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Abstract—Recently, [3] studied the universal capacity of a set of
channels where each channel in the set communicates a random
source to within a distortion level D, when the transmitter and
receiver have access to common randomness. In this paper, we
study the universal capacity for this channel set in the case when
there is no access to common randomness. We show that when the
distortion level D is positive, the universal capacity is 0. This also
leads to the conclusion that universal source-channel separation
for rate-distortion as stated in [4], is false.

I. Introduction

For a given distortion level D, let C be the set of channels

which directly transmit a given source X such that

lim
n→∞

Pr

[

1

n

n

∑
i=1

d(Xn(i),Y n(i)) > D

]

= 0 (1)

The above is a probabilistic criterion. See figure.

Xn cn Y n

Pr

[

1

n

n

∑
i=1

d(Xn(i),Y n(i)) > D

]

→ 0 as n → ∞

cn, above, refers to channel realization when sequence length

(block length) is n. See Section III for precise definitions of

cn,Xn,Y n,d

In [3], the problem of finding the univeral capacity of C

was considered. They showed that, when the transmitter and

receiver have access to common randomness, the universal

capacity of C is precisely the rate-distortion function RX(D).
The main idea of that result is that the common randomness

can be used to generate a random code which is independent

of the channel, and the transmitter and receiver can then

communicate using this code.

In Shannon’s random-coding argument, the existence of a

random code for reliable communication implies the existence

of deterministic code for reliable communication. This is true

because there is only one channel, not a set of channels. In

general, when asking the question of universal capacity of a

set of channels, the existence of a random code does not imply

the existence of a deterministic/individually stochastic code for

the entire set of channels, unless there is common randomness

at transmitter and receiver. We would use the phrases “ran-

dom code”, “common randomness,”, and “stochastic-coupled

encoder-decoder” (Section III) interchangeably.

In this paper we consider the case when there is no common

randomness (although the transmitter and receiver can be

independently stochastic). Our main result is that in the case

of no common randomness, if the rate-distortion level D is

> 0, then the universal capacity of C is zero.

The main motivation for this question comes from the the

universal source-channel separation theorem for rate-distortion

proved in [4]. We briefly recall the statement of this separation

theorem:

Let A be a set of channels. If there is common

randomness at transmitter, in order to universally

communicate i.i.d. X source to within a distortion

level D in the sense of Equation 1 over A , it is

sufficient to consider architectures which consist of

rate-distortion source-coding i.i.d. X source to within

a distortion level in the sense of Equation 1 followed

by universal reliable communication over A .

The proof uses the fact that the universal capacity of C with

common randomness is RX(D). Our result shows that without

common randomness, if D > 0 the universal capacity of C is

is zero, even though RX(D) > 0. As a corollary, the universal

source-channel separation theorem is false when there is no

common randomness at transmitter and receiver.

Our proof uses some combinatorial ideas along with a power-

ful inequality due to Bonami and Beckner [5]. This inequality,

which is a cornerstone of the modern study of boolean

functions, was first applied to combinatorial situations by the

highly influential paper of Kahn, Kalai and Linial [6]. We

believe that these techniques could have applications to a wide

range of information theoretic problems.

For simplicity of exposition, in this version of the paper we

only consider the case of binary alphabets with Hamming

distortion. The same ideas can also be used for the general

case.

II. Past Work

Shannon had considered the same question of communication

over channels which communicate i.i.d. X source within a
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distortion D [1]. Shannon considered just one channel, and

instead of the “probabilistic criterion”, considered an expec-

tation criterion. The questions of universal channel capacity

when there is no common randomness exist in literature. There

are examples in literature where random codes perform much

better than deterministic codes example [8].

III. Notation and Definitions

Sets, random variables, and distortion measure:

X : finite set: channel input space

Y : finite set: channel output space

Y : finite set: channel output space.

X : random variable on X .

pX : probability distribution of X . Xn: iid X sequence of

random variables of length n

d : X × Y → R is a non-negative valued function. Think of

d(x,y) as the distortion incurred when x ∈ X is decoded as

y ∈ Y . For sequences of length n, xn ∈ X n, yn ∈ Y n, the

average distortion measure
1

n

n

∑
i=1

d(xn(i),yn(i)). is used.

