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Abstract— The problem of sequential source coding is to Markov sources.
minimize the average entropy rate subject to a constraint on  The paper is organized as follows: First, we review the
the average distortion and a causality constraint on codewds. traditional formulation of rate-distortion theory. The xte

This is cast as an optimization problem on an appropriate S . .
convex set of probability measures. Existence and propeds section introduces our formulation of the source-code pair

of optimal sequential codes are explored. A sequential rate s & probability measure on a product space. The latter is a
distortion theorem is proved and a construction given to shey  product of the countable product of the source alphabet and

that in general, a “causality gap” exists. the countable product of the code alphabet. A probability
measure on this space then corresponds to a canonical
realization of the joint source-code process. Since thecgou
The technology of distributed and networked control reis fixed, the marginal of this measure on the first factor
quires understanding the behavior of interconnections @&pace (i.e., countable product of source alphabet) getd. fixe
communication and control systems. This requires a neWhe regular conditional law on the second factor space (i.e.
theory of Information which is dynamical and where thecountable product of the code alphabet) is then identified
constraints of causality and delays are explicitly taketo in with a possibly randomized encoding of the source. This
account (see for example, Mitter, S.K., “Control with Liedt permits us to view the family of source-code pairs for a
Information,” Eur. Jrn. Control, Vol. 7, pp. 122-131, 2001. fixed source as a family of probability measures on the above
Rate Distortion Theory, as developed by Shannon, is asymproduct space with a fixed marginal. This set is closed and
totic in nature and tells us what the fundamental limitasionconvex with its extreme points corresponding to deterrimis
to reliable transmission subject to distortion constsairte. codes wherein the aforementioned regular conditional &aw i
In earlier work (S. Tatikonda, A. Sahai and S.K. Mitter,a.s. a Dirac measure. We shall be interested in the closed
“Stochastic Linear Control Over a Communication Channel£onvex subset corresponding to sequential or ‘causal’ $ode
IEEE Trans. on Auto Control, Special Issue on Networkedvhich satisfy an additional causality constraint: an enogd
Control Systems, Vol. 49, Iss. 9, Sept. 2004, pp. 1549-1561s causal if at each time instant, the encodings up to the time
the role of sequential rate distortion theory in obtainingire conditionally independent of the future source outputs
lower bounds to performance of LQG with communicatiorgiven the past. The extremal elements of this set once again
constraints has been demonstrated. correspond to the codes that are sequential and detenminist
The aim of this paper is to cast the sequential sourdgodes that randomize between at most finitely many of these
coding problem in its traditional ‘rate-distortion’ framverk are of special interest to us and are dubbed ‘finitely random-
as an optimization problem on a convex set of probabilitized codes’. This section proves various basic properties o
measures. This allows us to obtain interesting results tabahese sets of probability measures.
the structure of optimal sequential codes and take the first Section Il introduces the two optimization problems of
steps towards a ‘sequential rate-distortion theory’. Sd8,[ concern here, viz., those of minimizing the average infor-
[12], [15] for related viewpoints. Our work differs from tbe mation rate of the code and the average mutual information
in its approach and also in that we do not impose any i.i.cif the source-code pair, both subject to a given bound on
condition on the source as in [11] or stationarity conditiothe average distortion. While the former is the usual rate-
on the source-code pair as in the other two (though we dtistortion problem, the latter is motivated purely by amgglo
assume the source itself to be stationary). Similar teelesig with Shannon’s rate distortion theorem which identifies the
have been applied in [2] to Markov decision processe$wo problems in the block coding paradigm. For a finite time
Also, see [4] for a related but different perspective of théorizon, these problems amount to minimizing a concave
sequential source coding problem for the special case @fsp. convex) function on a convex set. Using some facts

I. INTRODUCTION



from convex analysis, the minimum in the former problem  codes,
can be shown to be attained by a finitely randomized coddy) limit (shown to exist) as the time horizon recedes
For infinite time horizon, the limiting time average may not to infinity, of the infimum over all sequential codes
be defined and one must consider both liesup and the (equivalently, all finitely randomized sequential codes)
liminf in either case. Further, we can also consider the limit  of the per letter entropy over a finite horizon, subject
of the minima of finite horizon problems as the horizon  to the distortion constraint,
extends to infinity. The main result of this section is that fo(vi) same aqi), but with source-code mutual information
either problem, each formulation leads to the same number. (s.c.m.i.) in place of entropy,

Section Ill shows that the equality in fact extends acrogsgii) same agii), with s.c.m.i. in place of entropy,
the problems if one is willing to restrict to finitely randomgviii) same agiii), with s.c.m.i. in place of entropy,
ized codes. That is, the minimum o&fmsup/liminf and (ix) same agiv), but with s.c.m.i. in place of entropy,
the limit of minima for finite horizon problems for rate (x) same agv), but with s.c.m.i. in place of entropy.

