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Abstract— Motivated by recent work on computing Nash
equilibria in two-player zero-sum games with polynomial pay-
offs by semidefinite programming and in arbitrary polynomial-
like games by discretization techniques, we consider the prob-
lems of characterizing and computing correlated equilibria in
games with infinite strategy sets. We prove several character-
izations of correlated equilibria in continuous games which
are more analytically tractable than the standard definition
and may be of independent interest. Then we use these to
construct algorithms for approximating correlated equilibria
of polynomial games with arbitrary accuracy, including a
sequence of semidefinite programming relaxation algorithms
and discretization algorithms.

I. INTRODUCTION

Aumann’s [1] notion of correlated equilibrium has re-

ceived much attention as a generalization of the Nash equilib-

rium [5] which is both justifiable in theory [2] and efficiently

computable in practice [6]. The idea of a correlated equilib-

rium is that each player receives a private recommendation

of what strategy to play, but these recommendations may be

correlated. If all the players know the joint distribution of

the recommendations, then they can each compute the joint

conditional distribution of their opponents’ recommendations

given their own recommendation. If each player’s recommen-

dation is always a best response to this conditional distribu-

tion, then the distribution of recommendations is called a

correlated equilibrium. If additionally the recommendations

to each player are independent, then the distribution is called

a Nash equilibrium.

Hart and Schmeidler [3] have proven the existence of

correlated equilibria in a large class of games with an arbi-

trary set of players and infinite strategy sets. Papadimitriou

and Roughgarden [7] have observed that in general finite

games with many players require an exponential amount of

data to describe. They have proven conditions under which

correlated equilibria of games which admit some succinct

description can be computed efficiently. Papadimitriou [6]

later extended these results to construct polynomial time

algorithms for computing correlated equilibria in broader

classes of succinctly representable games. While computing

correlated equilibria in finite games has been studied exten-

sively, to our knowledge there has not been work on the

corresponding problem for games with infinite strategy sets.
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This paper has two goals. The first goal is to characterize

the correlated equilibria of a large class of games with infinite

strategy sets. The definition of a correlated equilibrium in

this setting involves a quantifier ranging over the set of all

measurable self-maps of a given space. This is a complex ob-

ject which cannot be easily parameterized. Hence alternative

characterizations of correlated equilibria are a prerequisite

for designing algorithms to compute correlated equilibria in

these games. We give a characterization in which the above

quantifier is replaced with a quantifier over all continuous

maps from the space into [0,∞). This allows for a sequence

of finitely parameterizable relaxations by using polynomials

of fixed degree in place of arbitrary continuous functions.

The second goal is to construct algorithms for computing

or approximating correlated equilibria in continuous games,

particularly games with polynomial payoff functions. We

give three such algorithms and compare them using a running

example. First, as a baseline, we discuss the properties of

the approximation algorithm obtained by discretizing the

players’ strategy spaces without regard to the game structure.

Second, we suggest a method for choosing a sequence of

discretizations adaptively which seems to perform better in

practice. Third, we construct a sequence of semidefinite

relaxations which converges to a description of the set of

correlated equilibria in terms of joint moments.

The rest of the paper is organized as follows. In Section II

we define correlated equilibria in finite and continuous games

and extend several known characterizations of correlated

equilibria in finite games to continuous games. We then

use these characterizations to give several approximation

algorithms for correlated equilibria of polynomial games in

Section III. We close with conclusions and directions for

future research in Section IV.

II. CHARACTERIZATIONS OF CORRELATED EQUILIBRIA

In this section we will define finite and continuous games

along with correlated equilibria thereof. We will present

several known characterizations of correlated equilibria in

finite games, and then show how these naturally extend to

continuous games.

Some notational conventions used throughout are that

subscripts refer to players, while superscripts are frequently

used for other indices (it will be clear from context when

they represent exponents). If Sj are sets for j = 1, . . . , n

then S = Πn
j=1Sj and S−i = Πj 6=iSj . The n-tuple s and

the (n−1)-tuple s−i are formed from the points sj similarly.

The set of Borel probability measures π over a metric space

S is denoted ∆(S). For simplicity we will write π(s) in
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place of π({s}) for the measure of a singleton {s} ⊆ S. All

polynomials will be assumed to have real coefficients.

A. Finite Games

We begin with the definition.

Definition 2.1: A finite game consists of n < ∞ players,

each of whom has a finite pure strategy set Ci and a utility

or payoff function ui : C → R, where C = Πn
j=1Cj .