Notation 3.1 (superscript n): A superscript n will denote a

variable when sequence length(or block length) is n.

Channel model: A channel is a sequence of transition proba-

bility matrices
〈

cn
xy

〉∞

1
. This channel will be denoted by 〈cn〉∞

1 .

It’s operation ’ should be thought of, as follows:

when the length of the input sequence is n, the channel input

space is X n, the channel output space is Y n, and the channel

acts as cn: cn
xy denotes the probability that the channel output

is y ∈ Y n when the channel input is x ∈ X n. No causality or

nestedness assumptions are assumed on 〈cn〉∞
1 .

This channel model is the same as the channel model in the

paper of Verdu and Han [2].

Example 3.2 (Binary Symmetric Channel, BSC(D)):

X = Y = {0,1}. c1
0,0 = c0

1,1 = 1 − D. c1
0,1 = c0

1,0 = D.

The channel flips a bit with probability D. cn
i j is the product

of matrices c1: the channel acts independently at each time.

Example 3.3 (Random walk channel, RWC(D)): The set

{0,1}n can be thought of as the vertices of a hypercube.

RWC is a random walk on the hypercube. Each point

(sequence x) has n neighbors, r1, . . . ,rn: the sequences which

are at a hamming distance 1 from the point. At the next time,

the random walk jumps to one of these neighbors, each with

probability 1
n
. This continues for nD jumps.

Definition 3.4 (CX ,D): Consider a channel 〈cn〉∞
1 . If the input

to the channel is i.i.d. X source Xn, the channel acts as cn.

The channel output is a random variable Y n on Y n. A channel

is said to belong to CX ,D if, under the joint distribution pXnY n

on the input-output space,

Pr

(

n

∑
i=1

1

n
d(Xn(i),Y n(i)) > D

)

→ 0 as n → ∞ (2)

See figure in Section I.

Note 3.5: Y n need not be i.i.d. Recall Notation 3.1.

The i.i.d. X sequence Xi is just a tool in the definition of

the channel set CX ,D. It does not mean that one is trying to

communicate i.i.d. X source over the channel.

CX ,D is a set of channels. Intuitively, one can think of a channel

in CX ,D as follows: a pX -typical sequence of length n suffers

a distortion < nD after passing through the channel with high

probability, for most pX typical sequences.

nD

pX typical x ∈ X n

arbitrary y ∈ Y n

x is distorted to within the green circle

red squares: pX typical sequences ∈ X n

gold circles: arbitrary sequence ∈ Y n

Note 3.6: In what follows, whenever we talk about communi-

cating a source to within a distortion level D, or compressing

a source to within a distortion level D, it will be in sense (2).

Process of Communication and Universal channel capacity

Communication will be done using block codes. For block

length n,

Channel input space X n, is the cartesian product of X , n times..

X n = {x1,x2, . . . ,x|X |n}.

Channel output space Y n, is the cartesian product of Y n, n

times. Y n = {y1,y2, . . . ,y|X |n}.

Suppose we want to communicate at rate R.

Message set M n = {m1,m2, . . . ,m2nR}. Message reproduction

set is denoted by M̂ n. The elements of M̂ n are the same as

that of M n.

A deterministic encoder is a map e :M n → X n. A deterministic

decoder is a map d : Y n → M̂ n. Deterministic encoder-decoder

will be denoted as d-encoder-decoder.
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A Stochastic-decoupled encoder-decoder is a pair of stochastic

matrices:

• The encoder is a stochastic matrix, pn
mx, m ∈M n,x ∈ X n.

This should be interpreted as: message m is encoded to

sequence x with probability pn
mx.

• The decoder is a stochastic matrix qn
ym̂, y ∈ Y n,m̂ ∈ M̂ n

This should be interpreted as: channel output y is decoded

to message m with probability qn
ym̂

The pair is called stochastic-decoupled encoder-decoder. This

is because the encoder and decoder are individually stochastic

and act independently of each other. These will be denoted by

sd-encoder-decoder. sd-encoder-decoder are the consideration

in this paper.

A stochastic-coupled encoder-decoder is the same as a random

code. The encoder comes from a family of codes and the

decoder has access to the realization of the encoder. One

way in which encoder-decoder can generate a random code is

through common randomness. Common randomness is defined

as the encoder and decoder having access to the realizations of

a continuous valued random variable. These realizations can

then be used to generate random codes. Stochastically coupled

encoder-decoder were considered in [3]. They are not under

consideration in this paper.