minimization are all equal to eaqh other_and tp _th(_e m_inim@)ur main result is thati)—(v) and (viii)—(ix) agree with each
of lim sup/liminf for the mutual information minimization ,iher so da(vi), (vii), (x) and the latter are a lower bound
problem if one restricts to finitely randomized codes ingy the former.

the latter case. This captures in some sense the spirit of} o equality of(i)—(v), (viii)—(ix) is reminiscent of Shan-

Shannon's rate distortion theorem for the sequential casg, s rate distortion theorem. Since finite randomizations
because of which we call it the ‘sequential rate distortion,nt o taking convex combinations in the space of prob-
theorem’. The minima ofimsup/liminf and the limit of ability measures, what we have here is a statement that the
m|n|ma_0f f|n|te_ horizon problems in _the mlnlmlza_tlon_ of . ate’ function is precisely what one obtains by taking sur
mutual information that allows for arbitrary randomizao 446 mytual information for finite convex combinations of

are equal and upper bounded by the minimum of the COfaterministic codes, followed by the appropriate limits /
responding entropy minimization problem mentioned above.simum.
This inequality can be strict (leading to a “causality gap”) At the same time, the gap between the equal quantities

as shown by a constru_ctive counterexample in Section \(Ii')—(v) and (viij—(ix) on one hand andvi)—(vii), (x) on
Section VI concludes W't.h some re!ated remarks. the other can be a strict gap, as we show by a concrete
We shall now summarize our main results (Theorem 3.1

. ) example. This shows conclusively that a ‘full’ rate disiont
Corollary 3.4 below). We consider a stationary SOUf&, } theorem as in the block coding case (extended to a very

taking values in a finite alphabet and an associated pro¢ess

_ . g%neral class of sources in [13], see also [14] for some
Its ef‘c_"d'”?s[zn} such thatz, encodesX_n, based O'Pf"y related results for channel coding) is not possible. Of seur
the ‘history’ X,,,, Z,,,m < n, and possibly an additional

domization device that d th ticinate twith the additional constraint of sequentiality, one would
randomization device that does not, however, anticip réxpect to lose some aspects of the Shannon theory for block

futur.e outputs of the source. In oth.er words, we shall b oding. Our main result together with our counterexample
looking at the probability measures induced by the sourc%—

. ) ~ “Hnderscores precisely what this loss is.
code pair on the product path space, with the ‘margina b y

. : ; . While the main aim of this article is to take some initial
corresponding to the source being a fixed stationary measur . : : .

. : ) . C 2 STeps towards a sequential rate distortion theory, goiitge |
Such a point of view is not entirely new, being implicit

in the works of Gray et al. [10], [11], [12]sans the beyond [15], it is also hoped that the novel ‘optimization

sequentiality hypothesis. We shall be interested in paltic formulation and the added insight it brings are of interast i
) : X o ._ themselves.
in the special subclass corresponding to finitely randodhize

sequential codes, i.e., the codes obtained by randomizi_[&g

between finitely many deterministic sequential codes. It is Review of Traditional Rate Distortion Theory

to be kept in mind that this randomization is priori, Traditional Rate-Distortion theory is a well-established
i.e., at time zero, the code once picked thus is deterministirea of information theory dealing with the lossy compres-
thereafter. sion of data from random sources. By “lossy” we mean that

It is worth noting that in contrast to Shannon theory whergve allow the reconstructed data to differ from the original.
such randomization, if and when used, is purely a technic&ince we allow differences, it is natural to want some way
device, it does make a nontrivial difference in the seqaéntiof representing the fidelity of the reconstruction between a
case, as we see below. source sequence] and its reconstruction/encodirig .

We shall be interested in the following quantities : Definition 1.1: A distortion measures a family of func-

() infimum over all sequential codes subject to the distions p,(z},Z}) which all take values in the positive real
tortion constraint, of thdiminf of the time-averaged numbers. The family is called ger-letter distortion measure

entropy (entropy rate) of codewords, if there exists a functiom(z, &) called thesingle-letter dis-
(i) same as above, withim sup in place oflim inf, tortion functio_r_15uch thatp, (27, 27) = L 30 p(@k, %)
(i) same as(i), with infimum over finitely randomized for every positive value of.

sequential codes, We restrict our attention to per-letter distortion measure

(iv) same as(ii), with infimum over finitely randomized and are concerned with the average per-letter distortion