Each player’s objective is to maximize his (expected)

utility. We now consider what it would mean for the players

to maximize their utility if their strategy choices were

correlated. Let R be a random variable taking values in

C distributed according to some measure π ∈ ∆(C). A

realization of R is a pure strategy profile (a choice of

pure strategy for each player) and the ith component of

the instantiation Ri will be called the recommendation to

player i. Given such a recommendation, player i can use the

conditional probability to form a posteriori beliefs about the

recommendations given to the other players. A distribution

π is defined to be a correlated equilibrium if no player

can ever expect to unilaterally gain by deviating from his

recommendation, assuming the other players play according

to their recommendations.

Definition 2.2: A correlated equilibrium of a finite game

is a joint probability measure π ∈ ∆(C) such that if R is a

random variable distributed according to π then
∑

s
−i∈C

−i

Prob(R = s|Ri = si) [ui(ti, s−i) − ui(s)] ≤ 0

(1)

for all players i, all si ∈ Ci such that Prob(Ri = si) > 0,

and all ti ∈ Ci.

While this definition captures the idea we have described

above, the following characterization is easier to apply and

visualize.

Proposition 2.3: A joint probability measure π ∈ ∆(C)
is a correlated equilibrium of a finite game if and only if

∑

s
−i∈C

−i

π(s) [ui(ti, s−i) − ui(s)] ≤ 0 (2)

for all players i and all si, ti ∈ Ci.

This proposition shows that the set of correlated equi-

libria is defined by a finite number of linear equations

and inequalities (those in (2) along with π(s) ≥ 0 for all

s ∈ C and
∑

s∈C π(s) = 1) and is therefore convex and

even polyhedral. It can be shown via linear programming

duality that this set is nonempty (see [3]); this can be shown

alternatively by appealing to the fact that Nash equilibria

exist and are the same as correlated equilibria which are

product distributions.

We can think of correlated equilibria as joint distributions

corresponding to recommendations which will be given to

the players as part of an extended game. The players are

then free to play any function of their recommendation (this

is called a departure function) as their strategy in the

game. If it is a Nash equilibrium of this extended game

for each player to play his recommended strategy (i.e. to

use the identity departure function), then the distribution is a

correlated equilibrium. This interpretation is justified by the

following alternative characterization of correlated equilibria.

Proposition 2.4: A joint probability measure π ∈ ∆(C)
is a correlated equilibrium of a finite game if and only if

∑

s∈C

π(s) [ui(ζi(si), s−i) − ui(s)] ≤ 0 (3)

for all players i and all functions ζi : Ci → Ci.

B. Continuous Games

Again we begin with the definition of this class of games.

Definition 2.5: A continuous game consists of n < ∞
players, each of whom has a pure strategy set Ci which is

a compact metric space and a utility function ui : C → R

which is continuous.

Note that any finite set forms a compact metric space

under the discrete metric and any function out of such a

set is continuous, so the class of continuous games includes

the finite games. Another class of continuous games are

the polynomial games, which we study more in Section III

below.

Definition 2.6: A polynomial game is a continuous game

in which the pure strategy spaces are Ci = [−1, 1] for all

players and the utility functions are polynomials.

Defining correlated equilibria in continuous games re-

quires somewhat more care than in finite games. The standard

definition as used in [3] is a straightforward generalization of

the characterization of correlated equilibria for finite games

in Proposition 2.4. In this case we must add the additional

assumption that the departure functions be Borel measurable

to ensure that the integrals are defined.

Definition 2.7: A correlated equilibrium of a continuous

game is a joint probability measure π ∈ ∆(C) such that
∫

[ui(ζi(si), s−i) − ui(s)] dπ(s) ≤ 0

for all i and all Borel measurable functions ζi : Ci → Ci.

The problem of computing Nash equilibria of polynomial

games can be formulated exactly as a finite-dimensional

nonlinear program or as a system of polynomial equations

and inequalities [10]. The key feature of the problem which

makes this possible is the fact that it has an explicit finite-

dimensional formulation in terms of the moments of the

players’ mixed strategies.

On the other hand to our knowledge no exact finite-

dimensional characterization of the set of correlated equilib-

ria in polynomial games is known. Given the characterization

of Nash equilibria in terms of moments, a natural attempt

would be to try to characterize correlated equilibria in terms

of the joint moments, i.e. the values
∫

sk1

1 · · · skn

n dπ for

nonnegative integers ki and joint measures π. In fact we

will be able to obtain such a characterization below, albeit

in terms of infinitely many joint moments. The reason this

attempt fails to yield a finite dimensional formulation is that

the definition of a correlated equilibrium imposes conditions

on the conditional distributions of the equilibrium measure.

