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1. Introduction Over the past few years, there has been a growing interest in linear programming
(LP) approaches to approximate dynamic programming (DP) [1, 6, 8, 10, 13, 14, 15, 16, 18, 25, 26, 27, 28].
We refer to the methodology of LP-based approximate dynamic programming as approximate linear
programming (ALP). The main idea in ALP is as follows. A classic result in dynamic programming is
that Bellman’s equation can be solved by solving a linear programming instead [9, 21]. ALP attempts
to alleviate the curse of dimensionality by combining the LP formulation of Bellman’s equation with
approximation of the DP value function via a linear combination of pre-selected basis functions. The
resulting LP is used for computing weights in the linear combination. A control policy that is “greedy”
with respect to the resulting approximation is then used to make real-time decisions.

Empirically, ALP appears to generate effective control policies for high-dimensional dynamic programs
[1, 8, 10, 16, 25]. There is also evidence that, compared to other approximate dynamic programming
approaches, ALP is competitive and its execution may in fact be orders of magnitude faster [16, 25, 10].
At the same time, the strength of theoretical results about such algorithms has overtaken counterparts
available for alternatives such as approximate value iteration, approximate policy iteration and temporal-
difference methods. As an example, a result in [8] implies that, for a discrete-time finite-state Markov
decision process (MDP), if the span of the basis functions contains the constant function and comes
within a distance of ε of the dynamic programming value function then the approximation generated by
a certain LP will come within a distance of O(ε). Here, the coefficient of the O(ε) term depends on the
discount factor and the metric used for measuring distance, but not on the choice of basis functions. On
the other hand, the strongest results available for approximate value iteration and approximate policy
iteration only promise O(ε) error under additional requirements on iterates generated in the course of
executing the algorithms [3, 23]. In fact, it has been shown that, even when ε = 0, approximate value
iteration can generate a diverging sequence of approximations [5, 11, 12, 29].

We propose and analyze a new ALP formulation for approximating the dynamic programming solution.
Previous ALP analysis found in the literature focuses on finite-state discrete-time MDPs with discounted
cost criterion. We consider average-cost problems in discrete and continuous time, involving countable
state spaces. As a side benefit, the analysis leads to an apparently new condition for the solution of
Bellman’s equation via linear programming to be the optimal differential cost function, when the state
space is countable. However, we consider the main contribution of the paper to be the derivation of an
ALP formulation that is suitable for average-cost problems.
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Challenges in Average-Cost ALP. The theoretical analysis of average-cost dynamic programming,
especially in the case of infinite state spaces, is notoriously more involved than that of discounted-cost
problems. In ALP the situation is no different. Previous analysis for discounted-cost problems establishes
that, with an appropriate choice of algorithm parameters in ALP, the method exhibits certain desirable
error guarantees. In particular, these guarantees suggest that the performance of the method will not
degrade as it is applied to problems of increasing dimensions. However, attempts to extend the formulation
and analysis to average-cost problems lead to at least two fundamental difficulties:

• As discussed in [8], a central concept in discounted-cost ALP is that of state-relevance weights.
State-relevance weights are parameters in the ALP method that can be chosen to specify how
errors in the approximation of the cost-to-go function over different system states should be
emphasized. It is shown in [8] that state-relevance weights may have a first-order impact on
the quality of the policy generated by ALP. State-relevance weights appear naturally when one
extends the LP formulation of discounted-cost Bellman’s equation to approximate DP. However,
the analogous extension in the average-cost setting, though seemingly intuitive and natural, does
not include state-relevance weights and does not allow for specification of how to control the
tradeoff between approximation errors over different portions of the state space.

• Existing error analysis for discounted-cost ALP is based on the use of Lyapunov functions [8].
The existence of a suitable Lyapunov function that is contained in the span of the basis functions
used to approximate the DP solution is instrumental in ensuring that the ALP satisfies certain
desirable properties. In particular, it ensures that the ALP is feasible and leads to approximation
error bounds that scale gracefully with problem size. The main stumbling block in extending
this analysis to average-cost problems is the condition that must be satisfied by the Lyapunov
function. In the discounted-cost setting, the presence of the discount factor introduces some
slack in the condition and allows for a suitable Lyapunov function to be derived. However, in
the average-cost case the Lyapunov condition is overly restrictive.

In [7], we proposed a two-step ALP formulation for average-cost problems. The first step involves an
LP for estimating the optimal average cost. The second step uses that estimate in another LP, which
directly approximates the differential cost function. The formulation has the advantage of including
state-relevance weights, which again can be used to control the tradeoffs in approximating the differential
cost function over different states. In order to extend the discounted-cost line of analysis, [7] introduces
a slightly different definition of Lyapunov function. Under certain technical conditions (e.g., existence of
a state that is recurrent under all policies), a Lyapunov function can be shown to exist. However, the
resulting approximation error bound is unlikely to scale gracefully with problem size. In particular, the
constants involved in the bound are expected to grow exponentially in the number of state variables of
the system, which defeats the ALP objective of alleviating the curse of dimensionality. Moreover, even
though a Lyapunov function can be shown to exist, finding such a function or ensuring that it is spanned
by the basis functions may itself be a daunting task.