1E[pn(X{‘,X”)] and its asymptotic properties. By “com- distribution that had the specified margina(X = x) and

pression” of the data, we want to capture the idea of sizeonditional P(X = Z|X = z). Then,VK,e¢ we have3dN

The traditional way to do that is to consider the sequence tnd3 deterministic source encodély such that the average

be generated by a random process and to evaluaentiepy  distortion —E(pN(X1 ,Fn(X]))) < K and the average

of the sequence of random variables. We restrict oursetvesautput entropy—H(FN (X])) < R(K)+e. Furthermore, no

finite alphaberandom sources which produce symbols fronencoders exist which have average output entropy less than

a finite setS. R(K) while still having average distortion less thdn. In
Definition 1.2: The entropy of a sequence of random addition we can restrict ourselves to fixed-length codeword

variables X7 is denoted byH (X7"). For a single random  Notice that the encoders used here are block encoders and

variable X, conditioned on another variable, we represent are thus not generally causal. That is, for block encoders

the conditional entropyby H(X|Y) = »,  P(X = X* can depend ok ¥+ wherem > 0. This is not always
z,Y = y)log(P(X = z|Y =y)) whereP(X =z,Y =y) an issue since in applications like lossy image compression
is the probability of the evenk = 2, Y =y and P(X = when the samples are distributed in space and so causality

z|Y = y) is the probability of the evenk = x conditioned is not important. However, in the cases where §7%€;}

on the fact that the everlf = y has occurred. It turns out represent samples of a random process evolving in time, the
that H(X]) = Y7 H(Xk|Xk—1,Xk—2,---) (Where we non-causality of the encoders in the above theorem can be a
use the convention thaf; = an arbitrary fixed element &f  problem, especially if the underlying application has afre

for negativei). Theentropy rateH (X) of a random process time” flavor to it. For these, we require a general definition

is defined to bdim,, . %H(X{l) if the limit exists. of causal encodings:
All logarithms in this paper are taken in base 2. Entropy Definition 1.4: A causal deterministic source encodér
is motivated as a measure of size by the following lossless an infinite sequence of functiofif, f2, - - -] such thatf

coding theorem{0, 1}* is the set of all finite binary strings. maps source sequencese S* into a single symbat;, € &
Theorem 1.1:[6] There exists a sequence of functionswhich is the reconstruction at tinie A memoryless encoder
(called deterministic encoders), which mapz} € S™ into  is one for whichfx(z}) = fi.(z1) meaning that the encoding

variable length binary strings frof0, 1}* such that of a particular source symbol does not depend on previous
1 symbols.
lim —E(length(F,,(X7))) = H(X) Definition 1.5: The rate-distortion performanceof a
n—oo n

source encodeF’ (mapping source sequencey’ into i7°)
and furthermore there exists a sequence of inverse furctiog the pair (Ry, Kr) where Ry LX)

= 1Hn'n.~>oo n

(called deterministic decoders), so thatG, (F5,(z1)) = 27 s the average output entropy rate ahtk = lim,_.o
for all stringszt € S™. LE(p. (X}, X)) is the average distortion.

Traditional rate-distortion theory often focuses o®m-  For memoryless sources and causal deterministic source
orylesssources: those for which thgX,} are independent encoders, the performance region is completely charaetbri
and identically distributed. Then, using Huffman codes ONpy a general result due to Gilbert and Neuhoff.
can achieve within one bit of the average entropy and thus Theorem 1.3: ([15], Theorem 3) For the encoding of
the per letter expected length of the encoding is in factiwith memoryless sources, causal deterministic source encoders

- of the entropy. (Recall that Huffman codes are uniquelave an operational rate-distortion performance curvehvhi
decodable prefix codes.) Furthermof&(X) = H(Xy) Vk is the lower convex envelope of the operational rate-
since conditioning is irrelevant. distortion performance of memoryless encoders. Moreover

Given the above definitions and motivations, we want to bgne can achieve any point on this performance curve by
able to characterize the minimal entropy rﬁeX) required  time- -sharing between two memoryless encoders.
to achieve a certain average distortion betwéeand X. In [15], the above result is proved for deterministic en-

Definition 1.3: A deterministic source encod@f block-  coders, which are of primary interest in the real world.
length N is a function Fy from source sequences’ €  However, given that the spirit of source encoding resembles
S¥ into reconstruction sequenceg’ € ZV. Fy, a de- constrained optimization problems, where the usefulnéss o
terministic source encoder of block-lengfh, is consid- “mixed strategies” and randomization [2] is well estabdigh
ered to bememorylessf there exists anky, deterministic e consider in this paper the generalization of source en-

source encoder of block-length such thatFy(z1') = coders to include randomized encoders. First, we need to
[Fi(21), Fa(22), -+, Fi(an)]. carefully define randomized sequential codes and introduce
Theorem 1.2:[6] For a memoryless random sourE& .}, the idea offinite randomization
define
Il. THE STRUCTURE OFSEQUENTIAL CODES
R(K) = inf I(X X) Our source will be a stationary stochastic proc&ssn >
P(X=2|X=2)|Y. . P(X=2)P(X=2|X=c)p(z,8)<K ’ 1, taking values in a finite alphabe§. (The possibility