Encoders and decoders are sequences, 〈en,dn〉∞
1 , where n is

the block length.

Universal Channel Capacity Consider a uniform distribution

Mn on M n. Thus, pMn(m) = 1
2nR ∀m ∈ M n. The composition

of the Mn, encoder, channel and decoder results in an output

random variable M̂n on M̂ . This induces a joint probabil-

ity distribution pMnM̂n on the message-message reproduction

space M n × M̂ n. Rate R is universally achievable over CX ,D

under the average block error probability criterion if there

exist encoder-decoder pair such that under this joint probability

distribution, Pr(M̂n 6= Mn) → 0 as n → ∞ for each channel in

CX ,D. Encoder-decoder should be independent of the channel.

Supremum of achievable rates is called the universal channel

capacity of CX ,D.

Universal capacity can analogously be defined for any set A .

The channel set can be interpreted as an adversary against

reliable communication. First, the encoder and decoder are

chosen and then, channel set acts on the output of the

encoder. Thus, the channel set can choose the “worst” channel

corresponding to this encoder-decoder.

The Pr(M̂n 6= Mn) → 0 as n → ∞ is the average block error

probability criterion. Other criteria exist. They will not be

considered in this paper.

Definition 3.7 (Cd ,Csd ,Csc): : When encoder-decoder are re-

quired to be deterministic, universal capacity of CX ,D will be

denoted by Cd . Csd and Csc are defined analogously.

IV. The main theorem

As mentioned in the introduction, here we will only deal with

binary alphabets and Hamming distortion. We now fix some

notation for binary channels and describe CX ,D in this case:

Example 4.1 (Binary input hamming distortion channels): •
X = Y = {0,1}.

• d: Hamming distortion metric; i.e., d(0,0) = d(1,1) = 0

and d(0,1) = d(1,0) = 1

• X : a uniformly random bit: pX(0) = pX(1) = 1
2

• D ≥ 0: distortion level.

• CX ,D: The definition from Equation ((2)), with the above

choices for X ,Y ,d,X .

Roughly, for a channel in CX ,D, the number of bit errors in an

n length bit sequence is < nD with high probability for most

bit sequences.

Note 4.2: In what follows, CX ,D will refer to this example.

Cd , Csd , and Csc will refer to the channel capacity for this

particular CX ,D.

We can now state our main theorem.

Theorem 4.3 (Main): Let D ∈ [0,1] and let C = CX ,D, Cd , Csd ,

Csc be as above. Then:

1) a) If D = 0, rate 1 is achievable for d-encoder-

decoder, whereas rates 0 < R < 1 are not achiev-

able.

b) If D = 0, Csd = 1.

2) If D > 0, Csd = 0 (and thus, Cd = 0).

Note 4.4: Analogous theorem can we stated for general chan-

nel set CX ,D. However, we do not do that in this paper.

V. Universal source-channel separation for rate-

distortion

Theorem 4.3, (2) proves, by counterexample, that universal-

source channel separation for rate-distortion, as stated and in

[4], and recalled above in Section I, is false when there is no

common randomness at transmitter and receiver. Note that in

the universal source-channel separation theorem, universality

is over the channel, that is, the channel is a set of channels,

not just one channel.

The proof in [4] relies crucially on the fact that universal

capacity of channel set CX ,D is RX(D) when there is common

randomness at transmitter and receiver.

From the proof in [4], one sees the connection between

universal source-channel separation to universal capacity of

CX ,D, and the crucial reliance of the proof on the fact that the
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universal capacity of CX ,D is RX (D) when there is common

randomness at transmitter and receiver.

VI. Intuition

Recall that CX ,D, Cd , Csd , and Csc will refer to the channel set

in Example 4.1.

Intuition for Theorem 4.3, (1)

CX ,0 (Note, CX ,0, not CX ,D: this is CX ,D with D = 0) consists of

channels where most bit sequences are, with high probability,

perfectly received.

Csd ≤ 1 (and hence, Cd ≤ 1)because there are only 2n possible

sequences in the input space X n.

