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Abstract—Given the possibility of communication systems
failing catastrophically, we investigate limits to communicating
over channels that fail at random times. These channels are finite-
state semi-Markov channels. We show that communication with
arbitrarily small probability of error is not possible. Making
use of results in finite blocklength channel coding, we determine
sequences of blocklengths that optimize transmission volume
communicated at fixed maximum message error probabilities. A
dynamic programming formulation is used to show that channel
state feedback does not improve performance.

“a communication channel. . . might be inoperative because of an

amplifier failure, a broken or cut telephone wire, . . . ”

— I. M. Jacobs [1]

I. INTRODUCTION

Physical systems have a tendency to fail at random times

[2]. This is true whether considering communication systems

embedded in networks that may run out of energy [3], syn-

thetic systems embedded in biological cells that may die [4],

systems embedded in spacecraft that may enter black holes

[5], or systems embedded in oceans with undersea cables that

may be cut [6]. In these scenarios and beyond, communication

system failure may be modeled as communication channel

death.

It is of interest to study information-theoretic limits on

communicating over channels that die at random times. This

paper studies one such channel model and provides results on

what is possible and what is impossible. Communication with

arbitrarily small probability of error (Shannon reliability) is

not possible over channels that die, however a suitably defined

notion of η-reliability is possible. Limits on channel coding

with finite blocklength [7], which have seen renewed interest

[8]–[12], are central to our development. Indeed, channels

that die bring the notion of finite blocklength to the fore and

provide a concrete reason to step back from infinity.

The notion of outage in wireless communication [13] is

similar to channel death, except that outage is not a permanent

condition. Likewise for lost letters in postal channels [14].

Therefore blocklength asymptotics are useful to study those

channel models but are not useful for channels that die. Recent

work that has similar motivations as our study [15] provides

the outage capacity of a wireless channel.

The central trade-off in communicating over channels that

die is in the lengths of codeword blocks. Longer blocks

improve communication performance as classically known,
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whereas shorter blocks have a smaller probability of being

prematurely terminated due to channel death. We develop a

dynamic programming formulation to optimize the ordered

integer partition that determines the sequence of blocklengths.

Solving the dynamic program demonstrates that channel state

feedback does not improve performance.

The optimization of codeword blocklengths is reminiscent

of frame size control in wireless networks [16], however

such techniques are used in conjunction with automatic repeat

request protocols and are motivated by amortizing protocol

information.

The remainder of the paper is organized as follows. Sec-

tion II defines discrete channels that die and shows that these

channels have zero Shannon capacity. Section III states the

communication system model and also fixes novel perfor-

mance criteria. Section IV shows that our notion of Shannon

reliability is not achievable, strengthening the result of zero

Shannon capacity. Section V provides the optimal communi-

cation scheme and determines its performance. Section VI op-

timizes performance for geometric death distributions whereas

Section VII optimizes performance for finite-support death

distributions. Section VIII provides an example and Section IX

suggests several extensions to this work.

II. CHANNEL MODEL

Consider a channel with finite input alphabet X and finite

output alphabet Y . It has an alive state s = a when it acts like

a discrete memoryless channel (DMC) and a dead state s = d
when it almost surely erases the input, producing symbol ?.1

Assume throughout the paper that the DMC from the alive

state has zero-error capacity equal to zero.

For example, if the channel acts like a binary symmetric

channel (BSC) with crossover probability 0 < ε < 1 in the

alive state, with X = {0, 1}, and Y = {0, 1, ?}, then the

transmission matrix in the alive state is

p(y|x, s = a) = pa(y|x) =

[

1 − ε ε 0
ε 1 − ε 0

]

, (1)

and the transmission matrix in the dead state is

p(y|x, s = d) = pd(y|x) =

[

0 0 1
0 0 1

]

. (2)

The channel starts in state s = a and then transitions to

s = d at some random time T , where it remains for all time

thereafter. That is, the channel is in state a for times n =

1Our results can be extended to cases where the channel acts like other
channels in the alive state.
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1, 2, . . . , T and in state d for times n = T +1, T +2, . . .. The

death time distribution is denoted pT (t).

A. Finite-State Semi-Markov Channel

We can show that a channel that dies is a finite-state channel

(FSC) [17, Sec. 4.6].

Proposition 1: A channel that dies

(X , pa(y|x), pd(y|x), pT (t),Y) is a finite-state channel.

Proof: Follows by definition.