R R R of allowing more general, which is indeed possible for
where (X, X) = H(X) — H(X|X) is the mutual infor- most of our results, will be briefly commented upon in the
mation betweenX and X if they were related by the joint discussion at the end.) At each timewe have an encoding



of X,, into aX-valued random variablg,,, > being another
prescribed finite alphabet. (SinéeandX are finite, they are
trivially compact as well.) Folv = 1,2, ..., 00, denote by
SN, ¥V the N-fold product of S, ¥ resp. with the product
topology and the associated product Bardield. Given an
infinite stringz>° 2 [x1, 22,23, . ..,], we shall denote by"
the vector|zy, . .., x,] and byz" the string[z,,+1, Znt2, - . .|
for n > 0. Finally, for a Polish spacg, P(x) will denote the
Polish space of probability measurespmvith the Prohorov
topology ([3], Chapter 2), and the notatiaX. . .) will stand
for ‘the law of .. .".

For N as above, we specify the sour&&" by specifying
L(XN)=vN € P(SN). DefineD c P(SN x V) by

D= {uN € P(SN x =N) : yN(dx, =N) = vV (da)},

and@ C P(S1 x S2) the set of probability measuressuch
that u(dz, S2) = v(dx) for a prescribedv(dz) € P(S1).
Clearly, @ is closed convex. Le). = {extreme points of
Q}andQp = {p € Q : u(dx,dy) = v(dz)v(z,dy) where
v(z, dy) is a Dirac measure far-a.s.z}.

Lemma 2.3:[1] Q. = Qp.

Corollary 2.1: The set of extreme points dP,., coin-
cides withD’,

seq"*

Lemma 2.4:Eachp € D, is the barycenter of & <

P(Dley) i€, [f(u)dE(W') = f(p) for all affine f :
Dseq — R.
Remark: That Dy, is measurable (in fact(s, i.e., a
countable intersection of open sets) follows from Corgllar
2.1 above and Corollary 27.3, p. 138, [5].

Definition 2.3: A p € D4 Will be said to beasymptot-

i.e., D is the set of probability measures on the produdg@lly deterministicif the corresponding/,, (dz/X", 2" )

spaceS™ x ¥V whose marginal on the factor spacé’
coincides with the prescribed” . In particular, forX, Z¥
as aboveL(X",ZN) € D. Conversely, each’” € D can
be disintegrated as

p (dw, dy) = v™ (dx)q™ (z, dy),

where the mapr € SV — ¢N(x,dy) € P(EVN) is
the regular conditional law specified"-a.s. uniquely ([3],

a.s. converges to a possibly random Dirac measur® ais
n — oQ.

Let u € Dy, and & € P(Dg,) as above and
L(X*,Z*) = p. Then we can view¢ as a ‘prior’ on
the ‘parameter spaceD;,, in a Bayesian set-up as fol-
lows: Clearly, pu(dz,dy) = [€&(da)a(dz,dy). Let v be

a Dg,,-valued random variable with lawo = & and for
n > 1, let¢&,(da/X™, Z"~1) denote its regular conditional

pp.41). We can identify this map with a possibly randomizet®W given the canonically definedY™, Z"~1). We view

encoding scheme that generatg§ given XV. Thus we

~ as an unknown parameter and its lay as a prior

I 1 1
have a one-one correspondence between the elemefits 0PN DPseq, @nd £™'s as the corresponding posteriors. For

and possibly randomized encodings%f'. For most of what
follows, we haveN = cc.

Lemma 2.1:D is compact convex iP(SY x V).

We now introduce some distinguished subset®of
Definition 2.1: The encoding schemeg” (-, ) is said to
be deterministic if ¢V (x,dy) is a Dirac measure (i.e.,

supportq™ (x, dy)) is a singleton) fonV-a.s. .

Definition 2.2: Call the encoding schemsequentialif
for eachn > 0, the correspondingZ™ is conditionally
independent of future source outpulé” given the past
source outputsX™ - Dy, C D will denote the subset of
D corresponding to sequential codes aR(., its further

subset that corresponds to deterministic sequential codes
It is worth noting that this specification does not chara

terize the joint law of( X%, ZV).

Lemma 2.2:D;,, is convex compact.

