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STATE TDENTIFICATION OF A CLASS OF LINEAR DISTRIBUTED SYSTIMS

by

G. A. Phillipson® and S. K. Mitter
Systems Research Center

Case Western Reserve University
Cleveland, Ohio -~ 44106

This paper is concerned with the state identification problem for
a class of linear distributed parameter systems. Since the system is
described by a partial differential equation, its solution requires
knowledpe of initial conditiouns and enviromment forcing terms which in-
clude the boundary conditions. The problem studied here ig the following:

Given i) inexact measurements of the initial conditions and envi-
ronmental interactions ii) inexact and possibly incomplete measurements
of the state of the system, determine on the basis of the above data the
true initial and boundary cenditions associated with a given partial dif-
ferential equation which is in some sense optima) with respect to the
given data.

The basis for selecting the estimates of the boundary and initial
conditions associated with a given partial differential equation, that
is, the criterion of optimality, is that of "least squares"., Theoret-
ieal results as well as a computational scheme with numerical results
are presented.
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STATE IDENTIFICATION OF A CLASS OF L'INEAR DISTRIBUTED SYSTEMS

by

G, A. Phillipsm -and S. K. Mitter

" Systems Raseamh Center

Case Western Reserve University
Clevaland, Ohio 44106

A, Int!ﬁduc‘ti‘m
This paper is concerned with the state identification problem for a

class of linear distributed parameter systems. Since the system is de-

" scxdibed by a paz't:ml differential equation, its solution requires kniwl-
edge of initial conditidns and enviremmental forcing terms which include '
the boundary conditiths, The problem studied here is the following:

Given i) inexact ieasurements of ‘the initial conditions and envi-
ronmental interactions ii) inexadt and possibly incomplete measurements
‘of the state of the system, determine on the basis of the above data the
*pme initial and boundary conditions associsted with a given partial dif-
ferential equation which is in some sense optimal with respect to the
given data, '

The basis for selecting the estimates of the boundaxy and ini‘cinl
oonditions associated with a given partial differential equation, that
is, the criterion of optimality, is that of "least Bquares"., To be more
precise, we mean the following: ‘

Given:

(1), The measurement data, which we denote here by 2 , and

(2) An (arbitrary) solution of the partial differential
equation, denoted here by Y(v) , wixeve\ v is an arbi-
trary estimate of the true initial state and boundary
conditions, then
Obtain: .

(1) v vwhich extremizes the error functional

Jw =|z=- ywli® ,

* ' ' .
Now at Shell Developnent Company, Houston, Texas.
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where ||¢||?® 1o some appropriate squared metric,

The identification problem, treated here is thus a variational prob-
lem-~that of characterizing extremals to a given functional, constvained
by a partial differential equation. We obtain a characterization of
these extremals which ia both necessary and sufficient, using the theory
of vardational inequalitiea. Two methods for the numerical recovery of
the extremals from this characterizaticn are presented. One of theae is
a Ricatti<like decoupling and the other is a "direct method" involving

conjugate directions of search on a quadratic error surface. Collateral J
mvkmaybefoundintherecem:papewofBalak:vishnanandl.ions2

The identification problem, as introduced, is customarily given a
stochastic treatment. In that context, the error associated with the
measwrement data Z is considered to be a random variable, whose values

"diatributed" in a knawn way. The state identification or filtering
pmblem, as. it is called in this context, is to determine the a.posteri-
ori pmbabﬁity density of the state, given the measurements 2 .

Under special statisti¢a)l hypothesis on the error processes, namely
that they be purely random with Gaussian probability density and in addi-
tion, are additive-~that is

Z2YW+E
where u is the true "state of natwre” and E is the error process,
then if the system state evolution process is also linear, the a posteri-

ori dengity of the states is also Gaussian. It can be shown3 that the
filtered estimate (given in terms of the sufficient statistics of the

_Gaussian distribution of the states, tha mean and variance) coincides

with the "least-squares” estimate. Thus, under these special hypotheses
the variational and stochastic approaches yield identical results.