Although rather trivially so, the channel state sequence is a

semi-Markov process [18, Sec. 4.8], [19, Sec. 5.7] with fixed

initial state and is not irreducible.

Definition 1: The sequence of states of a semi-Markov

process is a Markov chain; this is called the embedded Markov

chain of the semi-Markov process.

Definition 2: A semi-Markov process is irreducible if its

embedded Markov chain is irreducible.

Proposition 2: The channel state sequence for a channel

that dies (X , pa(y|x), pd(y|x), pT (t),Y) is a non-irreducible

semi-Markov process.

Proof: When in state a, the next state is d with probability

1 and given that the next state is to be d, the time until the

transition from a to d has distribution pT (t). When in state d,

the next state is d with probability 1. Thus, the channel state

sequence is a semi-Markov process.

The semi-Markov state process is not irreducible because

the a state of the embedded Markov chain is transient.

Note that when T is a geometric random variable, the channel

state process forms a Markov chain, with transient state a and

recurrent, absorbing state d.

We can define further special classes of FSCs.

Definition 3: An FSC is a finite-state semi-Markov channel

(FSSMC) if its state sequence forms a semi-Markov process.

Definition 4: An FSC is a finite-state Markov channel

(FSMC) if its state sequence forms a Markov chain.

Proposition 3: A channel that dies

(X , pa(y|x), pd(y|x), pT (t),Y) is an FSSMC and is an

FSMC when T is geometric.

Proof: Follows from Props. 1 and 2.

FSMCs in general [17], [20], and in particular the child’s

toy/panic button channel of Gallager [20, p. 26], [17, p. 103]

and the Gilbert–Elliott channel and its extensions [21], have

been widely studied in the literature. Contrarily, FSSMCs seem

to not have been specifically studied in information theory.

There are a couple works [22], [23] that give semi-Markov

channel models for wireless communications systems but do

not provide information-theoretic characterizations.

B. Capacity is Zero

Our first result on transmission over a channel that dies is

that the Shannon capacity [17] is zero.

First we show that if the initial state of a channel that dies

were not fixed, then it would be an indecomposable FSC [17,

Sec. 4.6], where the effect of the initial state dies away.

Proposition 4: If the initial state of a channel that dies

(X , pa(y|x), pd(y|x), pT (t),Y) is not fixed, then it is an

indecomposable FSC.

Proof: The embedded Markov chain for a channel that

dies has a unique absorbing state d.

Indecomposable FSCs have the property that the upper

capacity, defined in [17, (4.6.6)], and lower capacity, defined

in [17, (4.6.3)], are identical [17, Thm. 4.6.4]. This can be

used to show that the capacity of a channel that dies is zero.

Proposition 5: The Shannon capacity, C, of a channel that

dies (X , pa(y|x), pd(y|x), pT (t),Y) is zero.

Proof: Although the initial state s1 = a in our problem,

temporarily suppose that s1 may be either a or d. Then our

channel is indecomposable by Prop. 4.

The lower capacity C equals the upper capacity C, for

indecomposable channels by [17, Thm. 4.6.4]. The information

rate of a memoryless pd(y|x) ‘dead’ channel is clearly zero

for any input distribution, so the lower capacity C = 0. Thus

the Shannon capacity for a channel that dies with initial alive

state is C = C = 0.

III. COMMUNICATION SYSTEM

In order to information theoretically characterize a channel

that dies, we propose a system in which communication is

carried out over the channel.

We have an information stream (like i.i.d. equiprobable

bits), which can be grouped into a sequence of k messages,

(W1,W2, . . . ,Wk). Each message Wi is drawn from a mes-

sage set Wi = {1, 2, . . . ,Mi}. Each message Wi is encoded

into a channel input codeword Xni

1 (Wi) and these codewords

(Xn1

1 (W1),X
n2

1 (W2), . . . ,X
nk

1 (Wk)) are transmitted in se-

quence over the channel. A noisy version of this codeword

sequence is received, Y n1+n2+···+nk

1 (W1,W2, . . . ,Wk). The

receiver then guesses the sequence of messages using an

appropriate decoding rule g, to produce (Ŵ1, Ŵ2, . . . , Ŵk) =
g(Y n1+n2+···+nk

1 ). The Ŵis are drawn from alphabets W⊖
i =

Wi ∪⊖, where the ⊖ message indicates the decoder declaring

an erasure. The receiver makes an error on message i if

Ŵi 6= Wi and Ŵi 6= ⊖.