A finite set of moments does not seem to contain enough
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information about these conditional distributions to check

the required conditions exactly. Therefore we also consider

approximate correlated equilibria.

Definition 2.8: An ǫ-correlated equilibrium of a contin-

uous game is a joint probability measure π ∈ ∆(C) such

that
∫

[ui(ζi(si), s−i) − ui(s)] dπ(s) ≤ ǫ

for all i and all Borel measurable functions ζi : Ci → Ci.

This definition reduces to that of a correlated equilibrium

when ǫ = 0.

Before considering any algorithms for computing approx-

imate correlated equilibria, we will prove several alterna-

tive characterizations of exact and approximate correlated

equilibria which are more amenable to analysis than the

definition.

We begin with a technical lemma which we will use to

prove the other characterization theorems. A more general

version of this lemma has appeared as Lemma 20 in [11].

Lemma 2.9: Simple departure functions (those with finite

range) suffice to define ǫ-correlated equilibria in continuous

games. That is to say, a joint measure π is an ǫ-correlated

equilibrium if and only if
∫

[ui(ξi(si), s−i) − ui(s)] dπ(s) ≤ ǫ

for all i and all Borel measurable simple functions ξi : Ci →
Ci.

The following characterization is a generalization of the

standard formulation of correlated equilibria in finite games

in terms of linear constraints presented in Proposition 2.3. It

can also be extended to an arbitrary set of players.

Theorem 2.10: A joint measure π is a correlated equilib-

rium of a continuous game if and only if
∫

Bi×C
−i

[ui(ti, s−i) − ui(s)] dπ(s) ≤ 0 (4)

for all i, ti ∈ Ci, and measurable subsets Bi ⊆ Ci.

The next theorem is an alternative characterization of

correlated equilibria in continuous games, which we will

use in Section III to develop algorithms for computing

(approximate) correlated equilibria.

Theorem 2.11: A joint measure π is a correlated equilib-

rium of a continuous game if and only if
∫

fi(si) [ui(ti, s−i) − ui(s)] dπ(s) ≤ 0 (5)

for all i and ti ∈ Ci as fi ranges over any of the following

sets of functions from Ci to [0,∞):

1) Characteristic functions of measurable sets,

2) Measurable simple functions,

3) Bounded measurable functions,

4) Continuous functions,

5) Squares of polynomials (if Ci ⊂ R
ki for some ki).

Finally, we will consider ǫ-correlated equilibria which are

supported on some finite subset. In this case, we obtain

another generalization of Proposition 2.3.

Theorem 2.12: A probability measure π ∈ ∆(C̃), where

C̃ = Πn
j=1C̃j is a finite subset of C, is an ǫ-correlated

equilibrium of a continuous game if and only if there exist

ǫi,si
such that

∑

s
−i∈C̃

−i

π(s) [ui(ti, s−i) − ui(s)] ≤ ǫi,si

for all players i, all si ∈ C̃i, and all ti ∈ Ci, and
∑

si∈C̃i

ǫi,si
≤ ǫ

for all players i.

III. COMPUTING CORRELATED EQUILIBRIA

Since computing exact correlated equilibria in continuous

games is intractable, we focus in this section on developing

algorithms that can compute approximate correlated equi-

libria with arbitrary accuracy. We consider three types of

algorithms.

Example 3.1: We will use the following polynomial game

to illustrate the algorithms presented below. The game has

two players, x and y, who each choose their strategies from

the interval Cx = Cy = [−1, 1]. Their utilities are given by

ux(x, y) = 0.596x2 + 2.072xy − 0.394y2 + 1.360x

− 1.200y + 0.554

uy(x, y) = −0.108x2 + 1.918xy − 1.044y2 − 1.232x

+ 0.842y − 1.886.

where the coefficients have been selected at random. This

example is convenient, because as Figure 3 shows, the game

has a unique correlated equilibrium (the players choose x =
y = 1 with probability one), which makes convergence easier

to see. For the purposes of visualization and comparison,

we will project the computed equilibria and approximations

thereof into expected utility space, i.e. we will plot pairs
(∫

uxdπ,
∫

uydπ
)

.