Intuition for Theorem 4.3 (1a)

To transmit at rate R = 1, there are 2n messages. The encoder

encodes each message to a bit sequence (both message set and

channel input space have cardinality 2n). The decoder decodes

a received sequence to the corresponding message. This results

in reliable communication. Thus, rate 1 is achievable with d

encoder-decoder.

In what follows, a codeword is “killed” would mean that the

output produced by the channel is the all zero sequence. Thus,

there is no information transmission.

Suppose one tries to transmit at rate R < 1 with d-encoder.

Thus, each of the 2nR messages is mapped to some bit

sequence in X n = {0,1}n. Consider the following channel: the

channel “kills” each of these sequences which are codewords

whereas rest of the sequences are transmitted perfectly. This

channel ∈ CX ,0. There is no information transmission. Thus,

rates < 1 are not achievable.

The question of capacity, thus, does not make sense for d-

encoder-decoder. However, it does for sd encoder-decoder.

Also, d and sd encoder-decoder are similar in the sense that

encoder and decoder do not need to share any knowledge

during communication.

Intuition for Theorem 4.3 (1b)

As said before, Csd ≤ 1. One can achieve rate R ≤ 1 with

sd-encoder-decoder in the following way: Divide X n into 2nR

disjoint sets Ai,1 ≤ i ≤ 2nR of cardinality 2n(1−R) each. See

figure.

each red square is a bit sequence ∈ X n

X n

Ai

codeword corresponding to message i
is chosen uniformly from these sequences

Each of the 2nR messages is mapped to one of these 2nR sets.

Let mi be mapped to the set Ai. When transmitting mi, transmit

x ∈ A i with probability 2−n(1−R). If y is received, decode it to

the mi such that y ∈ A i. It is easy to see that this results in

reliable communication at rate R.

Definition 6.1 (HE encoder): The above encoder will be

called HE encoder.

Think of HE as “high entropy.” In some sense, a deterministic

encoder has zero entropy. HE encoder has high entropy.

Roughly, it is the opposite of a deterministic encoder and

induces a high amount of randomness.

Intuition for Theorem 4.3 (2)

When D > 0, a “bad” channel can “inflate” any set because

output can be at any distance < nD from the input.

For a deterministic encoder, as in Theorem 4.3 (1a), the

channel can “kill” all the codewords and transmit rest of

the sequences perfectly. Reliable communication will not be

possible.

Now, consider the encoder HE (Definition 6.1). This encoder

“uses the whole set of 2n sequences as codewords.” In some

sense, it is the opposite of a deterministic encoder.

Let HE be used as the encoder. A channel in CX ,D can distort

a sequence by nD. Thus, a “bad” channel will roughly, inflate

each set A i by radius nD. Call this inflated set B i. The set Ai

has 2n(1−R) elements. The set Bi will have 2n(1−R+λ), λ > 0

elements (this is made rigorous in the next section). The sets

B i will “overlap significantly” since there are now 2nR sets,

each with cardinality 2n(1−R+λ), and reliable communication

is not possible. See figure

Ai

Inflated set Bi caused by

inflating set Ai by radius nD

The two extreme cases: d-encoder and HE-encoder provide all

the intuition for proving Theorem 4.3 (2). In general, when
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the encoder lies somewhere “between” these two extreme

encoders, a “bad” channel can be constructed such that it will

“kill” some of the codewords which occur with high probabil-

ity, and “inflate” others. One way of inflating a codeword by

D is to “pass” the codeword through BSC(D). Another way is

to “pass” it through RWC(D). There are others.

VII. Rigorous proofs

Rigorous proof for Theorem 4.3 (1): Rigorous proof is

omitted because it is easy to make the intuition of the previous

section precise.

Rigorous proof for Theorem 4.3, 2:

Suppose an sd encoder-decoder has been fixed for communi-

cation. We will construct a channel ∈ CX ,D over which reliable

communication is not possible at any rate R > 0 for this

encoder-decoder. This will prove that when D > 0, Csd = 0.

The proof will consist of 2 parts in line with the intuition of

the previous section:

1) use a channel which acts in a way that those codewords

which occur with high probability are “killed”.

2) Rest of the codewords are “inflated”to within a total

distortion D by using BSC or RWC.