Block coding results are typically expressed with the con-

cern of sending one message rather than k messages, as here.

We can write definitions somewhat more formally.

Definition 5: An (Mi, ni) individual message code for a

channel that dies (X , pa(y|x), pd(y|x), pT (t),Y) consists of:

1) An individual message index set {1, 2, . . . ,Mi}, and

2) An individual message encoding function fi :
{1, 2, . . . ,Mi} 7→ Xni .

The individual message index set {1, 2, . . . ,Mi} is de-

noted Wi, and the set of individual message codewords

{fi(1), fi(2), . . . , fi(Mi)} is called the individual message

codebook.

Definition 6: An (Mi, ni)
k
i=1 code for a channel that dies

(X , pa(y|x), pd(y|x), pT (t),Y) is a sequence of k individual

message codes, (Mi, ni)
k
i=1, in the sense of comprising:

1) A sequence of individual message index sets

W1, . . . ,Wk,

2) A sequence of individual message encoding functions

f = (f1, . . . , fn), and
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3) A decoding function g : Y
P

k

i=1
ni 7→ W⊖

1 × · · · ×W⊖
k .

There is no essential loss of generality by assuming that

the decoding function g is decomposed into a sequence of

individual message decoding functions g = (g1, g2, . . . , gn)
where gi : Yni 7→ W⊖

i when individual messages are chosen

independently, due to this independence and the conditional

memorylessness of the channel. To define performance mea-

sures, we assume that the decoder operates on an individual

message basis. That is, when applying the communication

system, let Ŵ1 = g1(Y
n1

1 ), Ŵ2 = g2(Y
n1+n2

n1+1 ), and so on.

For the sequel, we make a further assumption.

Assumption 1: If all ni channel output symbols used by

individual message decoder gi are not ?, then the range of

gi is Wi. If any of the ni channel output symbols used by

individual message decoder gi are ?, then gi maps to ⊖.

A. Performance Measures

We formally write the notion of error as follows.

Definition 7: For all 1 ≤ w ≤ Mi, let

λw
i = Pr[Ŵi 6= w|Wi = w, Ŵi 6= ⊖]

be the conditional message probability of error given that the

ith individual message is w.

Definition 8: The maximal probability of error for an

(Mi, ni) individual message code is

λmax
i = max

w∈Wi

λw
i .

Definition 9: The maximal probability of error for an

(Mi, ni)
k
i=1 code is

λmax = max
i∈{1,...,k}

λmax
i .

Since the Shannon capacity of a channel that dies is

zero (Prop. 5), we propose weaker performance criteria. In

particular, we define formal notions of how much information

is transmitted using a code and how long it takes.

Definition 10: The transmission time of an (Mi, ni)
k
i=1

code is N =
∑k

i=1 ni.

Definition 11: The expected transmission volume of an

(Mi, ni)
k
i=1 code is

V = E
T







∑

i∈{1,...,k|Ŵi 6=⊖}

log2 Mi







.

The several performance criteria for a code may be com-

bined together.

Definition 12: Given 0 ≤ η < 1, a pair of numbers (N0, V0)
(where N0 is a positive integer and V0 is non-negative) is said

to be an achievable transmission time-volume at η-reliability

if there exists, for some k, an (Mi, ni)
k
i=1 code for the channel

that dies (X , pa(y|x), pd(y|x), pT (t),Y) such that

λmax ≤ η, N ≤ N0, and V ≥ V0. (3)

Moreover, (N0, V0) is said to be an achievable transmission

time-volume at Shannon reliability if it is an achievable

transmission time-volume at η-reliability for all 0 < η < 1.

The goal of this work is to demarcate what is achievable.

IV. SHANNON RELIABILITY IS NOT ACHIEVABLE

Not only is the Shannon capacity of a channel that dies

zero, but there is no V > 0 such that (N,V ) is an achievable

transmission time-volume at Shannon reliability. A coding

scheme that always declares erasures would achieve zero error

probability (and therefore Shannon reliability) but would not

provide positive transmission volume; this is also not allowed

under Assumption 1.

Proposition 6: For a channel that dies

(X , pa(y|x), pd(y|x), pT (t),Y), there is no V > 0 such

that (N,V ) is an achievable transmission time-volume at

Shannon reliability.

The basic idea is to show that the easiest communication

problem, transmitting a single individual message repetition

code, cannot be done over a channel that dies with arbitrarily

small probability of error. The proof is omitted due to space

constraints. Notice that Prop. 6 also directly implies Prop. 5.