A. Static Discretization Methods

The techniques in this subsection are general enough to

apply to arbitrary continuous games, so we will not restrict

our attention to polynomial games here. The basic idea

of static discretization methods is to select some finite

subset C̃i ⊂ Ci of strategies for each player and limit his

strategy choice to that set. Restricting the utility functions

to the product set C̃ = Πn
i=1C̃i produces a finite game,

called a sampled game or sampled version of the original

continuous game. The simplest computational approach is

then to consider the set of correlated equilibria of this

sampled game. This set is defined by the linear inequalities

in Proposition 2.3 along with the conditions that π be a

probability measure on C̃.

Example 3.1 (continued): Figure 1 is a sequence of static

discretizations for this game for increasing values of d, where

d is the number of points in C̃x and C̃y . These points are

selected by dividing [−1, 1] into d subintervals of equal

length and letting C̃x = C̃y be the set of midpoints of these
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Fig. 1. Convergence of a sequence of ǫ-correlated equilibria of the game
in Example 3.1 computed by a sequence of static discretizations, each with
some number d of equally spaced strategies chosen for each player. The
axes represent the utilities received by players x and y. It can be shown
that the convergence in this example happens at a rate Θ

`

1

d

´

.

subintervals. For this game it is possible to show that the

rate of convergence is in fact Θ
(

1

d

)

so the worst case bound

on convergence rate is achieved in this example.

B. Adaptive Discretization Methods

For the next two subsections, we restrict attention to

the case of polynomial games. While static discretization

methods are straightforward, they do not exploit the algebraic

structure of polynomial games. It can be shown that any

polynomial game has a Nash equilibrium, and hence a

correlated equilibrium, which is supported on a finite set

(see [10]). Hence, at least in principle there is no need for

the number of points in the discretized strategy set C̃i to

grow without bound as ǫ → 0. In this subsection we consider

methods in which the points in the discretization are chosen

more carefully.

An adaptive discretization method is an iterative pro-

cedure in which the finite set of strategies C̃i available to

player i changes in some way on each iteration; we let C̃k
i

denote the strategies available to player i on the kth iteration.

The goal of such a method is to produce a sequence of ǫk-

correlated equilibria with ǫk → 0.

There are many possible update rules to generate C̃k+1

i

from C̃k
i . The simplest are the dense update rules in

which C̃1
i ⊆ C̃2

i ⊆ . . . and
⋃∞

k=1
C̃k

i is dense in Ci

for all i. However, if such a method adds points without

regard to the problem structure many iterations may be

wasted adding points which do not get the algorithm any

closer to a correlated equilibrium. Furthermore, the size of

the discretized strategy sets C̃k
i may become prohibitively

large before the algorithm begins to converge. Therefore it

seems advantageous to choose the points to add to C̃k
i in

a structured way, and it may also be worthwhile to delete

points which don’t seem to be in use after a particular

iteration.

To get a handle on the convergence properties of these

algorithms, we will use the ǫ-correlated equilibrium charac-

terization in Theorem 2.12 since we are dealing with sampled

strategy spaces. By that theorem, we can begin with a product

set C̃ ⊆ C and find the joint measures π ∈ ∆(C̃) which

correspond to ǫ-correlated equilibria with minimal ǫ values

by solving the following optimization problem:

minimize ǫ

s.t.
∑

s
−i∈C̃

−i

π(s) [ui(ti, s−i) − ui(s)] ≤ ǫi,si
for all i,

si ∈ C̃i,

and ti ∈ Ci
∑

si∈C̃i

ǫi,si
≤ ǫ for all i

π(s) ≥ 0 for all s ∈ C̃
∑

s∈C̃

π(s) = 1

(6)

For fixed s−i, the functions ui(ti, s−i) are univariate poly-

nomials in ti, so this problem can be solved exactly as a

semidefinite program (Lemmas A.2 and A.3 in the appendix).

If the sequence of optimal ǫ values tends to zero for all

games under a given update rule, we say that rule converges.

It can be shown that dense update rules converge. Given the

problem (6), a natural category of update rules are those

which select an optimal solution to the problem, remove any

strategies which are assigned zero or nearly zero probability

in this solution, then add some or all of the values ti which

make the inequalities tight in this optimal solution into C̃k
i

to obtain C̃k+1

i . This corresponds to selecting constraints

in Definition 2.7 which are maximally violated by the cho-

sen optimal solution, so we call these maximally violated

constraint update rules. These rules seem to perform well

in practice, but it is not known whether they converge in

general.