For n > 1, let T, L(X", 7z, @,
L(X™ Z™), 2™ — p,(a™,dz) the regular conditional law
of X,i11 given X" (prescribedv™-a.s. uniquely) and
(x™, 2" 1) — 4, (dz/x™, 2"~ 1) the regular conditional law
of Z, given (X", Z"~ 1) for n > 1 (prescribedl’,,-a.s.
uniquely). HereZ® = an arbitrary fixed element of by
convention. Thenb,, is defined recursively by

®ppq(dz" Tt dz" ) =
Oy (da”, d2")pn (2", dins1)Ynr1 (dzngr /2", 2"), (1)

by virtue of Definition 2.2.

7 € Dseq, let ¥7(dz/z™, 2"~ 1) denote the corresponding
Y (dz/2z™, 2" 1), n > 0. Theny@(dz/z", 2"~ 1) is Dirac
a.s. fora € D, and

seq
Ul (dz/ X", 2" =
/gn(da/xn, ZM N (dz/ X", 2™, n > 0.
Lemma 2.5:
Enlda/ X, 2771 — 6, as,
whered,, is the Dirac measure at. Equivalently,

E[f(v)/X", 2" '] — f(y) as, f e Cy(Dl,).
Definition 2.4: A u € D, is said to be finitely ran-

C(_Jlomized if the corresponding is finitely supported (i.e.,

the correspondingy takes only finitely many values). Let
Dseq denote the subset dP,., corresponding to finitely
randomizedu’s.

Corollary 2.2: Every finitely randomized: is asymptoti-
cally deterministic.

This is a straightforward consequence of Lemma 2.5.

Lemma 2.6:D,., is dense irD,.,.

Alternatively, one can use Corollary 2.1 and the Krein-
Milman theorem ([5], pp.105).

Ill. THE OPTIMIZATION PROBLEM

In the traditional rate distortion theory ([6], Chapter 13)
one seeks to minimize the average entropy rate subject to

We now digress briefly to recall a key result from [1]. Letan upper bound on average distortion, over the set of all

S1,52 be Polish spaces equipped with their Bosefields

possible encodings. Given our identification of sequential



codes with an appropriate convex set of probability mea- Lemma 3.3:For all but at most countably many choices
sures, this suggests that we cast the sequential versionadfK, R..(K) = R* = R..

the rate-distortion problem as a constrained optimization Let ‘genericK’ stand for ‘all but at most countably many
problem over this set. This is what we do in this sectionvalues of K.

Shannon'’s rate distortion theorem ([6], Chapter 13) idiesti Corollary 3.1: For generic K, the following holds: If
this constrained minimization of entropy rate with anothen> € D satisfiesH* (1) = R*, then H,(u>®) = R, =
constrained minimization, viz., that of mutual informatio R* = H*(u*°) = R.. More generally, given any > 0,
between the source outputs and the codewords, in an asyntipere exists > € D* such that

totic sense. With this in view, we also consider the angillar .

problem of minimizing the average mutual information be- Roo = Ry = R" < H,(p™) < H* (™) < Roo +c.

tween the source outputs and the codewords subject to t]héo‘n eﬁaltctly '?a“'?‘”.e : _tr_eatrr;]ent is possible fcl)r fche anc -
distortion constraint. ary problem of minimizing the average mutual information

We start with some notation. For subject to the distortion constraint. We state the resuilts i
Lemma 3.5 below.
o (dz, dy) = v*>°(dz)q*> (z,dy) € Dseq Lemma 3.4:Let random variable¥?, Y, Wy, W, satisfy:
Wi is conditionally independent ofY>, W2) givenY; and

let p"(dx,dy) = v"(dx)q"(v,dy) denote its restriction WS is conditionally independent d@f;, 1) givenYs. Then

to P(S" x ¥"),n > 1. Let £(X>, Z®) = p™. Let
H,(u"), I,(u™) denote respectively the Shannon entropy  I((Y1,Y2); (Wi, Wa)) < I(Y1; Wh) + I(Ya; Wa).

of Z" and the mutual informatiord (X™; Z"). Also, let Lemma 3.5:). (= Joo(K)) EY infn% = 1imn—»oo%
p:Sx¥ — R be a prescribed per symbol distortionand for generids, J,, = J* = J,. Furthermore, for generic
measure. Define the average distortion K the following holds: Ifu>® € D* satisfiesI* (u>°) = J*,
A then I, (u>) = J. = J* = I*(u*°). More generally, given
Dyp(p") = /P"(Inayn)ﬂn(dznady")v any e > 0, there exists > € D* such that/,, = J, =
el v A D, (™) I <L (p>) S I*(p™) < Jo t+ €
D*(u") = hf?f‘iip — We can say a little more for this problem wheki®®, Z>)

is jointly stationary. Letd denote the shift operator on

where n (g ) A el .- S x ¥°°, mapping a string(wo, w1, .. .), (vo, v1,...)] tO
P y") = Bnep(zi yi)yn 2 1. [(wr, ws,...), (v1,09,...)]. Say thatu™ = L(X>, Z%) ¢
Define F*(u™) = limsup, .. Fnslﬂn)' F(p®) = Dy, is stationary if > = pu> o 671, equivalently, if