V. LIMITS ON COMMUNICATION

In this section, we develop a scheme that performs η-reliable

communication over a channel that dies. It is based in part on

finite blocklength channel coding, which we first review.

A. Finite Blocklength Channel Coding

Under our definitions, traditional channel coding results

[7]–[12] provide information about individual message codes,

determining the achievable trios (ni,Mi, λ
max
i ). In particular,

the largest possible log Mi for a given ni and λmax
i is denoted

log M∗(ni, λ
max
i ).

It is not our purpose to improve upper and lower bounds on

finite blocklength channel coding, but rather to use existing

results to study channels that die. In fact, for the sequel,

we will simply assume that the function log M∗(ni, λ
max
i ) is

known, as are codes/decoders that achieve this value. In prin-

ciple, optimal individual message codes may be found through

exhaustive search [8], [24]. Although algebraic notions of code

quality do not directly imply error probability quality [25],

perfect codes such as the Hamming or Golay codes may also

be optimal in certain limited cases.

Recent results comparing upper and lower bounds around

Strassen’s normal approximation to log M∗(ni, λ
max
i ) [26]

have demonstrated that the approximation is quite good [10].

Remark 1: We assume that optimal log M∗(ni, η)-
achieving individual message codes are known. Exact upper

and lower bounds to log M∗(ni, η) can be substituted to

make our results precise. For numerical demonstrations, we

will further assume that optimal codes have performance

given by Strassen’s approximation.

The following expression for log M∗(ni, η) that first ap-

peared in [26] is also given as [10, Thm. 6].

Lemma 1: Let M∗(ni, η) be the largest size of an individ-

ual message code with block length ni and maximal error

probability upper bounded by λmax
i < η. Then, for any DMC

with capacity C and 0 < η ≤ 1/2,

log M∗(ni, η) = niC −√
niρQ−1(η) + O(log ni),
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where

Q(x) =
1√
2π

∫ ∞

x

e−t2/2 dt

and

ρ = min
X:C=I(X;Y )

var

[

log
pY |X(y|x)

pY (y)

]

.

For the BSC(ε), the approximation (ignoring the O(log ni)
term above) is:

log M∗ ≈ ni(1−h2(ε))−
√

niε(1 − ε)Q−1(η) log2
ε

1−ε , (4)

where h2(·) is the binary entropy function. This BSC expres-

sion first appeared in [27].

For intuition, we plot the approximate log M∗(ni, η) func-

tion for a BSC(ε) in Fig. 1(a). Notice that log M∗ is zero for

small ni since no code can achieve the target error probability

η. Also notice that log M∗ is a monotonically increasing

function of ni. Moreover, notice in Fig. 1(b) that even when

normalized, (log M∗)/ni, is a monotonically increasing func-

tion of ni. Therefore longer blocks provide more ‘bang for

the buck.’ The curve in Fig. 1(b) asymptotically approaches

capacity.
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Fig. 1. (a). The expression (4) for ε = 0.01 and η = 0.001. (b). Normalized
version, (log M∗(ni, η))/ni, for ε = 0.01 and η = 0.001. The capacity of
a BSC(ε) is 1 − h2(ε) = 0.92.

B. η-reliable Communication

We now describe a coding scheme that achieves posi-

tive expected transmission volume at η-reliability. Survival

probability of the channel plays a key role in measuring

performance.

Definition 13: The survival function of a channel that dies

(X , pa(y|x), pd(y|x), pT (t),Y) is Pr[T > t], is denoted

RT (t), and satisfies

RT (t) = Pr[T > t] = 1 −
t

∑

τ=1

pT (τ) = 1 − FT (t),

where FT is the cumulative distribution function. RT (t) is a

non-increasing function.

Proposition 7: The transmission time-volume
(

N =

k
∑

i=1

ni, V =

k
∑

i=1

RT (ei) log M∗(ni, η)

)

is achievable at η-reliability for any sequence (ni)
k
i=1 of

individual message codeword lengths, and e0 = 0, e1 =
n1, e2 = n1 + n2, . . . , ek =

∑k
i=1 ni.

Proof:

Code Design: A target error probability η and a sequence

(ni)
k
i=1 of individual message codeword lengths are fixed.

Construct a length-k sequence of (Mi, ni) individual mes-

sage codes and individual decoding functions (Wi, fi, gi) that

achieve optimal performance. The size of Wi is |Wi| =
log M∗(ni, η). Note that individual decoding functions gi have

range Wi rather than W⊖
i .