We yremark that the variational problems arising in distributed opti-
mal dontrol are amenable to the solution techniques suggested in the se-
quel, In particular, optimal boundary controllers are recovered effi-
ciently by the "direct me " already mentioned.

B. Definitions and Mathematical Preliminsrdes |

let n be a simply connected, bounded cpen set in K° . Points of
Q are denoted by x = (%) X5 «ea X ) o T is the boundary of 0 . let
t denote time, t€(0,T] . Define the sets:
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rerx(0,T] 3 Qe.mx(0,T)
We adopt a notational convention mgmding the functions f :

£(x, t) is a point in R:l (x,t)€Q
£(+,t) is an element:of a Hilbé.m: space K(f).
£(+,+) is an element of the Hilbert space L2(0,T;K) ,
where L2(0,T; K) is the space of fimctions (equivalence classes) which
are square integrable with values in K . :When appropriate, we shall
considor derivatives of f to be taken in ‘the distribution sense, that
is, given a function ¢(+)6 C!(p) with compagt suppoyt in ., then for
£(+)e K(R) , the mapping

-a-g-(-’i)-: (%) -r-_’. f-'g-)%dx; iz21,2 eou

i
f
is called the distr'ibution derivative of the function f . Higher order
derivatives are taken in an analogous way.
Define the second order ell:.pt:.c operator A[-] :

r
= 9 ap(x,t
Alyl = - i,§=1 G [aij(x,t) _‘L{x.;_]-» ao(x.t)w
where aij(x,t) » (1,3=1,2..r) are bounded, measurable and exhibit
the coercive property:

a3500t) £ & 2 a(ef + oo + D) forall EeR', (i51,2..7)

Liewnry

i,3=1
a (x,t) > a
a>0, (xt)eQ.
By Agl+] we mean the operator Al.] with an additional symmetry
condition:

ai.(x,t) s aji(x.t) (i,j =1,2.. 1), forall (x,t)EQ.

The case where the coeficients a, j(x,t) = a4 (x) » a(x,t) = a, (%)
leads to the classical Sturm La.ouv:.lle operator, demsted by Aat

We shall be concerned with the properties of solutions to the Sturm
Liouville problem

by WY = Apw = 0 | it

with

Qa

L3(n)

C.
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with any one of the boundary conditions

(X) wis)= 0 Ber
an 2s) . ser
v

(I11) 8‘;58) + p(s) wis) =0 ser g ga(s) >0 :for all scl .

Solutions to (1) with any one of (I) (II) (IIY) are complete in
12(a) . Of special interest are the solutions to

.2
284 w=0 xe(0,1)
ax?

wo =0 . oot
w(l)-==.0 !

namely, A .
(VT sin A7 Rhyy o) 4 Ap® GNP
C. The Distributed Systems

We consider in detail identification problems associated with the dis-
tributed system whose evolution equation is linear, parabolic, with inhomo-
geneous boundary conditions of the Dirichlet type:

WD 4 Aly(x,t)] = £t)  (DeQ
yis,t) = ul(s.t) (s,9er (2)
yx,0) = uy(x) x €8

Hypothesis on f(x,t) and ul(é,t) ) U ) are:
£(40)€ L2(Q)
W (o5 ) €L5(D) o (3)
u, (1) € L(R)

For the system (2) with hypothes:.s (3), we have the following lemma:

Lemma 1 (Lionc-Magenes)
There exists one and only one solution to (2) with (3) such that

yley)el}Q) . In adcuuon,

-l G, ~>¢L2<Q) .