(X°°,Z>) is jointly stationary. LetD = {u>™ € D* :

lim i f}HOOM for F,,(-) = H,(-), I,(-) or D,(-). Let
o n ) () In() ) u™> is stationary}.

K,0 < K < o0, be a prescribed constant and&t = {u" : i
4 € Ducgy Da(p") < 0K}, 1> 0,D° = {3 € Dy, - HEMMa3E: P
D*(u=) < K}. SetR, = infp, H,(u"),n > 0, R* = Joo = infy hmsuanﬁOO ” inf 5 hmlnfn_,oo BN
infp- H*(u), R, = infp- H.(y), J, = infp, I("),n > Recall the seD;., qf f|n|tely rgndom|zed sequen'uad €
0, J* = infp- I* (1), Jo = infp- L (). Dseq- Let Dy denote its restriction t&™ x X" intersected

Note that forn < oo, H,(-) (respectively,l,(-)) are With D for n > 1 andD* = D* N Dyeq. SEL R, =
concave (respectively convex) and continuougup,. (See,

In(n™) _ In(1™)
o =

inf@n Hn(un),é* = infs. H*(n), R« = infp. He(p),
e.g., [6], p. 31.) Since pointwise minimum and pointwise/n = infp In(u"), J* = infp. I* (1), Jo = infp. L (p).

limits of concave functions are concavd, (-) is concave. ~ Lemma 3.7: _ N N

Likewise, I*(-) and D*(-) are convex. limp, o ©2 = inf, £ = Roo, limy oo 5 = infy, S =
Forn < oo, the rate distortion problem is to minimize J/o- . . .

H,(-) overD,. Forn = oo, it is to minimize eitherk*(-) Lemma 3.8:For generic K, R*(K) = R.(K) =

or R,(-) on D*. The ancillary problems are defined accordfc (k).
ingly with I,,(-) replacingH,,(-) (respectively,J*(-)/J.(+)

replacingR*(-)/R.(-)). We first consider the case of finite
n

IV. A 'SEQUENTIAL RATE DISTORTION THEOREM

We are now ready to establish a result that may be viewed
as a sequential version of Shannon’s rate distortion timeore

R, J, respectively orD,,. In the former case the minimum LetD*(m) = {u € D" : | support(u)| < m},m > 1, where

is attained at & € D,., which randomizes between at most/l| denotes the car(illnality Ofi Sﬁio -
two deterministic codes. Lemma 4.1:Let > = L(X,2%) € D*(m),m < 1.

Lemma 3.2:Ro = lim,, oo 2= exists. Then H(Z"/X™)

Write R, as R.(K) for n = 0,1,---,00, to denote — — 0.
explicitly its dependence oi. Then R..(-) is a bounded  Corollary 4.1: For
nonincreasing function and therefore can have at most > 1,infp. () H*(p) = infp. () I* (1)
countably many points of discontinuity. Since it is upper Corollary 4.2: J* = R*, J, = R,.
semicontinuous and nonincreasing, it is left-continuous. Thus we have :

Lemma 3.1:H,,(-), I,(-) attain their minimum values



Theorem 4.1:For genericK, R, = R* = R, = R* = Lemma 5.1: P-splitting 2{° sequences exist.
R.o=J"=J,>Ju=J =J,. There do exist simple algorithms to generate such se-
Let F(K) (resp.,G(K)) denote any of the equal quantitiesquences without needing any randomness at all. In fact, the
on the left (resp., right) hand side of the above inequalitypllowing simple rule suffices.
with the dependence ok’ made explicit. The next result (1) Start with the empty sequence. Let= 0
shows that the qualification ‘for generi€’ can be dropped  (2) Increments

for most purposes. . (3) ComputeN; for all 4.
Corollary 4.3: F'(-) (resp.,G(+)) is convex and therefore (4) Let j be one for which(p;n — N7) is maximal.
continuous on the interior of its domain. (5) Setz, =j
(6) Goto 2