For block length n rate R, recall:

Message set M n = {m1,m2, . . . ,m2nR}.

Channel input space X n. Arrange the 2n sequences ∈ X n in

some order. Call them x1,x2, . . . ,x2n .

Channel output space Y n. Arrange the 2n sequences ∈ Y n in

some order. Call them y1,y2, . . . ,y2n .

Let pn
i j, 1 ≤ i ≤ 2nR,1 ≤ j ≤ 2n, denote the probability that mi

is encoded as x j. pn
i j are determined by the encoder alone and

are independent of the decoder.

pn
11 . . . pn

1 j . . . pn
12n

...

...

. . .

. . .

...

...

. . .

. . .

...

...

pn
i1 . . . pn

i j . . . pn
i2n

pn
2nR1

. . . pn
2nR j

. . . pn
2nR2n

sum each column

γn
1 γn

i γn
2n

pn
i j: probability that mi is encoded

as x j (bit sequences in codeword
space are arranged in some
order; it does not matter)

Let

γn
j =

2nR

∑
k=1

pn
k j,1 ≤ j ≤ 2n and αn

j =
γn

j

2nR
(3)

αn
j is the total probability that the jth bit sequence x j is used

as codeword. This is because probability that message mi is

transmitted is 1
2nR and the probability that sequence x j is used

as codeword given message mi is transmitted is pn
i j.

Consider a channel which “kills” an fraction of sequences in

the input space. That is, the channel maps some an2n of the 2n

possible input sequences to the all zero sequence. The values

ai will be fixed later.

As stated in the intuition, a “bad” channel will be con-

structed in a way that it will “kill” some of the sequences

and inflate others. Intuitlvely, a “bad” channel will “kill”

those bit sequences which transmit the maximum amount of

information. Without loss of generality, αn
i can be considered

to be in descending order, that is, αn
1 ≥ αn

2 ≥ αn
2n (else, one

can interchange and rename). With this re-ordering, probability

that x1 is used as codeword ≥ probability that x2 is used

as codeword, and so on. Consider a channel which “kills”

x1, . . . ,xan2n and transmits rest of the sequences perfectly. This

channel “kills” those an fraction of bit sequences which have

the maximum probability of being codewords.

The only sequences which possibly transmit information are

xan2n+1,xan2n+2, . . .x2n .

Define

βn = αn
1 + αn

2 + . . .αn
an2n (4)

βn should be thought of as the “wasted probability”: it is

the total probability of those codewords which lead to no

information transmission.

Since αis are in descending order,

αn
k ≤

βn

an2n
for k > an2n (5)

Now, we fix an in such a way that it will be convenient for

us to construct a channel over which reliable communication

is not possible.

Let an =
1

n
. Note that an → 0 as n → ∞ (6)

Thus,

αn
k ≤

nβn

2n
for k >

2n

n
(7)

βn, being a probability of an event, is < 1. It follows that

αn
k ≤ n2−n for k >

2n

n
(8)

It follows that those codewords which transmit useful informa-

tion, each occurs with a probability ≤ n2−n. n2−n .
= 2−n. This

encoder uses atleast 1
n

fraction of X n as codewords. 1
n

.
= 1. This

construction is in line with the intuition that a “good” encoder

should use a significant fraction of sequences as codewords.

Consider the following channel:
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Definition 7.1 (Modified BSC, mBSC): 1) Any sequence

which is used as codeword with probability > n2−n is

“killed”

These sequences will be called Type 1 sequences.

2) The channel acts as BSC(D − δ) on the rest of the

sequences, δ > 0.

These sequences will be called Type 2 sequences.

mBSC ∈ CX ,D. mBSC depends on the encoder used for

encoding. It does not depend on the decoder. mBSC is a

modification of a BSC in that it “kills” some codewords and

acts as BSC on others. So, it is called modified BSC, or mBSC.

mBSC has been defined rigorously. mBSC will be the channel

for which we will prove that reliable communication is not

possible at any rate R > 0 (recall, D > 0).

Note 7.2: One can also define a modified random walk chan-

nel, mRWC, analogously to mBSC. mRWC “kills” every se-

quence which is used as a codeword with probability > n2−n,

and acts as RWC on all other codewords others.