Remark A)) our results hold in the case where the boundary conditions
on (2) are Neumann or "Mixed". Moreovér, systems whose evolution equation
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is of second order hyperbolic type, naiely:

YT 4 A [y(a,t)] = £x,t)
) 8
with any of the three boundary conditions fall within the jurisdiction
of our results.
D. Mathematical Statement of the Identification Problem
Given: (i) System evolution process-equation (2).
(ii) Input measurements:

z(s,t) ufls,t) + Ko N (1)
7 = = (5)
- N
zz(x) uz(x) + K2 Nz(t)
where _l_.l_* = (uI(s,t) : u;(x)]T is the true "state
of nature", and K1 and K2 are congtants.,
(iii) Output measurements:
(@) z(x,0) = ylx,tiu) + K N_(£) (6)
(b) z(xi,t)-= y(xi,t;g_*) + K‘é Ni(t) y 121,2..v (7

where xfen , No(t),Ni(t).Nl(t) and

Nz(t) are random error processes and K is
a constant.

Identification Problem: Obtain u , a "refined estimate" of 9_.
based on the data contained in the input and output measurements. The
"refined estimate" is defined as that u in an aamissible set of func-
tions V which extremizes a certain quadratic error functional J(v) .
That is, choose u such that

*

J = Inf J(w) ;5 V= LA@DRLH)
veV
It is possible to consider a large variety of error functionals

J(v) . This variety is induced by the type of measurement data avail-
able ((ii) and (iii}). Aoareless choice of functional J(v) can lead
to erroneous results. We postpone a discussion of "well set" functionals
to Section E. Two specific error functionals considered in this study
are induced by the two output measurements (iiia) and (iiib). They are:
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(a) J(v) = j ly(x,t;v) - z(x,t)]zdx dt + j [vl(e,t)-zl(s,t)lzda dt

Q £

+ J [vz(x) - zz(x)lzdx . (8)
Q 4

T v

(db) Jv) = ] 1 [y(xi,t-,y_) - z(xi,t)lzdt + I [vl(s,t)-zl(s,t)izds dt

o i=1 £

+ J [vz(x) - zz(zc)lzdx . (9)
n

Remarks The output measurement pvocess' (iiia) is physically unrealistic
as it is not possible to measure the entire spatial profile. For the

game reason, 80 is the input measurement process zz(x) . The latter

case. can be rationalized however, by asserting that z2(x) is obtained

by computing an initial steady state profile which is in error. Although
not considered in this paper, it is possible to treat other measurement
processes (provided they are appropriately formulated) by using the methods
of this paper.

For notational convenience, we shall consider (in detail) the identi~
fication problem associated with (8) and report formally the results for(9),
E. Characterization of Extremais

The charecterization of extremals to J(v) is afforded by the results
of Lions and Stampacc.‘nia.l We first introduce the appropriate framework.

Let alv,w) be a coercive continuous bilinear form, Vv,weV = LA(x)
xL2(0)
21(v) be a continuous linear form.
Then, if .
J(w) = aly,w) - 28(V) + ¢ . (10}

we have the following thecrem:
Theorem 1 (Lims—Stmcchia):l There exists one and only one u€v
such that '

{

J(u) < J(y) for all veV
and it is ¢haracterized by '
a(u,y) - 4(y) = 0 for 11 y6V
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Theorem 1 is an appropriate "maximum principle" for the purposes of
solving the given identification problem. It is necessary to check
whether J(v) given by (8) (or (9)) has the representation (10). Using
(8), we can define :

aly,y) = [ [y(x,t;v) - y(x,t30)1%dx dt + I vl(s,t)zds dt
T | s
v [ vt | a2
a .

“ay) = -{I ly(x,t5v) = y(x,t30) My(x,t;0) - z(x,t))dx dt
. Q .