The cost-shaping LP and a performance bound. The aforementioned issues motivate the devel-
opment of a new ALP formulation. We introduce a perturbed version of the MDP and add a cost-shaping
term to the ALP. We derive a bound on the expected increase in average cost due to using the ALP
policy in lieu of an optimal policy. The bound is stated in terms of the quality of the pre-selected basis
functions. Specifically, the quality of a set of basis functions is measured by the best approximation
error that can be attained if they are used to approximate the optimal differential cost function of the
perturbed MDP. We show that the loss in performance related to the ALP policy is proportional in a
certain sense to the best possible approximation error. We consider the new formulation and associated
performance bound to be the main contribution of this paper. Some of the most important aspects of
the performance bound are discussed next.

Lyapunov-function-like bounds, without the Lyapunov condition. In the analysis of the new
ALP, the cost-shaping term is shown to have a role analogous to the Lyapunov function. There are
however two main differences. First, the cost-shaping term may be chosen arbitrarily and does not have
to satisfy any condition. Hence the Lyapunov function condition is relaxed. Further, even when the
cost-shaping term does satisfy the Lyapunov condition, the error and performance bounds that can be
derived are strengthened. Specifically, they do not exhibit an undesirable dependence on the Lyapunov
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function that appears in the corresponding bounds obtained with the previous analysis [8].

Error vs. performance bounds. An important question about any approximate DP algorithm that
approximates the solution to Bellman’s equation is what guarantees can be established on the resulting
approximation error. The analysis of ALP in [8] focuses primarily on that question, developing an error
bound that establishes that, in terms of a certain choice of norm, the difference between the approximate
and exact cost-to-go functions is proportional to the best that can be achieved by the approximation
architecture. Perhaps an even more important question is whether the policy that results from using
the cost-to-go approximation exhibits good performance. This is partially addressed in [8] through a
bound that relates the loss in performance due to using the suboptimal ALP policy to a certain norm
of the approximation error. However, there is a mismatch between the norm that is used in the bound
on the approximation error, and the one that is required in the performance analysis. In this paper, we
emphasize the performance aspect by phrasing our results in terms of the expected loss of performance
due to using the suboptimal policy. The norm mismatch issue is captured through a constant present in
the performance bound.

Relation to Bellman error minimization. An alternative approach for approximate DP aims at
minimizing “Bellman error” (this idea was first suggested in [26]). Methods proposed for this (e.g.,
[2, 17]) involve stochastic steepest descent of a complex nonlinear function. There are no results indicating
whether a global minimum will be reached or guaranteeing that a local minimum attained will exhibit
desirable behavior. The LP we propose can be thought of as a method for minimizing a version of
Bellman error. The important differences here are that our method involves solving a linear — rather
than a nonlinear (and nonconvex) — program and that performance guarantees can be made for the
outcome.

Application to queueing control. We illustrate our approach through an application to service
rate control in a queueing system. The motivation is twofold. First, we derive performance bounds
specialized to the queueing context. These are meant to illustrate how bounds on the approximation
error and performance of the policy generated of the ALP can be derived for classes of problems. Hence
explicit a priori guarantees can be made about the behavior of ALP. In our analysis, we specify all
algorithm parameters except for the selection of basis functions. We show that, for all problems of
service rate control with the same structure as the one considered here, the approximation error and
performance of the policy generated by ALP depends only on the quality of the choice of basis functions
and certain problem parameters — most notably, the traffic intensity. To the best of our knowledge, no
analogous guarantee exists for any other approximate DP method. The line of analysis presented here,
which considers a class of problems rather than the performance of the method when applied to specific
problem instances, is at this point unique to ALP.

The second purpose of the application of ALP to queueing control is to illustrate how the ALP method
could be setup. In addition to basis functions, the proposed LP formulation requires selection of several
algorithm parameters, all of which may have an impact on the approximation being generated and
on the approximation error bound. At the current stage, the choice of parameters must be based on
understanding of the problem at hand and no automatic parameter selection algorithm exists. However,
the error and performance analysis suggest some rules of thumb that may be useful in selecting these
parameters. The selection of parameters in the class of queueing problems illustrates what factors should
be taken in consideration and how these rules may be applied. We offer explicit values for the algorithm
parameters

The paper is organized as follows. The next section introduces formulations for discrete-time MDPs
and introduces the notion of a perturbed MDP. Section 3 presents the LP approximation algorithm and
error bound. The algorithm works with a perturbed MDP. Errors introduced by this perturbation are
studied in Section 4. In Section 5, we extend the analysis to continuous-time problems. The application
to queueing control is discussed in Section 6. A closing section discusses relations to our prior work on
LP approaches to approximate DP [8, 7].

2. Problem Formulation Consider an MDP evolving in discrete time with a countable state space
S and a finite set of actions A available at each state. If an action a ∈ A is taken at a state x ∈ S, the
probability that the next state is y is denoted by pa(x, y). Under a stationary policy u : S 7→ A, the
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state process follows a Markov chain with transition matrix Pu ∈ <|S|×|S|, in which each (x, y)th entry is
pu(x)(x, y). A nonnegative cost g(x, a) ≥ 0 is associated with each state-action pair (x, a). For shorthand,
let gu(x) = g(x, u(x)).