V. A COUNTEREXAMPLE .
This section shows by a constructive counterexample th!’;{tShOUId be Cleair that the above loop _extends sequences in
ch a way thaf\% converges asymptotically t@ asn gets

the inequality in Theorem 4.1 cannot be replaced by ar . :
equality. First, we will show that for i.i.d. sources, any'ar9€, thereby generating a valid sequengeno matter how
finitely randomized sequential code has both average distd{eS are broken. o
tion and entropy rate equal to an appropriate deterministic V& NOW usez;® to construct the set of indices for our
code to be constructed as follows. There is no point in cop!Pseguences. Viewj as a function from non-negative
sidering infinitely randomized codes since we have alread)t€g€rsk into the non-negative integers. It should be clear
shown that the minimum output entropy is attained on finitel{?at N! is surjective and monotonic by construction since
randomized ones. it counts up from zero to infinity. Consider the set valued
Consider a finitely randomized code that randomizes b&Ve'S€ |r.nage(].\7?_)1—1 and define a new family of sequences
tween! deterministic sequential codgé : X* — X, where i = min{(N?)~'(k)}. This picks out thek-th jump up-
1 <i<1landk > 1. The randomization is done with Wards inN*, or in other words, the index which corresponds
probabilites P = [py,---,p]. Let (R, Ki),1 < i < I to the k-th occurrence of in the sequence;®. Clearly:

denote the rate-distortion performance pairs correspandi « Vi, k we havez,,; =i by construction

to these deterministic codes. . o Conversely, ifz;, = 1, thenlﬂj such thatM/; = k.
‘We will construct a new deterministic encodér = o If i # j thenVk, M} # M

(f1, f2,---) of the form « Vi, M} is strictly monotonically increasing ik

N B These properties assure us that fifé sequences partition
Fe(XT) = fia (XMfkvX]W;k’”'7X]W;kzk) the positive integers in such a way as to define the subse-
F guences that we need. All that remains is to check to assure
The baSiC idea Of our COI’IStruction iS to deterministica”yhat our new deterministic encoder is sequentiaL
and causally split the source sequenkg® into I subse-  Recall that our deterministic encoder is defined by
guences. Since the process is i.i.d., so are these subseguen 5
Then, we apply thé original deterministic sequential codes fe(XT) = ffv’“;k (Xngzes Xagges -5 X )
to encode these subsequences in a causal way. Finally, M
we causally reassemble these encoded subsequences intoequentiality is checked by verifying that the indices
an encoding of the original source sequence. The notatidl;*, -+, M, ] are all less than or equal fa But since
might seem confusing, but this is just the-th original the M} sequences are all strictly monotonically increas-
deterministic code operating on the appropriate subseguenng in k it suffices to check the last terr‘erszk =
of source symbols so far. That appropriate subsequence has (Vo)L (N2}

. - k
o . . K Afth . AR min = k, since N* jumps upward at
Ny* elements, which are indexed By, M,", M= 1 because of how it is constructed from. So, by the

in the original source. S . properties given, the deterministic encodeiis sequential.
The key to getting this working is in the “splitting.” We = Now, we are ready to state the main result of this section.

must do it in a way that is compatible witR. Without loss Lemma 5.2: ' has rate/distortion performance equafto
of generality, assume thdt is such thatvl <i <1,p; >0 |4 other words. almost surely we have:

andp; = 0 otherwise.

- . n !
Definition 5.1: We call a sequencey® a P-splitting se- .1 Pk
quenceif vk, 1 < z, <[ and ,}Eﬂo o ;d(Xka fe(XY)) = z;PiKi
k , a -
- Zj:l 6(zj — 1) and
3 khm D —— Pi 1 “n !
. . lim —H(X,) =Y piR
whereJ is the Kronecker delta function. n—oo n P
We let Nj = Z?Zl §(z; —i). So, Nj is the number of ~ The above construction establishes that for i.i.d. sources
times z; is equal toi up to and includingy,. finite randomization does not allow us to reach any additiona

But before we proceed, we need to establish that desir@dints of (rate,distortion) performancg. is a deterministic
27° sequences exist. sequential encoder. So, we can therefore use the existing



result of Neuhoff and Gilbert (Theorem 1.3 above) to show 2. Let~y denote the random variable as in Lemma 2.5, rep-
that for sequentially encoding i.i.d. sources, it suffices t resenting the randomization over deterministic codes.
consider time-sharing ahemorylessource encoders. Then

A. Example of the Performance of Sequential Codes H(Z"/X™) H(Z"/X™) — H(Z"/X",~)
To see that the Neuhoff and Gilbert theorem implies a I(Znﬂéxn) .

fundamental performance gap between the causal and non- = H(y/X") - H(Z/Xn ,Z")

causal case, consider the following simple example. Let H(y)—H(y/X", Z")