Example 3.1 (continued): In Figure 2 we illustrate an

adaptive discretization method using a maximally violated

constraint update rule. The solver was initialized with C̃0
x =

C̃0
y = {0}. At each iteration the ǫ-correlated equilibrium π

of minimal ǫ-value was computed. Then ǫ was reported and

one player’s sampled strategy set was enlarged, the player for

whom the constraint
∑

si∈C̃k

i

ǫi,si
≤ ǫ was tight. To choose

which points to add to C̃k
i , the algorithm identified the points

si ∈ C̃k
i which were assigned positive probability under π.

For each such si the values of ti ∈ Ci making the constraints

in (6) tight were added to C̃k
i to obtain C̃k+1

i . The other

player’s strategy set was not changed.

In this case convergence happened in three iterations,

significantly faster than the static discretization method.

The resulting strategy sets were C̃3
x = {0, 1} and C̃3

y =
{0, 0.9131, 1}.

C. Moment Relaxation Methods

In this subsection we again consider only polynomial

games. The moment relaxation methods for computing cor-
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ε = 0.8704
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 iteration

ε = 0.0613
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ε = 8.223× 10
−9

(coincides with exact
correlated equilibrium)

Fig. 2. Convergence of an adaptive discretization method with a maximally
violated constraint update rule (note the change in scale from Figure 1). At
each iteration, the expected utility pair is plotted along with the computed
value of ǫ for which that iterate is an ǫ-correlated equilibrium of the game.
In this case convergence to ǫ = 0 (to within numerical error) occurred in
three iterations.

related equilibria have a different flavor from the discretiza-

tion methods discussed above. Instead of using tractable

finite approximations of the correlated equilibrium problem

derived via discretizations, we begin with the alternative

exact characterization given in condition 5 of Theorem 2.11.

In particular, a measure π on C is a correlated equilibrium

if and only if
∫

p2(si) [ui(ti, s−i) − ui(s)] dπ(s) ≤ 0 (7)

for all i, ti ∈ Ci, and polynomials p. If we wish to check

all these conditions for polynomials p of degree less than or

equal to d, we can form the matrices

Sd
i =















1 si s2
i · · · sd

i

si s2
i s3

i · · · sd+1

i

s2
i s3

i s4
i · · · sd+2

i
...

...
...

. . .
...

sd
i sd+1

i sd+2

i · · · s2d
i















.

Let c be a column vector of length d + 1 whose entries are

the coefficients of p, so p2(si) = c′Sd
i c. If we define

Md
i (ti) =

∫

Sd
i [ui(ti, s−i) − ui(s)] dπ(s),

then (7) is satisfied for all p of degree at most d if and only if

c′Md
i (ti)c ≤ 0 for all c, i.e. if and only if Md

i (ti) is negative

semidefinite.

The matrix Md
i (ti) has entries which are polynomials in ti

with coefficients which are linear in the joint moments of π.

To check the condition that Md
i (ti) be negative semidefinite

for all ti ∈ [−1, 1] for a given d we can use a semidefinite

program (Lemma A.4 in the appendix), so as d increases

we obtain a sequence of semidefinite relaxations of the

0.5 1 1.5 2 2.5 3
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−1.8
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−1.4

−1.2

−1

−0.8

−0.6

u
x

u
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Moment Relaxation Correlated Equilibrium Payoffs of Order d = 0, 1, and 2

0
th

 order

1
st

 order

2
nd

 order
(unique payoffs)

Fig. 3. Semidefinite relaxations approximating the set of correlated
equilibrium payoffs. The second order relaxation is a singleton, so this game
has a unique correlated equilibrium.

correlated equilibrium problem and these converge to the

exact condition for a correlated equilibrium.

We can also let the measure π vary by replacing the

moments of π with variables and constraining these variables

to satisfy some necessary conditions for the moments of

a joint measure on C (see appendix). These conditions

can be expressed in terms of linear matrix inequalities and

there is a sequence of these conditions which converges

to a description of the exact set of moments of a joint

measure π. Thus we obtain a nested sequence of semidefinite

relaxations of the set of moments of measures which are

correlated equilibria, and this sequence converges to the set

of correlated equilibria.

Example 3.1 (continued): Figure 3 shows moment relax-

ations of orders d = 0, 1, and 2. Since moment relaxations

are outer approximations of the set of a correlated equilibria

and the 2nd order moment relaxation corresponds to a unique

point in expected utility space, all correlated equilibria of the

example game have exactly this expected utility. In fact, the

set of points in this relaxation is a singleton (even before

being projected into utility space), so this proves that the

example game has a unique correlated equilibrium.

