary
problem of minimizing the average mutual information be-
tween the source outputs and the codewords subject to the
distortion constraint.

We start with some notation. For

µ∞(dx, dy) = ν∞(dx)q∞(x, dy) ∈ Dseq ,

let µn(dx, dy) = νn(dx)qn(x, dy) denote its restriction
to P(Sn × Σn), n ≥ 1. Let L(X∞, Z∞) = µ∞. Let
Hn(µn), In(µn) denote respectively the Shannon entropy
of Zn and the mutual informationI(Xn;Zn). Also, let
ρ : S × Σ → R+ be a prescribed per symbol distortion
measure. Define the average distortion

Dn(µn)
∆
=

∫
ρn(xn, yn)µn(dxn, dyn),

D∗(µn)
∆
= lim sup

n→∞

Dn(µn)

n
,

where
ρn(xn, yn)

∆
= Σn−1

m=0ρ(xi, yi), n ≥ 1.

Define F ∗(µ∞) = lim supn→∞
Fn(µn)

n
, F∗(µ

∞) =

lim infn→∞
Fn(µn)

n
for Fn(·) = Hn(·), In(·) or Dn(·). Let

K, 0 < K <∞, be a prescribed constant and letDn = {µn :
µ∞ ∈ Dseq , Dn(µn) ≤ nK}, n ≥ 0,D∗ = {µ∞ ∈ Dseq :
D∗(µ∞) ≤ K}. SetRn = infDn

Hn(µn), n ≥ 0, R∗ =
infD∗ H∗(µ), R∗ = infD∗ H∗(µ), Jn = infDn

In(µn), n ≥
0, J∗ = infD∗ I∗(µ), J∗ = infD∗ I∗(µ).

Note that for n < ∞, Hn(·) (respectively,In(·)) are
concave (respectively convex) and continuous onDseq . (See,
e.g., [6], p. 31.) Since pointwise minimum and pointwise
limits of concave functions are concave,H∗(·) is concave.
Likewise, I∗(·) andD∗(·) are convex.

For n < ∞, the rate distortion problem is to minimize
Hn(·) overDn. For n = ∞, it is to minimize eitherR∗(·)
or R∗(·) on D∗. The ancillary problems are defined accord-
ingly with In(·) replacingHn(·) (respectively,J∗(·)/J∗(·)
replacingR∗(·)/R∗(·)). We first consider the case of finite
n.

Lemma 3.1:Hn(·), In(·) attain their minimum values
Rn, Jn respectively onDn. In the former case the minimum
is attained at aµ ∈ D̃seq which randomizes between at most
two deterministic codes.

Lemma 3.2:R∞ = limn→∞
Rn

n
exists.

Write R∞ as R∞(K) for n = 0, 1, · · · ,∞, to denote
explicitly its dependence onK. ThenR∞(·) is a bounded
nonincreasing function and therefore can have at most
countably many points of discontinuity. Since it is upper
semicontinuous and nonincreasing, it is left-continuous.

Lemma 3.3:For all but at most countably many choices
of K, R∞(K) = R∗ = R∗.

Let ‘genericK ’ stand for ‘all but at most countably many
values ofK ’.

Corollary 3.1: For genericK, the following holds: If
µ∞ ∈ D satisfiesH∗(µ∞) = R∗, thenH∗(µ

∞) = R∗ =
R∗ = H∗(µ∞) = R∞. More generally, given anyǫ > 0,
there exists aµ∞ ∈ D∗ such that

R∞ = R∗ = R∗ ≤ H∗(µ
∞) ≤ H∗(µ∞) ≤ R∞ + ǫ.

An exactly parallel treatment is possible for the ancil-
lary problem of minimizing the average mutual information
subject to the distortion constraint. We state the results in
Lemma 3.5 below.

Lemma 3.4:Let random variablesY1, Y2, W1,W2 satisfy:
W1 is conditionally independent of(Y2,W2) given Y1 and
W2 is conditionally independent of(Y1,W1) givenY2. Then

I((Y1, Y2); (W1,W2)) ≤ I(Y1;W1) + I(Y2;W2).