Recall that the probability that a bit sequence x j is used as

codeword is αn
j (Equation VII).

Let x j be a Type 2 sequence. Then, αn
j ≤ n2−n. Thus, γn

j ≤
n2−n(1−R). Thus,

pn
i j ≤ n2−n(1−R)∀i (9)

Let rate R be reliably achievable over mBSC. By the standard

information theoretic argument of going from average block

error criterion to maximal block error criterion by throwing

throwing away half the messages, it follows that

∃εn → 0 such that Pr(error | mi is transmitted) ≤ εn (10)

for atleast
2nR

2
of the messages mi

Denote this subset of M n byM n

good
.

pn
i j, 1 ≤ j ≤ 2n, i fixed, is a probability distribution on

X n By (9) and (10), it follows that for mi ∈ M n

good
, this

probability distribution is such that atleast (1 − εn) of the

probability is made up of individual probabilities, each of

which is ≤ n2−n(1−R) .
= 2−n(1−R). Precisely, ∃K ⊂ X n such

that pn
ik ≤ n2−n(1−R) forall k ∈ K , and ∑k∈K pn

ik ≥ 1− εn

Roughly, this says that a potentially “good” stochastic encoder

encodes a message stochastically to atleast 1
n
2n(1−R) .

= 2n(1−R)

sequences.

To recap, we have defined a channel mBSC. A necessary

condition for reliable communication to be possible over

mBSC at rate R > 0 is that atleast half of the 2nR messages

mi, pn
i j, 1 ≤ j ≤ 2n, is a probability distribution on X n such

that atleast (1− εn) of the probability is made up of masses,

each of which is ≤ n2−n(1−R) .
= 2−n(1−R).

Note that the above property is saying that the encoder

should act as being “close” to a HE encoder in the rigorous

sense defined above for any hope of reliable communication

However, the above condition is not sufficient for reliable

communication over mBSC at rate R. “Inflations” described

in the previous section kick in.

The rest of this section makes rigorous, the “inflations,” and

proves the fact that reliable communication is not possible over

mBSC at any rate > 0.

Since mBSC is one channel and not a set of channels, and

the error probability criterion is average block, there exists a

deterministic optimal decoder.

A deterministic decoder is a sub-division of channel output

space Y n = {0,1}n into disjoint sets Si such that if the channel

output ∈ Si, the estimate is mi. See figure.

For mi ∈M n,good, Pr(yi ∈ Si|mi) ≥ 1− εn.

S1

S2
Si S2nR

set Si is decoded to message i

a bit sequence in channel output space

We want to make a rigorous statement saying that such a Ti

should have cardinality exponentially larger than 2n(1−R), that

is, 2n(1−R+λ) for some λ > 0.

This is done using Theorem 8.3. in Section VIII. From this

lemma, it will follow that sets Ti should have cardinality

> 2n(1−R)+λ for suffiently large n for all i such that mi ∈
M n

good
, for some λ > 0. . This would imply that the number of

sequences in the output space {0,1}n ≥ 2nR

2
×2n(1−R)+λ > 2n,

which is not true. The conclusion is that reliable communica-

tion is not possible for any rate R > 0 over mBSC.

This proves Theorem 4.3 (2).

The above argument could also have been carried out using the

mRWC in place of the mBSC. The key technical fact needed
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in this case is Theorem 8.5, which shows that mRWC is also

“inflating”.

VIII. Inflating channels

A. The Bonami-Beckner inequality and other preliminar-

ies

For this section, we will represent {0,1} by Z2, the additive

group on two elements. For f : Z
n
2 → R, we define the norm

‖ f‖p =





1

2n ∑
x∈Z

n
2

| f (x)|p




1/p

.

For ε ∈ [0,1], the Bonami-Beckner operator, Tε, acts on func-

tions from Z
n
2 to R as follows:

Tε( f )(x) = ∑
y∈Z

n
2

(

1 + ε

2

)n−wt(y)(
1− ε

2

)wt(y)

f (x + y).

wt(y) is the weight of y: number of 1s in the bit sequence y.

Note that Tε is a convolution operator that “smooths” out the

function f . This is made precise by the fundamental Bonami-

Beckner inequality.

