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A.Introduction. We consider the state identification pro-

“blem for systems whose state evolution process is described by

a linear parabolic Partial Differential Equation, wherein all
parameters are known.* The results derived are also applicable

- to systems whose state evolution process is described by

}i?ear, second order, hyperbolic partial differential equations
1)
~  The method of approach is a variational one and, under

- suitable hypothesis, the results obtained have a certain "sto-

chastic respectability.” In abstract, the problem is formu-

lated as follows:

Given:

(1) A state evolution process S

(2) Input measurements I which are inexact--that is,
there are measurement errors, and

(3) Output measurements 0 which are incomplete and/or
inexact, the former qualification being a conse-
quence of a certain physical realizability condi-
tion.

Problem

Recover an estimate of the "true state of nature of the

" process S, on the basis of I,0 and the state evolution process
~associated with S, which is optimal in some sense. This prob-
- Tem is equivalent to determining optimal estimates of

- (a) The initial condition with which the state evolution pro-

cess began, and

' (b) The environmental interaction or inputs.

Denoting this vector of optimal estimates by u and an

‘arbitrary estimate by v, the criterion of optimality chosen is

—
An extension is proposed for distributed parameter estimation.
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that of "least squares", that is,

J(u) = Inf J(v) (1)
veV
where J(v) is an appropriate quadratic error functional incor-
porating the measurements I and 0, and V is the space of ad-
missible estimates.

The identification problem as phrased is therefore a
variational one, that of minimizing a quadratic functional.
Characterization of extremals to the gquadratic functional is
achieved via the method of variational inequalities, due to
Lions and Stampaccia (2). We employ a direct numerical method
vhich uses the aforementioned characterization to generate con-
jugate directions of search on the quadratic functional, which
lead, in the limit, to the sought for extremals. We remark
that the numerical technique (considered in the sequel) is ap-
plicable to a braoder class of problems than those arising in
the context of identification. In particular, we recognize an
immediate application to problems in distributed optimal con-
trol.

Remark

The foregoing implies that we solve a smoothing problem,
and thus the solution is made in an "off-line" sense. The
filtering problem for the class of systems introduced here has
been presented elsewhere (1),(3).

B. Mathematical Statement of the Problem
Notation:

Let @ be a simply connected open set in R". Points of @
are denoted by x = (X],...,Xy). The boundary of @ is denoted
by T which is assumed to be regular. Let t denote time. De-
fine the sets

z = rx(0,T]
Q = rx(0,T] .

Let LZ(Q), Lz(z) denote square integrable functions
(equivalence classes) and define V = L2(z) xL?(@). Evidently
L2(z), L2(a) and V are Hilbert spaces under the usual inner
product and norm.

State Evolution Process:

"

%{(x,t;g)+A[y(x,t;g)] = f(x,t) x,teQ (1)
y(s,t) = u(s,t) s,te: (2)
y(x,0) = upy(x) Xe @ (3)

where the hypothesis on f(x,t), uj(s,t) and ug(x) is:
f(e,+) e L2(Q), uj(+,+) € L2(z) and up(-) e L%(a). In addi-
tion, A[-] is an elliptic partial differential operator:
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r
Al = - ] %;i[aij(x) %Ij v(x,t)] + a_(x) v(x,t)

with aij(x), ao(x) bounded, measurable and

T 2 2

i,§=] ;500 g5 g5 20l + oo+ g) L a0
ao(x) > a

for almost every x Q.

Quadratic (cost) Functional:

Define v = [v1(s,t) : vz(x)]T s oveV
u* = [ui(s,t) : U’z‘(X)]T 3 u* eV

2z = u* + KT N(t) oz
z(x,t) = y(x,t;u*)+K N (t) 5 z(-,-) e L2(Q)

In the above the K's are constants and N(t) and N_(t) are error
processes in appropriate Hilbert spaces. g
Remark

u* is a vector of the true initial and boundary condi-
tions for the system S. 2z and z(x,t) are the input (I) and
output (0) measurements, respectively. The measurement z(x,t)
given is physically unrealistic but is taken for simplicity.
Parallel results have been obtained for the discrete measure-
ment case, that is,

206,t) = ]yl i) + K, No(t)

and will be reported. 1=l
The quadratic functional J(v) is given by:

J(v) =|Iy(x,t;!)-Z(X,t)Ilfz(0)+li!_- Ejls (4)
If we define

a(v,y) =|ly(x,t;!)-y(x,tzg)ﬂfz(Q)+I|!J|s (5)
a(v) = -{(y(x,t;x)-y(x,t;g),y(x,t;g)-Z(x,t))Lz(Q)
-(v,z)y} (6)
¢ =lly(x,ts0)-2(x,8)| 122 qy*H 121 15 (7)
Then (4) is equivalent to:
J(v) = a(v,y) - 22(y) + ¢ (8)

We have the following:

Proposition 1
a(y,y} is a coercive, continuous, bilinear form on V.
2(v) is a continuous linear form on V.