Lemma 3.5:J∞(= J∞(K))
∆
= infn

Jn

n
= limn→∞

Jn

n

and for genericK, J∞ = J∗ = J∗. Furthermore, for generic
K the following holds: Ifµ∞ ∈ D∗ satisfiesI∗(µ∞) = J∗,
then I∗(µ∞) = J∗ = J∗ = I∗(µ∞). More generally, given
any ǫ > 0, there exists aµ∞ ∈ D∗ such thatJ∞ = J∗ =
J∗ < I∗(µ

∞) ≤ I∗(µ∞) ≤ J∞ + ǫ.
We can say a little more for this problem when(X∞, Z∞)

is jointly stationary. Letθ denote the shift operator on
S∞ × Σ∞, mapping a string[(w0, w1, . . .), (v0, v1, . . .)] to
[(w1, w2, . . .), (v1, v2, . . .)]. Say thatµ∞ = L(X∞, Z∞) ∈
Dseq is stationary if µ∞ = µ∞ ◦ θ−1, equivalently, if
(X∞, Z∞) is jointly stationary. LetD̂ = {µ∞ ∈ D∗ :
µ∞ is stationary}.

Lemma 3.6:
J∞ = infD̂ lim supn→∞

In(µn)
n

= infD̂ lim infn→∞
In(µn)

n
.

Recall the setD̃seq of finitely randomized sequentialµ ∈
Dseq . Let D̃n denote its restriction toSn × Σn intersected
with Dn for n ≥ 1 and D̃∗ = D∗ ∩ D̃seq. Set R̃n =
infD̃n

Hn(µn), R̃∗ = infD̃∗ H∗(µ), R̃∗ = infD̃∗ H∗(µ),
J̃n = infD̃n

In(µn), J̃∗ = infD̃∗ I∗(µ), J̃∗ = infD̃∗ I∗(µ).
Lemma 3.7:

limn→∞
R̃n

n
= infn

R̃n

n
= R∞, limn→∞

J̃n

n
= infn

J̃n

n
=

J∞.
Lemma 3.8:For generic K, R̃∗(K) = R̃∗(K) =

R∞(K).

IV. A ‘S EQUENTIAL RATE DISTORTION THEOREM’

We are now ready to establish a result that may be viewed
as a sequential version of Shannon’s rate distortion theorem.
Let D̃∗(m) = {µ ∈ D̃∗ : | support(µ)| ≤ m},m ≥ 1, where
|A| denotes the cardinality of a setA.

Lemma 4.1:Let µ∞ = L(X∞, Z∞) ∈ D̃∗(m),m ≤ 1.
Then

H(Zn/Xn)

n
→ 0.

Corollary 4.1: For
m ≥ 1, infD̃∗(m)H

∗(µ) = infD̃∗(m) I
∗(µ).

Corollary 4.2: J̃∗ = R̃∗, J̃∗ = R̃∗.
Thus we have :



Theorem 4.1:For genericK, R∞ = R∗ = R∗ = R̃∗ =
R̃∗ = J̃∗ = J̃∗ ≥ J∞ = J∗ = J∗.

LetF (K) (resp.,G(K)) denote any of the equal quantities
on the left (resp., right) hand side of the above inequality,
with the dependence onK made explicit. The next result
shows that the qualification ‘for genericK ’ can be dropped
for most purposes.

Corollary 4.3: F (·) (resp.,G(·)) is convex and therefore
continuous on the interior of its domain.

V. A COUNTEREXAMPLE

This section shows by a constructive counterexample that
the inequality in Theorem 4.1 cannot be replaced by an
equality. First, we will show that for i.i.d. sources, any
finitely randomized sequential code has both average distor-
tion and entropy rate equal to an appropriate deterministic
code to be constructed as follows. There is no point in con-
sidering infinitely randomized codes since we have already
shown that the minimum output entropy is attained on finitely
randomized ones.

Consider a finitely randomized code that randomizes be-
tweenl deterministic sequential codesf i

k : Xk
1 → X̂k where

1 ≤ i ≤ l and k ≥ 1. The randomization is done with
probabilitiesP = [p1, · · · , pl]. Let (Ri,Ki), 1 ≤ i ≤ l
denote the rate-distortion performance pairs corresponding
to these deterministic codes.

We will construct a new deterministic encodeřF =
(f̌1, f̌2, · · ·) of the form

f̌k(Xk
1 ) = fzk

N
zk
k

(XM
zk
1

, XM
zk
2

, · · · , XM
zk

N
zk
k

)

The basic idea of our construction is to deterministically
and causally split the source sequenceX∞

1 into l subse-
quences. Since the process is i.i.d., so are these subsequences.
Then, we apply thel original deterministic sequential codes
to encode these subsequences in a causal way. Finally,
we causally reassemble these encoded subsequences into
an encoding of the original source sequence. The notation
might seem confusing, but this is just thezk-th original
deterministic code operating on the appropriate subsequence
of source symbols so far. That appropriate subsequence has
Nzk

k elements, which are indexed byMzk

1 ,Mzk

2 , · · · ,Mzk

N
zk
k

in the original source.
The key to getting this working is in the “splitting.” We

must do it in a way that is compatible withP . Without loss
of generality, assume thatP is such that∀1 ≤ i ≤ l, pi > 0
andpi = 0 otherwise.