- I vl(s,t) zl(s,t)ds dt - I vz(x) zz(x)dx) (13)
I Q

cs I (y(x,t;0) - z(x,t)]zdx dat + I z]_(s,t)z-ds dt
Q . £
+ I zz(x)zdx (14)
fn .
Then it is clear that J(¥) , g:.ven by (8), can be written:
J(g_’ 3 alv,v) - 28y) + ¢

with _a(g,g) » Xv) and c given by (12), (13) and (14), respectively,
Moreover, the hypothesis on a(v,v) , #(v) and ¢ are satisfied. Hence,
by Theorem 1, the refined estimate u , which minimizes J(v) , is
wuniquely characterized by:

I [y(x,tsu) - 2(x,t)Ily(x,t;%) - y(x,t;0) Jdx dr

Q : (15)

-

+ [ [ults,t) ozl(a,t)][vl(s,t)]ds dt+! [uz(x) -zztx)] v?(x)dx =0,
o

Equation (15) is not of immediate utility. However, by defining a system

It

m i 0O =



4

adfoint to (2), (15) can be nanipulated to yield 4 fore workable result.
Thus, define P(x,t) , the adjoint variable to y(ist) , Which evolves

according to:
- -"’-21-;%‘3- ¥ Alplx,t)] & yGt i) ~ z(x,t) xteQ
playt) # 0 8,681 (16)
It can be shown® that (15) is equivalent to:
- BR0BLE) 4y (s,t) - 208, 2 0. stes
v an
pix,0) + uz(x) -2 (x) s 0 . xeq

Thus the gimultaneous solution of (2) (16) and (17) defmes the defmed
estimate u and yelds the refined estimate of the state, y(x;tu) .

Remark The extremal to the functfonal J(v) given by (9) is given by
solving (2) a.nd an ainmltaneously with an equation for p(x,t) given by

- RUGE) 4 Afp(x,0)] = izi ylxits) = 200801 8x=r) (151,2.00)
) 3 : .
Cpls,t) 3 0 S - Q8
p(x,T) = 0 | | _
It can be shown,“ that v(Z'LS) and (18) have solutions such that —9% (ey)e
: av

13() , so “that (17) mnakes sense.

We remarked in Section D that it was possible to constyuct func-
tionals J(v) which were not "well get", By well set, we mean that a
representation for J(v) -given by (10) is poss:.ble. As an example of a
non well set problem, consider

Jw = [ [y(x,T3w) = 2(x,T)1%x + [ Ty (s,) = 208,021 at
2 | s SR
+ [ [v,(x) - zz(x)lzdx | o 19
‘ q | . .
As before, we can define o ‘
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by
Aly,w) = J [y (x,T5v) ~ y(x,'l‘;g)]adx + I vl(s,t)zda dt
R . L

+ [ v, (00 %x | = . (20
Now, a(v,v) is not continucus® and the vepresentation fails., It
is possible to construct several such ill-posed vaoblems.2 »3 Appropriate
reconstruction can, however, relieve these difficulties.
F. Recovexy of the Extremals
As we announced in Section A, two methods for the recovery of ex-

- tremals from the characterization given by (2), (16) or (18) and (17) can

be proposed. Consider first a Rg.catt:.—hke Decoupling.
F.1 Ricatti-like Decoupling |

We note that (2), (16) or (18) and (17) constitutes a two point
(time) boundary-value pmblem. That is, the "initial" conditions on
y(x,t) and p(x,t) are split, It ds possible to determine an equation
for y(x,T) , with which the system of equations (2), (16) or (18) and
(17) can be solved (in principle) as an initial value problem. However,
y(x,T) ~-that is, y(x,T;u) is the refined state estimate at the teymi-
nal time T , which is fixed, but arbitrary. Thus we shall consider the
identification problem to be solved cnce having obtained an equation for
y(x,T;u) . We give the result as a theorem:
Theorem 2 Given the system of Equat:.ons (2), (16) and (17), then if
P(x,;,t) satisfies

() BEGGEE) | [ptx,E,0)] = ALPOGEDP- 8(6-2)

+ ] 3P0,8,1) AP(S,E1) g5 = 0, (x,E, D€ Rxx(0,T) (21)
o rs v av |
P(x,s,f) 2 P(s,E,t) =2 0 (22)
P(x,£,0) = 8% - £) | (23)