Theorem 8.1 (Bonami-Beckner): For any f : Z
n
2 → R, and any

ε ∈ [0,1] we have

‖Tε( f )‖2 ≤ ‖ f‖1+ε2 .

It is instructive to compare the statement of the Bonami-

Beckner inequality with the trivial observation that ‖Tε( f )‖2 ≤
‖ f‖2 (note that ‖ f‖1+ε2 ≤ ‖ f‖2 always, and ‖ f‖1+ε2 can be

significantly smaller than ‖ f‖2 in general).

a) The Fourier Transform on Z
n
2.: We now introduce

some basics of Fourier analysis on Z
n
2. For ξ ∈ Z

n
2, define the

function χξ : Z
n
2 → R by

χξ(x) := (−1)∑n
i=1 ξixi .

The functions χξ are called the characters of F
n
2.

We use this to define f̂ : Z
n
2 → R, the Fourier transform of f ,

by:

f̂ (ξ) =
1

2n ∑
x∈Z

n
2

f (x)χξ(x).

The Fourier inversion formula states that

f (x) = ∑
ξ∈Z

n
2

f̂ (ξ)χξ(x).

For future reference, we note that for any function f supported

only on vectors of even weight, and for any ξ ∈ Z
n
2, we

have f̂ (ξ) = f̂ (ξ̄), where ξ̄ denotes the vector ξ+(1,1, . . . ,1).
Similarly for any function f supported only on vectors of odd

weight, and for any ξ ∈ Z
n
2, we have f̂ (ξ) = − f̂ (ξ).

We have the basic Plancherel identity for any two functions

f ,g : Z
n
2 → R:

1

2n ∑
x∈Z

n
2

f (x)g(x) = ∑
ξ∈Z

n
2

f̂ (ξ)ĝ(ξ)

As a special case, we get the Parseval equality:

‖ f‖2 = ∑
ξ∈Z

n
2

| f̂ (ξ)|2.

The action of the Bonami-Beckner operator, Tε also has a

simple expression in the Fourier basis. It acts as a Fourier

multiplier as follows:

Tε( f )(x) = ∑
ξ∈Z

n
2

εwt(ξ) f̂ (ξ)χξ(x).

Finally, let A ∈ R
2n×2n

be the transition probability matrix for

the random walk on the hypercube, i.e., for x,y ∈ Z
n
2, Ax,y =

1/n if x and y differ in exactly one coordinate, and Ax,y = 0

otherwise. It can be checked that for any f : Z
n
2 → R, A also

acts as a Fourier multiplier, as follows

A f (x) = ∑
ξ∈Z

n
2

(

1−2
wt(ξ)

n

)

f̂ (ξ)χξ(x).

B. BSC is inflating

The following simple proposition relates the BSC to the

Bonami-Beckner operator.

Proposition 8.2: Let µ be a probability distribution on input

space Z
n
2. Then, the distribution on the output space Z

n
2 after

passing through BSC is T1−2D(µ).

Via the above proposition, the following theorem now shows

that the BSC is inflating.

Theorem 8.3 (BSC is inflating): Let D ∈ (0,1). Let µ be a

probability measure on {0,1}n with µ(x) ≤ 2−αn for all

x ∈ {0,1}n, and let ν = T1−2D(µ). Then there exists a constant

λD ∈ (0,1), depending only on D, such that for any S⊆{0,1}n

with ∑x∈S ν(x) ≥ 1
2
, we have

|S| ≥ 1

4
2n(αλD+(1−λD)).

Proof: Let 1S : {0,1}n → R be the indicator function of

S. Let ε = 1−2D. We know that ∑x∈{0,1}n ν(x)1S(x) ≥ 1
2
.

1

2
≤∗1

(

∑
x∈{0,1}n

|ν(x)|2
) 1

2
(

∑
x∈{0,1}n

|1S(x)|2
) 1

2

= 2n · ‖ν‖2 · ‖1S‖2

= 2n · ‖Tεµ‖2 · ‖1S‖2

≤∗2

2n · ‖µ‖1+ε2 ·
( |S|

2n

) 1
2

≤∗3

2n ·2−
(1+αε2)n

1+ε2 ·
( |S|

2n

)1/2
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(∗1) holds by Cauchy-Schwarz inequality, (∗2) holds by

Bonami-Beckner inequality, and (∗3) holds since µ(x) ≤ 2−αn

for each x

Thus, |S| ≥ 1
4
·2n

(

α 2ε2

1+ε2 + 1−ε2

1+ε2

)

. The theorem follows.