{X,} be iid. fair coin tosses either or 1. Choose the = I(xX",2") )
Hamming distortion measure, namei0,0) = p(1,1) =0 where in the first step we use the fact that is a
andp(0,1) = p(1,0) = 1. Traditional rate-distortion theory function of X" and~, and in the last but one step, the
tells us that the non-causal performance achievable imgive independence of and X™. The termI(y; X™, Z") can
by R > 1+ Klog K + (1 — K)log(1 — K) where the r.h.s. be interpreted as the redundancy in coding beth Z”

equalsR(K) as defined in Theorem 1.2 above. However, when+ is not known and may be viewed as a measure
for this simple source there are exactly four deterministic o ‘complexity’ of the randomization. Also, since

memoryless source encoders: . I N
(1) fY(X) = X (Perfect Reconstruction) H(Z") = 1(X" 2") + 1(v: X", 2),
the minimization of the l.h.s. involves a trade-off be-

(2) f2(X) =0 (All zeros)
(3) f3(X) =1 (All ones) tween the minimization of the two terms on the r.h.s.,
i.e., between minimizing mutual information and mini-

(4) f4(X)=X (Worst Case)

By inspection, f2 and f3 have average distortiok,; =
K3 = % and output entropy rat&; = R3 = 0. Meanwhile,
the perfect reconstructiofi' has average distortio; = 0

while the output entropy rate equals the input entropy rate

R, = 1. The worst casef* has average distortiofi, = 1
while also having output entropy rafe, = 1. So, it is clear

mizing the ‘redundancy of randomization’.

. Our formulation did not explicitly consider the presence

of a noisy channel. As Shannon notes in his paper
“Coding Theorems for a Discrete Source with a Fi-
delity Criterion” [17], the solution to the traditional

rate distortion problem corresponds to finding a channel

that the causally achievable performance region is given by
Reausall) = 1 - 2K.

For this binary symmetric source, consider the point of
K = i. Causally, we need at lea& > 0.5. Meanwhile, if
we are allowed to look into the future, we only ne&d>
0.1887. That is a difference of more than284%!

Since R(K) in this example also equalg*(K), it is
clear that the inequality in Theorem 4.1 cannot in general probabilities.
be replaced with an equality. Contrast this with the sitrati  An important theorem of traditional rate-distortion thgor
in traditional rate-distortion theory. There, we get edyal (Theorem 3 in the above mentioned paper [17]) effectively
(look at Theorem 1.2 and let tend to zero) instead of a says that these two solutions can be combined in practical
lower bound . > J in Theorem 4.1). The fact that systems. This means that as long as transmission over the
block coding is allowed (which is non-causal) instead of juschannel takes place with a rate (calculated based on the
sequential coding allows us to generate arbitrary pamstio acceptable distortion level) which is less than the capacit
of the spaceX™ as opposed to the “rectangular” partitionsof the noisy channel, channel decoding can be done with
forced by sequential coding. This counterexample showis thgn arbitrarily small probability of error. This, for a large
this geometrical difference in the two schemes leads to th&ﬁass of sources, then allows us to achieve an end-to-end
fundamental gap. distortion that is arbitrarily close t& as long as the channel
VI. OBSERVATIONS hasC > R(K). _ _ _

It remains an open question how to incorporate noisy

We c0n<.:ll_1de with some g_eneral observations. ) channels into a formulation of a sequential rate-distartio
1. The finiteness assumption ¢hcan be dropped in SO theory.

far as our claims that involve only entropy or entropy

rate are concerned. Those involving mutual information CONCLUSIONS

require the continuity of,,(-) in two places, Lemma 3.1  There is a conceptual issue that has not been dealt with in
and Lemma 3.7. In its absence, the claims concernirtbis paper. If we adopt the definition of sequentiality to mea
I,(-) in Lemma 3.1 and Lemma 3.7 have to be droppedzero delay, it is unclear that the model investigated in this
The rest of the paper is not affected.dfis countable, paper precisely captures communication with zero delag. Th
I,(-) can be shown to be lower semicontinuous (Thigorrect formulation would be to introduce a source decoder
follows from Lemma 5.5.1, p. 122, [9].) and thusand aggregate the effects of cascading the channel encoder,
Lemma 3.1 still holds in its totality. channel and channel decoder as a fixed finite delay. The

that is just right for the source and allowed distortion
level. That is one way of interpreting the fact that
the minimization is done over transition probabilities
between the source and the reconstruction. On the other
hand, the noisy channel coding theorem leads to a
source which is just right for the channel since in
that case, the maximization is done over input letter



criterion to be adopted for reliable communication would
then be to require that the probability of decoding error
should asymptotically tend to zero. This would be the analog
of the Noisy Channel Coding Theorem for Source Coding.
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