Definition 5.1: We call a sequencez∞1 a P -splitting se-
quenceif ∀k, 1 ≤ zk ≤ l and

∀i lim
k→∞

∑k
j=1 δ(zj − i)

k
= pi

whereδ is the Kronecker delta function.
We let N i

k =
∑k

j=1 δ(zj − i). So,N i
k is the number of

timeszj is equal toi up to and includingzk.
But before we proceed, we need to establish that desired

z∞1 sequences exist.

Lemma 5.1:P -splitting z∞1 sequences exist.
There do exist simple algorithms to generate such se-

quences without needing any randomness at all. In fact, the
following simple rule suffices.

(1) Start with the empty sequence. Letn = 0
(2) Incrementn
(3) ComputeN i

n for all i.
(4) Let j be one for which(pjn−N j

n) is maximal.
(5) Setzn = j
(6) Goto 2

It should be clear that the above loop extends sequences in
such a way thatN

i
n

n
converges asymptotically topi asn gets

large, thereby generating a valid sequencez∞1 no matter how
ties are broken.

We now usez∞1 to construct the set of indices for our
subsequences. ViewN i

k as a function from non-negative
integersk into the non-negative integers. It should be clear
that N i

. is surjective and monotonic by construction since
it counts up from zero to infinity. Consider the set valued
inverse image(N i

. )
−1 and define a new family of sequences

M i
k = min{(N i

. )
−1(k)}. This picks out thek-th jump up-

wards inN i
. , or in other words, the index which corresponds

to thek-th occurrence ofi in the sequencez∞1 . Clearly:

• ∀i, k we havezMi
k

= i by construction
• Conversely, ifzk = i, then∃j such thatM i

j = k.
• If i 6= j then∀k,M i

k 6= M j
k

• ∀i,M i
k is strictly monotonically increasing ink

These properties assure us that theM i sequences partition
the positive integers in such a way as to define the subse-
quences that we need. All that remains is to check to assure
that our new deterministic encoder is sequential.

Recall that our deterministic encoder is defined by

f̌k(Xk
1 ) = fzk

N
zk
k

(XM
zk
1

, XM
zk
2

, · · · , XM
zk

N
zk
k

)

Sequentiality is checked by verifying that the indices
[Mzk

1 , · · · ,Mzk

N
zk
k

] are all less than or equal tok. But since

the M i
k sequences are all strictly monotonically increas-

ing in k it suffices to check the last term:Mzk

N
zk
k

=

min{(Nzk)−1(Nzk

k )} = k, since Nzk

k jumps upward at
k because of how it is constructed fromzk. So, by the
properties given, the deterministic encoderF̌ is sequential.

Now, we are ready to state the main result of this section.
Lemma 5.2:F̌ has rate/distortion performance equal toF̃ .

In other words, almost surely we have:

lim
n→∞

1

n

n∑
k=1

d(Xk, f̌k(Xk
1 )) =

l∑
i=1

piKi

and

lim
n→∞

1

n
H(

ˇ̂
X

n

1 ) =

l∑
i=1

piRi

The above construction establishes that for i.i.d. sources
finite randomization does not allow us to reach any additional
points of (rate,distortion) performance.̌F is a deterministic
sequential encoder. So, we can therefore use the existing



result of Neuhoff and Gilbert (Theorem 1.3 above) to show
that for sequentially encoding i.i.d. sources, it suffices to
consider time-sharing ofmemorylesssource encoders.

A. Example of the Performance of Sequential Codes

To see that the Neuhoff and Gilbert theorem implies a
fundamental performance gap between the causal and non-
causal case, consider the following simple example. Let
{Xk} be i.i.d. fair coin tosses either0 or 1. Choose the
Hamming distortion measure, namelyρ(0, 0) = ρ(1, 1) = 0
andρ(0, 1) = ρ(1, 0) = 1. Traditional rate-distortion theory
tells us that the non-causal performance achievable is given
by R ≥ 1 +K logK + (1 −K) log(1−K) where the r.h.s.
equalsR(K) as defined in Theorem 1.2 above. However,
for this simple source there are exactly four deterministic
memoryless source encoders:

(1) f1(X) = X (Perfect Reconstruction)
(2) f2(X) = 0 (All zeros)
(3) f3(X) = 1 (All ones)
(4) f4(X) = X̄ (Worst Case)

By inspection,f2 and f3 have average distortionK2 =
K3 = 1

2 and output entropy rateR2 = R3 = 0. Meanwhile,
the perfect reconstructionf1 has average distortionK1 = 0
while the output entropy rate equals the input entropy rate
R1 = 1. The worst casef4 has average distortionK4 = 1
while also having output entropy rateR4 = 1. So, it is clear
that the causally achievable performance region is given by
Rcausal(K) ≥ 1 − 2K.