(1) Ble,o, )€ HAmA) 5 37 (+y04t) € L3 @NR) , €€ (07D,
(H%(pxa) is the second Scbolev space) then:

[[=%
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(1) There exists ona and only one §(+,*)@ L3(Q) such that
' y(x,T3u) = §(x,T) (24)

where y(x,t) io the unique solution of thg following
linear integral equation of the aeoond kind

' I P(xy§y2){ M%%Q + Ats‘v(e,tﬂ - £CE,EIHE = 2(x,t) = lxyt) (28)
Q . : Cih

The conditions satisfied by y(x,t) on the closure of
Q are: ' o

¥(8,t) = z,(8,t) (s,t)ex
(26)
9(x,o) 2 zz(x) x eg <

For a proof of this theomm, see Phi.ll.tpson, 'I'he nwnemcal solutwn
ofyequations (21) through (26) is not trivial, tbwevev an app;vxunate
solution is possible, usmg an e:.genvalue expans:.on.:’ w:.th the defmzums

d l.ium

m

P(xtg’t) s pm(XQE’t) 5 Pm(x,ztt).f' i_ § lpij(t) wi(x) wj(E)
. : _ 1 =

i L4, L Com o, :

ylx,t) = ym(x,t) ERA (x,t).‘ 3 ): y;(t) w0

where wi(x) and x) satisfy (1), it can be as;hczwn3 that (21) thmugh
(26) yield the familiar "lumped" results:

Foeten e e + AP'J'(t) v Flo e - Wl = 0 @n
Floy=1 ¢

FW o pjee - £ + 20 = P l(t)[z(*) - §on (29)
o =zy . ' (30)

PCE) = By (O}, 41 2 m
() = (900 o
A= daglishiz 2.m
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W, ]
] 3 g 2 { *} '
3\‘ v \’ d i‘l 2.4
2y (E) E {zl.;l.(t”iﬂ‘l.Z..m b2y o I zl(ap't) ;:-;da ' :
v ' r

2p = {Zy4M4e1,2,m 221 I 7p(%) Wy (x). dx
* . a-,
£O) & (5 (0)iay 5. 3 400 = [ £OGD w0 &x o
; o a
In Section G, we neport :\ésulté ‘hsi.ng the suggested decoupling end sub-

sequent approximation, for a simulated example, There, we also give

results pertaining to the "discrete masmement" case induced by ‘the
functional (9).

f‘s? A Dimct Variat 1ona1 Method
‘ To mcap;.tulate, the problem is to select gev such that

ORE. LR (31)

 As we have.aeenu there is @ unique ueV with the pmpax'ty (31) and it
is chamctemzed by N _ ,

v a(u,v) - My) =0 - (32)

Equation (32) is the derivative of the functional J(y) evaluated at u .

In texms of the gradlent G(u) » (32) is equivalent to:

b (Sw,¥)y = 0

with--G(u) "given by (17). The direct method for determining u
involves searching on the quadratic surface J{y) along directions
. g5(6) which lead eventually to u . That is,

I

e,
I

) - . 9

Because of the danonstrated efficiency of conjugate divections of seaxch,;
we shall employ them here. The algorithm is as follows:
(1) Select u’eV (Initial guess)

g g5 F

t433

P A
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(11) Evaluate G(u°) via A7), If .G(u®) x 0 , then by (32),
v is the solution.  If G(u°) ¥ 0 , then for the (i+1)st

iteration, (1-oi1... ») proceed as follows:
(m) '-i'.'l i ui Y Cj. a ‘ ao 8 Q(_\_A_o) ..

e g 1+1, o oh g
Gy, g,
Cal :

(9_(3_1) s 8luhy

in addition, .i.a chosen 60 that
(p_i-u) « Inf J(y_ + vi _a_i)
vierd
It is possible to obtain an explicit e:gmassim,for ui H
atsluh) - 1eh @b sy,
2 & w

a(a i) .
We review some pmpeﬁ:ies of the algo«-iﬂun in the following theorems:

a(si,ai)

Theorem 3 If Gub) # 0, J*'h) <oed)

Oomllary: The sequence of real numbers J(u ) is monotone decreasing
andhasgnmitintheextmdedmals:

um.u‘)-a . Inf J(») .