Encoding: A codeword W1 = w1 is selected uniformly at

random from the codebook W1. The mapping of this codeword

into n1 channel input letters, Xe1

e0+1 = f1(w1), is transmitted

in channel usage times n = e0 + 1, e0 + 2, . . . , e1.

Then a codeword W2 = w2 is selected uniformly at random

from the codebook W2. The mapping of this codeword into

n2 channel input letters, Xe2

e1+1 = f2(w2), is transmitted in

channel usage times n = e1 + 1, e1 + 2, . . . , e2.

This procedure continues until the last individual message

code in the code is transmitted. That is, a codeword Wk =
wk is selected uniformly at random from the codebook Wk.

The mapping of this codeword into nk channel input letters,

Xek

ek−1+1 = fk(wk), is transmitted in channel usage times n =
ek−1 + 1, ek−1 + 2, . . . , ek.

We refer to channel usage times n ∈ [ei−1 + 1, ei] as the

ith transmission epoch.

Decoding: For decoding, the channel output symbols for

each epoch are processed separately. If any of the channel

output symbols in an epoch are erasure symbols ?, then a de-

coding erasure ⊖ is declared for the message in that epoch, i.e.

Ŵi = ⊖. Otherwise, the individual message decoding function

gi : Yni → Wi is applied to obtain Ŵi = gi(Y
ei

ei−1+1).
Performance Analysis: Having defined the communication

scheme, we measure the error probability, transmission time,

and expected transmission volume.

The decoder will either produce an erasure ⊖ or use an

individual message decoder gi. When gi is used, the maximal
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error probability of individual message code error is bounded

as λmax
i < η by construction. Since declared erasures ⊖ do

not lead to error, and since all λmax
i < η, it follows that

λmax < η.

The transmission time is simply N =
∑

ni.

Recall the definition of expected transmission volume:

E







∑

i∈{1,...,k|Ŵi 6=⊖}

log2 Mi







=
∑

i∈{1,...,k|Ŵi 6=⊖}

E {log2 Mi}

and the fact that the channel produces the erasure symbol

? for all channel usage times after death, n > T , but not

before. Combining this with the length of an optimal code,

log M∗(ni, η), leads to the expression

k
∑

i=1

Pr[T > ei] log M∗(ni, η) =
k

∑

i=1

RT (ei) log M∗(ni, η),

since all individual message codewords that are received in

their entirety before the channel dies are decoded using gi

whereas any individual message codewords that are even

partially cut off are declared ⊖.

Prop. 7 is valid for any choice of (ni)
k
i=1. Since

(log M∗)/ni is monotonically increasing, it is better to use

individual message codes that are as long as possible. With

longer individual message codes, however, there is a greater

chance of many channel usages being wasted if the channel

dies in the middle of transmission. The basic trade-off is

captured in picking the set of values {n1, n2, . . . , nk}. For

fixed and finite N , this involves picking an ordered integer

partition n1 + n2 + · · ·+ nk = N . We optimize this choice in

Section VI.

C. Converse Arguments

Since we simply have operational expressions and no in-

formational expressions in our development, as per Remark 1,

and since optimal individual message codes and individual

message decoders are assumed to be used, it may seem

as though converse arguments are not required. This would

indeed follow, if the following two things were true, which

follow from Assumption 1. First, that there is no benefit

in trying to decode the last partially erased message block.

Second, that there is no benefit to errors-and-erasures decoding

[28] by the gi for codewords that are received before channel

death. Under Assumption 1, Prop. 7 gives the best performance

possible.

One might wonder whether Assumption 1 is needed. That

there would be no benefit in trying to decode the last partially

erased block follows from the conjecture that an optimal

individual message code would have no latent redundancy that

could be exploited to achieve a λmax
i=last < η, but this is a

property of the actual optimal code.

On the other hand the effect of errors-and-erasures decoding

by the individual message decoders it unclear. As given in

a Neyman-Pearson style result by Forney [28], decoding

regions determined by likelihood ratio tests should be used

to optimally trade off between (average) error probability and

erasure probability by varying the threshold. It is unclear how

the choice of threshold would affect the expected transmission

volume
k

∑

i=1

(1 − ξi)RT (ei) log M∗(ni, ξi, η),

where ξi would be the specified erasure probability for indi-

vidual message i, and M∗(ni, ξi, η) would be the maximum

individual message codebook size under erasure probability ξi

and maximum error probability η. Error bounds for errors-and-

erasures decoding [28, Thm. 2] can certainly be converted into

bounds on log M∗(ni, ξi, η). It is an open question, however,

whether there is a good Strassen-style approximation to this

quantity.