Using the results of (2), it is possible to give the following
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characterization of the optimal estimate u, stated as a
theorem.
Theorem 1

There exists one and only one u € V such that J(u) =
Inf J(v) and it is characterized by -

veV a(u,v) = 2(v) for all

Remark &
(9) is the (formal) differential of the functional J

evaluated at u, denoted here by §J(u). In terms of the grad-

ient G(u),
8d(u) = (G(u),v)y
An equation for G(u) is given in the following Proposition:
= —32_ (Sst)+u] (S ’t)-Z] (S,t)

Proposition 2
9}9} is given by
avA*

G(u) = (10)
p(x,0)+u,(x) - z,(x)

where p(-,t) € H](Q) (the first Sobolev space) and is the
unique solution ~of

- %%(x.t;g)+A*[p(x,t;g)]=y(x,t;g)-2(X.t)
p(s,t) =0
p(T) =0

vevy (9)

(1)

Remark

It is convenient to define the gradient G(u) in terms of
Egs. (10) and (11). For, if we put equations (5) and (6) into
Eq. (9), we obtain

Joly(x,tsu)-z(x, t)ILy(x,t;v)-y(x,t;0)Idxdt
+?E[U](S,t)-Z](S.t)]v](s,t)dsdt
+[ [uy(x)-25(x)Tvy(x)dx = 0 (12)

While (12) characterizes the optimum choice of u, the numeri-
cal selection of u is obscure. Noting that the variable ad-
joint to y(x,t;u) evolves according to (11), and that the
R.H.S. of the evolution equation for p(x,t;u) appears in (12),
we substitute where appropriate and obtain

fgb= 3%%;(s.t)+u](s,t)-z](s,t)]v](s,t)dsdt

+ [p(x,0)+uy(x)-2,(x)Iv, (x)dx=0 (13)

Comparing (13) with the definition of &6J(u), we immediately
extract G(u) given by (10). The choice of u is now concep-
tually clear, since G(u) = 0 (18)

is equivalent to Eq. (9). We attend now to an algorithm which
accomplishes (14) by successive approximation.
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C. The Programming Algorithm

The determination of u which satisfies (9) (and which
solves the identification problem) is made by generating a
minimizing sequence {ul} which converges (weakly) to uce V.
This sequence is generated by employing conjugate directions
of search {si} on the functional J(v), (4), (5). The algor-
ithm for generating {s'} and {ul} together with the conver-
gence property are now considered.
Algorithm: 5

(1) Select u” e V (Initial guess)

(2) Evaluate G(u%). If G(u®) # 0, then for the (i+1)st

iteration, (i = 0,1,2...) proceed as follows:

(3) !j+1 _ gj Gl §f
$? = - 6() .
§+1=_§@fﬂ)+81§
;e
((6(u"),6(u"))y

In addition, qi is chosen so that
J(E_l + (!1 §:|) = Inf J(E:l + Yl _S__1)
yieR] .
It is possible to obtain an explicit expression for «':

PRI

a g q
a(s',s)
Theoren 2 ;

The sequence {u } converges weakly to a unique u € V and
that limit u has the property that

J(u) = Inf JI(v)
vev

We remark that the computation of gjgf) involves the sequential
solution of (1) forwards in time (Starting from ul(x) and evol-
ving under the influence of ul(s,t)) and then the“solution of
(11) backwards in time to recéver p(:,-;u?) and hence G(ul).
Thess salutien "dirsctions” are numerically stable. Thus te
obtain G(ui), it is necessary to solve the PDES given by (1),
(2),(3), and (11). We approximate these solutions by the
method of Galerkin, in the manner suggested by Lions (6). The
Galerkin approximations ym(x,t;g) and pm(x,t;g) are given by

m
ym(x’t;U)=iZ]yi(t)wi(X); (w;(+)Yyoq o, @ basis in L2(x)
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m
Pp(X>tsu) = 121 p; (thw, (x)

where yi(t) and pi(t) satisfy the following ordinary differen-
tial equations.