IV. CONCLUSIONS AND FUTURE WORK

We have shown how to generalize several characterizations

of correlated equilibria in finite games to the larger class

of games with continuous utility functions. In games with

infinite strategy sets the definition of a correlated equilibrium

involves a quantifier ranging over the set of all measurable

functions from the strategy set to itself, which may be quite

complicated and is not easily parametrized. The charac-

terizations we present simplify the definition by allowing

the quantifiers to range over more manageable sets. This

makes it possible to construct algorithms which approximate

correlated equilibria arbitrarily well.

Several questions about these algorithms remain open.
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Empirical evidence suggests that adaptive discretization algo-

rithms using maximally violated constraint update rules con-

verge quickly, but none has yet been proven to converge in

general. Perhaps the primary question is whether there exists

such a rule under which convergence is guaranteed, or even

better, under which a statement about rate of convergence

can be proven. Although the moment relaxation methods are

known to converge, the problem of finding a bound on the

rate of convergence for these algorithms is also still open.

Computing Nash equilibria of two-player zero-sum games

and correlated equilibria of arbitrary games are two of the

main equilibrium problems in game theory which lead to

convex optimization problems. In [8] and this paper it has

been shown that both of these can be solved using sum

of squares methods in the case of polynomial games. We

leave the task of extending these results to other convex

equilibrium-type problems in polynomial games for future

work.
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APPENDIX

SUM OF SQUARES TECHNIQUES

The square of a real-valued function is nonnegative on its

entire domain, as is a sum of squares of real-valued functions.

In particular, any polynomial of the form p(x) =
∑

p2
k(x),

where pk are polynomials, is guaranteed to be nonnegative

for all x. This gives a sufficient condition for a polynomial

to be nonnegative. It is a classical result that this condition

is also necessary if p is univariate [9].

Lemma A.1: A univariate polynomial p is nonnegative on

R if and only if it is a sum of squares.

Lemma A.2: A univariate polynomial p is nonnegative on

[−1, 1] if and only if p(x) = s(x) + (1 − x2)t(x) where s

and t are sums of squares.

These sum of squares conditions are easy to express using

linear equations and semidefinite constraints.

Lemma A.3: A univariate polynomial p(x) =
∑d

k=0
pkxk

of degree d is a sum of squares if and only if there exists

a (d + 1) × (d + 1) positive semidefinite matrix P which

satisfies pk =
∑

i+j=k Pi,j when the rows and columns of

P are numbered 0 through d.

Similar semidefinite characterizations exist for multivari-

ate polynomials to be sums of squares. While the condition of

being a sum of squares does not characterize general nonneg-

ative multivariate polynomials exactly, there exist sequences

of sum of squares relaxations which can approximate the set

of nonnegative polynomials (on e.g. R
k, [−1, 1]k, or a more

general semialgebraic set) arbitrarily tightly [9]. Further-

more, for some special classes of multivariate polynomials,

the sum of squares condition is exact.

Lemma A.4: A matrix M(t) whose entries are univariate

polynomials in t is positive semidefinite on [−1, 1] if and

only if x′M(t)x = S(x, t)+ (1− t2)T (x, t) where S and T

are polynomials which are sums of squares.

Now suppose we wish to answer the question of whether

a finite sequence (µ0, . . . , µk) of reals correspond to the mo-

ments of a measure on [−1, 1], i.e. whether there exists a pos-

itive measure µ on [−1, 1] such that µi =
∫

xidµ(x). Clearly

if such a measure exists then we must have
∫

p(x)dµ(x) ≥ 0
for any polynomial p of degree at most k which is nonneg-

ative on [−1, 1]. This necessary condition for moments to

correspond to a measure turns out to be sufficient [4] and

can be written in terms of semidefinite constraints.

Lemma A.5: The condition that a finite sequence of num-

bers (µ0, . . . , µk) be the moments of a positive measure

on [−1, 1] can be written in terms of linear equations and

semidefinite matrix constraints.

One can formulate similar questions about whether a

finite sequence of numbers corresponds to the joint moments
∫

xi1
1 · · ·xik

k dµ(x) of a positive measure µ on [−1, 1]k (or

a more general semialgebraic set). Using a sequence of

semidefinite relaxations of the set of nonnegative polynomi-

als on [−1, 1]k, a sequence of necessary conditions for joint

moments is obtained. These conditions approximate the set

of joint moments arbitrarily closely.
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