VI. OPTIMIZING THE COMMUNICATION SCHEME

In Section V-B, we had not optimized the lengths of the

individual message codes; we do so here. For fixed η and N ,

we maximize the expected transmission volume V over the

choice of the ordered integer partition n1+n2+· · ·+nk = N :

max
(ni)k

i=1
:
P

ni=N

k
∑

i=1

RT (ei) log M∗(ni, η). (5)

For finite N , this optimization can be carried out by an

exhaustive search over all 2N−1 ordered integer partitions. If

the death distribution pT (t) has finite support, there is no loss

of generality in considering only finite N . Since exhaustive

search has exponential complexity, however, there is value in

trying to use a simplified algorithm. A dynamic programming

formulation for the finite horizon case is developed in Sec-

tion VII. The next subsection develops a greedy algorithm

which is applicable to both the finite and infinite horizon cases

and yields the optimal solution for certain problems.

A. A Greedy Algorithm

To try to solve the optimization problem (5), we propose a

greedy algorithm that optimizes blocklengths ni one by one.

Algorithm 1:

1) First maximize RT (n1) log M∗(n1, η) through the

choice of n1 independently of any other ni.

2) Then maximize RT (e2) log M∗(n2, η) after fixing n1,

but independently of later ni.

3) Then maximize RT (e3) log M∗(n3, η) after fixing e2,

but independently of later ni.

4) Continue in the same manner for all subsequent ni.

Sometimes the algorithm produces the correct solution.

Proposition 8: The solution produced by the greedy algo-

rithm, (ni), is locally optimal if

log M∗(ni, η) − log M∗(ni − 1, η)

log M∗(ni+1 + 1, η) − log M∗(ni+1, η)
(6)

≥ RT (ei+1)

RT (ei − 1)
= Pr[T > ei+1|T > ei − 1].
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for each i.
Proof: The solution of the greedy algorithm partitions

time using a set of epoch boundaries (ei). The proof proceeds

by testing whether local perturbation of an arbitrary epoch

boundary can improve performance. There are two possible

perturbations: a shift to the left or a shift to the right.

First consider shifting an arbitrary epoch boundary ei to the

right by one. This makes the left epoch longer and the right

epoch shorter. Lengthening the left epoch does not improve

performance due to the greedy optimization of the algorithm.

Shortening the right epoch does not improve performance

since RT (ei) remains unchanged whereas log M∗(ni, η) does

not increase since log M∗ is a non-decreasing function of ni.

Now consider shifting an arbitrary epoch boundary ei to

the left by one. This makes the left epoch shorter and the

right epoch longer. Reducing the left epoch will not improve

performance due to greediness, but enlarging the right epoch

might improve performance, so the gain and loss must be

balanced.

The loss in performance (a positive quantity) for the left

epoch is

∆l = RT (ei − 1) [log M∗(ni, η) − log M∗(ni − 1, η)]

whereas the gain in performance (a positive quantity) for the

right epoch is

∆r = RT (ei+1) [log M∗(ni+1 + 1, η) − log M∗(ni+1, η)] .

If ∆l ≥ ∆r, then perturbation will not improve performance.

The condition may be rearranged as

log M∗(ni, η) − log M∗(ni − 1, η)

log M∗(ni+1 + 1, η) − log M∗(ni+1, η)
≥ RT (ei+1)

RT (ei − 1)

This is the condition (6), so the left-perturbation does not

improve performance. Hence, the solution produced by the

greedy algorithm is locally optimal.

Proposition 9: The solution produced by the greedy algo-

rithm, (ni), is globally optimal if

log M∗(ni, η) − log M∗(ni − Ki, η)

log M∗(ni+1 + Ki, η) − log M∗(ni+1, η)
≥ RT (ei+1)

RT (ei − 1)
.

(7)

for each i, and any non-negative integers Ki ≤ ni.

Proof: The result follows by repeating the argument for

local optimality in Prop. 8 for shifts of any possible size Ki.

There is an easily checked special case of global optimality

condition (7) under the Strassen approximation.

Lemma 2: The function log M∗
S(z, η) − log M∗

S(z − K, η)
is a non-decreasing function of z for any K, where

log M∗
S(z, η) = zC −√

zρQ−1(η) (8)

is Strassen’s approximation.