R R\
Theorem 4 'mesequenoe (u) convergeawea)dytoamiq\n uev and
thel:lm:.tu )usthepmpemtmt ,

Jw = Inf ICw)
veV
vn w oy ueV Gumique)

i-».

m J(u, ‘J ..

We remark that at each iteration, the evaluation of G(u ) .involves
the numerica). solution of (2) forwards in time, then (16) backwards in
time, which are the (numerically) stable directions of solution.

" As before, the numerical solution requires an approximation of the
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solutions to a set of partial differential equations. Again, we use the
eigenfunctions of (1) to achieve th:ls approximation. We discuss the
vesults in the next section.
G. Numerical Results

The system chosen was the following:

2
y0nt) L Y008 - g2 (x,t) & (0,1)x(0,T] (34)
L X
ylo,t) = u;lo,t) t e (O,T]
y(l,t) = ul(l,t)_ t ¢ (0,T]
9(x,0) = up(x) . x & (0,1)

Input Measurements

*
zl(p,t) = *(Q,t) + kg Nl(t) H ul(o,t) =70+10s8in2 nt
-4 .
zl(l,t) s ul(l,t) + k2 N (t) 3 \.l‘z(l,t) = 54,5
* -0.
zz(x) = uz(x) + Kk, 3ou, =70 e 0.25%

k1=u.2,k2=0,k3=2.8
Nl(t:) purely random function with amplitude & 1.0.

Output Measurements
(a) z(x,t) s y(x,t,u ) + k N, (t) .

®) 2(xt,t) = y(x Jtiu') + ki Ni(t) ot = 0.2, 0.4, 0.6, 0.8).
= 8.0, N s N are random telegraph signals with amplitude % 1.0.

The exgonfungtlons appropriate to the suggested appmoxmationa are those
given by (1)

The results obtained for our example using the. method of Section F.l
are shown in Figures 1, 2 'apd 3. An eight term expansion was adopted,
and several selected variables are shown. It should be stated that the
integration step size mecessary to obtain a numerically stable solution
for the {P;,(t)} was snall (0.001) and this resulted in a large compu-

tational effort. The total time for solution was of the order of thwee

. minutes. On the other hand, using the direct method of Section F.2,
three iterations, (sufficient to recover u such that G(u) = 0) were
accomplished in only 75 seconds. Some selected results are shown in
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Figures 4, 6, 6, 7, and 8. Note that J(y) is minimized repidly (Figure

9) and obuserve thgt J(V)measumment (a) ¢ J(v)mmm ) *

We remark that G(u ) given by (17) was approximited by Gm(u )

e b = ( I '
B - iglpi t) —-—a-;r + \.\1(8.‘3)‘- 21(8,1-:)

y
L py(o w0 ¢ u§<x> - 7,00 .

We observed that for the example chcsen, the last thme tm i.n the
sumation were identically zem, that is,

G, (w = G(g_)

However in general, it is not clear in what sense G (u) + G(u) , and we
are attempting to establish an appmpriate result. '
H., Sumary and Conélusions -

A special variational phmsmg of a distributed identification
pmblexﬂ resulted in a framework in which solutions were characterdzed
using the theory of variational mequahtxes. Numerical techniques
were suggested for recovering extremiis to the variational pmblem,
of which, the direct method, ylelded pmmsmg yesults. This direct .
method is also apphcable to the problem of determining optimal botindary
controls for certain disthibuted optimal control problem
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