For this binary symmetric source, consider the point of
K = 1

4 . Causally, we need at leastR ≥ 0.5. Meanwhile, if
we are allowed to look into the future, we only needR ≥
0.1887. That is a difference of more than a264%!

Since R(K) in this example also equalsJ∗(K), it is
clear that the inequality in Theorem 4.1 cannot in general
be replaced with an equality. Contrast this with the situation
in traditional rate-distortion theory. There, we get equality
(look at Theorem 1.2 and letǫ tend to zero) instead of a
lower bound (R∞ ≥ J∞ in Theorem 4.1). The fact that
block coding is allowed (which is non-causal) instead of just
sequential coding allows us to generate arbitrary partitions
of the spaceΣn as opposed to the “rectangular” partitions
forced by sequential coding. This counterexample shows that
this geometrical difference in the two schemes leads to this
fundamental gap.

VI. OBSERVATIONS

We conclude with some general observations.
1. The finiteness assumption onS can be dropped in so

far as our claims that involve only entropy or entropy
rate are concerned. Those involving mutual information
require the continuity ofIn(·) in two places, Lemma 3.1
and Lemma 3.7. In its absence, the claims concerning
In(·) in Lemma 3.1 and Lemma 3.7 have to be dropped.
The rest of the paper is not affected. IfS is countable,
In(·) can be shown to be lower semicontinuous (This
follows from Lemma 5.5.1, p. 122, [9].) and thus
Lemma 3.1 still holds in its totality.

2. Letγ denote the random variable as in Lemma 2.5, rep-
resenting the randomization over deterministic codes.
Then

H(Zn/Xn) = H(Zn/Xn) −H(Zn/Xn, γ)
= I(Zn; γ/Xn)
= H(γ/Xn) −H(γ/Xn, Zn)
= H(γ) −H(γ/Xn, Zn)
= I(γ;Xn, Zn) (2)

where in the first step we use the fact thatZn is a
function ofXn andγ, and in the last but one step, the
independence ofγ andXn. The termI(γ;Xn, Zn) can
be interpreted as the redundancy in coding bothXn, Zn

whenγ is not known and may be viewed as a measure
of ‘complexity’ of the randomization. Also, since

H(Zn) = I(Xn;Zn) + I(γ;Xn, Zn),

the minimization of the l.h.s. involves a trade-off be-
tween the minimization of the two terms on the r.h.s.,
i.e., between minimizing mutual information and mini-
mizing the ‘redundancy of randomization’.

3. Our formulation did not explicitly consider the presence
of a noisy channel. As Shannon notes in his paper
“Coding Theorems for a Discrete Source with a Fi-
delity Criterion” [17], the solution to the traditional
rate distortion problem corresponds to finding a channel
that is just right for the source and allowed distortion
level. That is one way of interpreting the fact that
the minimization is done over transition probabilities
between the source and the reconstruction. On the other
hand, the noisy channel coding theorem leads to a
source which is just right for the channel since in
that case, the maximization is done over input letter
probabilities.

An important theorem of traditional rate-distortion theory
(Theorem 3 in the above mentioned paper [17]) effectively
says that these two solutions can be combined in practical
systems. This means that as long as transmission over the
channel takes place with a rate (calculated based on the
acceptable distortion level) which is less than the capacity
of the noisy channel, channel decoding can be done with
an arbitrarily small probability of error. This, for a large
class of sources, then allows us to achieve an end-to-end
distortion that is arbitrarily close toK as long as the channel
hasC > R(K).

It remains an open question how to incorporate noisy
channels into a formulation of a sequential rate-distortion
theory.

CONCLUSIONS

There is a conceptual issue that has not been dealt with in
this paper. If we adopt the definition of sequentiality to mean
zero delay, it is unclear that the model investigated in this
paper precisely captures communication with zero delay. The
correct formulation would be to introduce a source decoder
and aggregate the effects of cascading the channel encoder,
channel and channel decoder as a fixed finite delay. The



criterion to be adopted for reliable communication would
then be to require that the probability of decoding error
should asymptotically tend to zero. This would be the analog
of the Noisy Channel Coding Theorem for Source Coding.
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