Proof: Essentially follows from the fact that
√

z is a

concave ∩ function in z.

Proposition 10: If the solution produced by the greedy

algorithm using Strassen’s approximation (8) satisfies n1 ≥

n2 ≥ · · · ≥ nk, then condition (7) for global optimality is

satisfied.

Proof: Since RT (·) is a non-increasing survival function,

RT (ei − 1) ≥ RT (ei+1). (9)

Since the function [log M∗
S(z, η) − log M∗

S(z − K, η)] is a

non-decreasing function of z by Lem. 2, and since the ni

are in non-increasing order,

log M∗
S(ni, η) − log M∗

S(ni − K, η)

≥ log M∗
S(ni+1 + K, η) − log M∗

S(ni+1, η). (10)

Taking products of both sides of (9) and (10), and rearranging

yields the global optimality condition (7).

B. Geometric Death Distribution

A common failure mode for systems that do not age is a

geometric death time T [2].

Proposition 11: When T is geometric, then the solution to

(5) under Strassen’s approximation yields equal epoch sizes.

This optimal size is given by

arg max
ν

RT (ν) log M∗(ν, η).

Proof: We begin by showing that Algorithm 1 will

produce a solution with equal epoch sizes. Recall that the sur-

vival function of a geometric random variable with parameter

0 < 1 − α ≤ 1 is RT (t) = αt. Therefore the first step of the

algorithm will choose n1 as

n1 = arg max
ν

αν log M∗(ν, η).

The second step of the algorithm will choose

n2 = arg max
ν

αn1αν log M∗(ν, η)

= arg max
ν

αν log M∗(ν, η),

which is the same as n1. In general,

ni = arg max
ν

αei−1αν log M∗(ν, η)

= arg max
ν

αν log M∗(ν, η),

so n1 = n2 = · · · .

Such a solution satisfies n1 ≥ n2 ≥ · · · and so it is optimal

by Prop. 10.

Notice that the geometric death time distribution forms a

boundary case for Prop. 10.

VII. DYNAMIC PROGRAMMING

The greedy algorithm of the previous section solves (5)

under certain conditions. For finite N , a dynamic program

(DP) may be used to solve (5) under any conditions. To

develop the DP formulation [29], we assume that channel state

feedback (whether the channel output is ? or whether it is

either 0 or 1) is available to the transmitter, however solving

the DP will show that channel state feedback is not required.
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System Dynamics:
[

ζn

ωn

]

=

[

(ζn−1 + 1)ŝn−1

ωn−1wn−1

]

, (11)

for n = 1, 2, . . . , N + 1. The following state variables,

disturbances, and controls are used:

• ζn ∈ Z
∗ is a state variable that counts the location in the

current transmission epoch

• ωn ∈ {0, 1} is a state variable that indicates whether the

channel is alive (1) or dead (0)

• wn ∈ {0, 1} ∼ Bern (RT (n)) is a disturbance that kills

(0) or preserves (1) the channel in the next time step

• ŝn ∈ {0, 1} is a control input that starts (0) or continues

(1) a transmission epoch in the next time step

Initial State: Since the channel starts alive (note that

RT (1) = 1) and since the first transmission epoch starts at

the beginning of time,
[

ζ1

ω1

]

=

[

0
1

]

. (12)

Additive Cost: Transmission volume log M∗(ζn + 1, η)
is credited if the channel is alive (i.e. ωn = 1) and the

transmission epoch is to be restarted in the next time step

(i.e. 1 − ŝn = 1). This implies a cost function

cn(ζn, ωn, ŝn) = −(1 − ŝn)ωn log M∗(ζn + 1, η). (13)

This is negative so that smaller is better.

Terminal Cost: There is no terminal cost, cN+1 = 0.

Cost-to-go: From time n to time N + 1 is:

E
~w

{

N
∑

i=n

ci(ζi, ωi, ŝi)

}

= −E
~w

{

N
∑

i=n

(1 − ŝi)ωi log M∗(ζi + 1, η)

}

.

Notice that the state variable ζn which counts epoch time is

known to the transmitter and is determinable by the receiver

through transmitter simulation. The state variable ωn indicates

the channel state and is known to the receiver by observing

the channel output. It may be communicated to the transmitter

through channel state feedback. It follows directly that:

Proposition 12: A communication scheme that follows the

dynamics (11) and additive cost (13) achieves the transmission

time-volume
(

N,V = −E

[

N
∑

n=1

cn

])

at η-reliability.