dy.
ﬁ(t;g)'*'x.iyi(t;_’i)=f.i(t)"u].i(t); ‘y’I(O):uZ'I t e (0,T)

dp.
- #(t;g)*')\ipi(t;g)zyi(t;!)‘z.i(t); P1(T) =0 te [0,T)
the ), are the eigenvalues of the following Sturm Lionville

equation: Alw(x)] - aw(x) = 0 XeQ
w(0) =0
w(l) =0

and

f'i (t) = (f,wi )LZ(Q)
z:(t) = (sti)Lz(Q)

aw].
Ui = (2135 Doy

Remark Y2i T (Zz’wi)Lz(Q)

_The choice of the basis functions {w;(x)}j=1,2. . is a
question of significant importance. Experience with those re-
ported here indicate poor approximation of y(-,-;u) and

p(+,-;u) unless m is large. However, because of the decoupling
afforded they are convenient. For, we found that for small m.

G,(u) > 0

where G (u) is computed according to Eq. (15). (Note that u is
not approximated but the definition of the gradient is). There
are other selections for {w;} possible, perhaps the most ap-
pealing of which are the sp1ines of interpolation (1).

[t should be emphasized that Gp(u') determined from the
Galerkin approximation is an approximation to G(ui), given by

m aw.(s) ;
-JZ']pj(t)_j_aVA* + u](S.t)-Z](S.t)

6 (u') =

m (18)
jglpj(O) W (x) + up(x) = z,(x)

The question of convergence of G, + G will be reported in
a later paper (7). Experience with non trivial examples indi-
cate a striking convergence of the overall algorithm. In
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particular, numerical results have been obtained for the fol-
Towing system:

ay(,t) 3%t L 2100 0ex<1 ; 0<t<T
ot aXZ > Sl
y(s,t) =uls,it) s=0,1 ;5 0<tcT
y(x,0) = uz(x) D<x<1 3 t=0
Input Measurements

z](O,t) = uT(O,t) + Ky N](t) t « (0,1]

z](l,t) = uf(],t) + ky Ny(t) t ¢ (0,1]

zz(x) = u;(x) + k3 x ¢ (0,1).

where u* is the true state of nature and is defined by:

uf(O,t) =70 + 10 sin 2nt
UT(]’t) = 54.5
U§(X) = 70 e-0.25x

and Nj(t), Np(t) are random telegraph signals with amplitude
+1.0. Ky ang kp are variables chosen to affect the signal to
noise ratio and k3 is an arbitrary bias on the initial condi-
tion, also chosen to affect the signal to noise,

Qutput Measurements

(17 z(x, ) = y(x,tsu*) + k, N (t) x,t e (0,1) x (0,1)

where N,(t) is a random telegraph signal with amplitude +1.0
and k, is a constant which alters the signal to noise ratio.
It is assumed that Ng(t), Nj(t), No(t) are mutually independ-
ent random variables.

(2) Measurements were taken at 4 points of the spatial domain.

2(x1,t) = y(d ) + k) (1), (6= 1,2,3,4)
x) =02, x%2=04, $3=0.6 x*=0.8.

The minimization of J(v) is displayed in Figure 1 for
both measurement processes A and B. The behaviour of one of
the elements of Gp(u), namely G(uy) is displayed in Figure 2.
It was found that three iterations were sufficient to deter-
mine u for which Gyu(u) = 0 under measurement A, and five iter-
ations solved case B.

D. Extensions to Parameter ldantification

The conventional expedient of converting a linear para-
meter identification problem into a nonlinear state identifi-
cation problem can be considered in the context of our results,

providing the following approximations are employed:
(1? Linearize the resulting nonlinear state equations
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(2) Reduce the result to cannonical parabolic form by
introducing, where appropriate, "diffusion terms"
which are removed in the limit, as suggested in (8).
Tha% is, we make the linear equations "quasi rever-
sible".
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/ Measurement Process A

S

Measurement Process B

Figure 1: Minimization of the error functional.
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Gy (U,) under measurement process B with M = 8,

Figure 2:

(1) 6.

(5) J.

(6) J.

(7) G.

S.

(8) R,
J.
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