C. RWC is inflating
The behaviour of the random-walk channel can be compactly

described in terms of the matrix A via the following proposi-

tion.

Proposition 8.4: Let µ be a probability measure on output

space Z
n
2. Then, the distribution on the output space Z

n
2 after

passing through RWC is ADnµ.

We now show that the RWC is inflating. The proof is a

variation of an elegant argument due to Motwani, Naor and

Panigrahy [7]. Following [7], by working in the Fourier

domain, we relate the action of A to the action of the Bonami-

Beckner operator, which then reduces us to the situation of

Theorem 8.3.

Theorem 8.5: Let D∈ (0,1]. Let µ be a probability measure on

{0,1}n with µ(x)≤ 2−αn for all x ∈ {0,1}n, and let ν = ADnµ.

Then there exists a constant λD ∈ (0,1), depending only on D,

such that for any S ⊆ {0,1}n with ∑x∈S ν(x) ≥ 1
2
, we have

|S| ≥ 1

32
2n(αλD+(1−λD)).

Proof: Let S0 be the set of all even weight vectors in S

and let S1 be the set of odd weight vectors in S.

Let 1S : {0,1}n → R be the indicator function of S. Similarly

define 1S0
and 1S1

. Note that since the support of S0 is only

on even weight vectors, 1̂S0
(ξ) = 1̂S0

(ξ̄). Similarly, 1̂S1
(ξ) =

−1̂S1
(ξ̄).

Let ε = e−2D. We know that ∑x∈{0,1}n ν(x)1S(x)≥ 1
2
. Therefore

there is an i ∈ {0,1} such that ∑x∈{0,1}n ν(x)1Si
(x) ≥ 1

4
.

1

4
· 1

2n
≤∗1 ∑

ξ∈Z
n
2

µ̂(ξ)1̂Si
(ξ)

(

1−2
wt(ξ)

n

)Dn

≤∗2



 ∑
ξ∈Z

n
2

µ̂(ξ)2





1/2

 ∑
ξ∈Z

n
2

1̂Si
(ξ)2

∣

∣

∣

∣

1−2
wt(ξ)

n

∣

∣

∣

∣

2Dn





1/2

≤∗3 ‖µ‖2



 ∑
ξ∈Z

n
2,wt(ξ)≤n/2

21̂Si
(ξ)2

∣

∣

∣

∣

1−2
wt(ξ)

n

∣

∣

∣

∣

2Dn





1/2

≤∗4 √
2 · ‖µ‖2



 ∑
ξ∈Z

n
2,wt(ξ)≤n/2

1̂Si
(ξ)2e−2

wt(ξ)
n ·2Dn





1/2

≤
√

2 · ‖µ‖2 · ‖Tε(1Si
)‖2

≤∗5 √
2 ·2−n(1+α)/2 · ‖1Si

‖1+ε2

≤
√

2 ·2−n(1+α)/2 ·
( |Si|

2n

) 1

1+ε2

.

(∗1) holds by Plancherel, and since ν = ADnµ, (∗2) holds by

Cauchy-Schwarz inequality, (∗3) holds since

∣

∣

∣1−2
wt(ξ)

n

∣

∣

∣

2Dn

=
∣

∣

∣1−2
wt(ξ̄)

n

∣

∣

∣

2Dn

and 1̂Si
(ξ)2 = 1̂Si

(ξ̄)2, (∗4) holds since e−x ≥
1− x, and (∗5) holds by Bonami-Beckner inequality

Thus, |S| ≥ |Si| ≥ 2−5(1+ε2)/2 · 2
n
(

α 1+ε2

2 + 1−ε2

2

)

. The theorem

follows.

IX. Conclusion

We proved that the universal capacity of the set of channels

where each channel in the set communicates i.i.d. X source

to within a distortion level D, as defined rigorously in Section

4.3, when there is no common randomness at transmitter and

receiver. is zero for D > 0. This then proves by counter-

example that the universal source-channel separation theorem

for rate-distortion as described in [4] is false when there is no

common randomness at transmitter and receiver.
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