DP may be used to find the optimal control policy (ŝn).
Proposition 13: The optimal −V for the initial state (12),

dynamics (11), additive cost (13), and no terminal cost is

equal to the cost of the solution produced by the dynamic

programming algorithm.

Proof: The system described by initial state (12), dynam-

ics (11), and additive cost (13) is in the form of the basic

problem [29, Sec. 1.2]. Thus the result follows from [29,

Prop. 1.3.1]

A. Computation

In this subsection, we carry out the DP, using standard J
notation for cost [29]. The base case at time N + 1 is

JN+1(ζN+1, ωN+1) = cN+1 = 0.

In proceeding backwards from time N to time 1:

Jn(ζn, ωn)

= min
ŝn∈{0,1}

E
wn

{cn(ζn, ωn, ŝn) + Jn+1 (fn(ζn, ωn, ŝn, wn))} ,

for n = 1, 2, . . . , N , where fn(ζn, ωn, ŝn, wn) =
[

ζn+1 ωn+1

]T
=

[

(ζn + 1)ŝn ωnwn

]T
. Substituting our

additive cost function yields:

Jn(ζn, ωn) (14)

= min
ŝn∈{0,1}

− E
wn

{(1 − ŝn)ωn log M∗(ζn + 1, η)} + E
wn

{Jn+1}

= min
ŝn∈{0,1}

−(1 − ŝn)RT (n) log M∗(ζn + 1, η) + E
wn

{Jn+1}.

Notice that the state variable ωn dropped out of the first term

when we took the expectation with respect to the disturbance

wn. This is true for each stage in the DP.

Proposition 14: For a channel that dies

(X , pa(y|x), pd(y|x), pT (t),Y), channel state feedback

does not improve performance.

Proof: By repeating the expectation calculation in (14) for

each stage n in the stage-by-stage DP algorithm, it is verified

that state variable ω does not enter into the stage optimization

problem. Hence the transmitter does not require channel state

feedback to determine the optimal signaling strategy.

VIII. AN EXAMPLE

To provide some intuition on the choice of epoch lengths,

we present a short example. Consider the channel that dies

with BSC(ε = 0.01) alive state and pT (t) that is uniform over

a finite horizon of length 40 (disallowing death in the first

time step):

pT (t) =

{

1/39, t = 2, . . . , 40,

0 otherwise.

Our goal is to communicate with η-reliability, η = 0.001.

Since the death distribution has finite support, there is no

benefit to transmitting after death is guaranteed. If we run the

DP algorithm to optimize the ordered integer partition (under

the Strassen approximation), we get a result (n1 = 20, n2 =
12, n3 = 6, n4 = 2). Notice that since the solution is in order,

the greedy algorithm would also have succeeded. The expected

transmission volume for this strategy is

V = RT (20) log M∗(20, 0.001) + RT (32) log M∗(12, 0.001)

+ RT (38) log M∗(6, 0.001)

= (20/39) · 9.2683 + (8/39) · 3.9694 + (2/39) · 0.5223

= 5.594 bits at reliability 0.001.
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IX. CONCLUSION AND FUTURE WORK

We have formulated the problem of communication over

channels that die and have shown how to maximize expected

transmission volume at a given level of error probability.

There are several extensions to the basic formulation studied

in this work that one might consider; we list a few:

• We have disallowed the decoder to declare erasures be-

fore the channel dies. As noted in Section V-C, one might

consider the benefits of errors-and-erasures decoding [28]

while the channel is alive.

• Inspired by synthetic biology [4], rather than thinking

of death time as independent of the signaling scheme

Xn
1 , one might consider channels that die because they

lose fitness as a consequence of operation: T would

be dependent on Xn
1 .2 This would be similar to Gal-

lager’s panic button/child’s toy channel, and would have

intersymbol interference [17], [20]. There would also be

strong connections to channels that heat up [31].

• Since channel death is indicated by erasure symbols, the

receiver unequivocally knows death time. Other channel

models might not have a distinct output letter for death

and would need to detect death, perhaps using the theory

of estimating stopping times [32].

• One might consider a channel that is born at a random

time in addition to dying at a random time. Channel state

feedback would provide benefit.

• This work has simply considered the channel coding

problem, however there are several formulations of end-

to-end information transmission problems over channels

that die, which are of interest in many application areas.

There is no reason to suspect a separation principle.

• Networks of birth-death channels are also of interest.

Randomly stepping back from infinity leads to some new

understanding.
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