2.1 Average Cost The average cost λu under a stationary policy u is defined by

λu = lim sup
T→∞

1
T

E

[T −1∑
t=0

gu(xt)
∣∣∣x0 = x

]
.

We assume that for each u, this value is independent of the initial state x. Let λ∗ = infu λu.

When the state space is finite, it can be shown that an average cost of λ∗ is attained by a stationary
policy, and further, that no nonstationary policy can attain lower average cost. These results do not
necessarily hold when the state space is infinite. In particular, it may be the case that a nonstationary
policy attains lower average cost than all stationary policies and/or no stationary policy attains average
cost λ∗. For a treatment of issues arising with infinite state spaces and the average-cost criterion, see
[24].

2.2 Discounted Cost An alternative objective is to minimize a discounted sum of expected future
costs:

E

[ ∞∑
t=0

αtgu(xt)
∣∣∣x0 = x

]
=

∞∑
t=0

αt(P tugu)(x),

where α is a discount factor in (0, 1]. In this context, it is useful to define a cost-to-go function

Ju(x) =
∞∑
t=0

αtP tugu,

for each stationary policy u, as well as an optimal cost-to-go function

J∗(x) = inf
u
Ju(x).

Further, we define a dynamic programming operator

(HαJ)(x) = min
a∈A

g(x, a) + α
∑
y∈S

pxy(a)J(y)

 .

Nonnegativity of costs and finiteness of the action set imply the following:

(i) The optimal cost-to-go function solves Bellman’s equation: J∗ = HαJ
∗. (Proposition 1.1, page

137 of [2].)
(ii) A stationary policy u∗α is optimal (among all policies — stationary or nonstationary) if and only

if

u∗α(x) ∈ argmin
a∈A

g(x, a) + α
∑
y∈S

pxy(a)J∗(y)

 .

(Proposition 1.3, page 143 of [2].)

Let u∗α be an optimal stationary policy. Denote by λ∗α its average cost. Let c(x) > 0 for all x, and
let πα,u(x) = (1 − α)

∑∞
t=0 α

t(cTP tu∗α)(x), where cT denotes the transpose of c. Consider the following
optimization problem:

maximize cTJ
subject to HαJ ≥ J

πTα,u∗α |J | <∞.
(1)

The following result motivates this optimization problem. Recall that we assume nonnegative costs and
a finite action set.

Theorem 2.1 If u∗α is an optimal stationary policy and πTα,u∗αJ
∗ < ∞ then J∗ is the unique optimal

solution to (1).
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2.3 Perturbation Via Restart Under certain technical conditions,

lim
α↑1

(1− α)Ju(x) = λu,

for all stationary policies u and states x. Hence, the discounted and average cost objectives appear to
become aligned as α approaches 1. This suggests that, in order to deal with the difficulties arising in
the average-cost problem, one might consider instead a discounted-cost formulation with large discount
factor. The discounted cost objective can be viewed as a perturbed version of the average cost objective.

There is an alternative way to think about the perturbation that is equivalent to discounting costs but
involves perturbing transition probabilities instead of the objective. The nature of the perturbation is
influenced by two parameters: α ∈ (0, 1] and a distribution c over the state space. We refer to the new
system as an (α, c)-perturbed MDP. It evolves similarly with the original MDP, except that at each time
step, the state process “restarts” with probability 1−α; in this event, the next state is sampled randomly
according to c. Hence, the perturbed MDP has the same state space, action space, and cost function as
the original one, but the transition probability matrix under each stationary policy u is given by

Pα,u = αPu + (1− α)1cT .

We refer to 1− α as the restart probability and c as the restart distribution.

In an (α, c)-perturbed MDP, the invariant distribution under each policy u is uniquely

πTα,u = lim
t→∞

cTP tα,u = (1− α)
∞∑
t=0

αtcTP tu. (2)

Further, the average cost of a stationary policy u is given by

λα,u = πTα,ugu = lim
T→∞

1
T

T −1∑
t=0

(P tα,ugu)(x) = (1− α)
∞∑
t=0

αtcTP tugu = (1− α)cTJu,

for all x, where Ju is the cost-to-go function in the original MDP with a discount factor α. If c(x) > 0
for all x, a stationary policy u∗α minimizes average cost in the perturbed MDP if and only if it minimizes
discounted cost in the original MDP. Hence, optimization of the perturbed MDP with an average cost
objective is equivalent to optimization of the original MDP with a discounted objective.

Let λ∗α = minu λα,u. For each stationary policy u, we define a differential cost function

hα,u = Ju −
λα,u
1− α

1,

and an optimal differential cost function

h∗α = J∗ − λ∗α
1− α

1.

Further, we define dynamic programming operators

Tα,uh = gu + Pα,uh and Tαh = min
u
Tα,uh,

where the minimization is taken pointwise. The following facts follow immediately from their analogs
presented in the previous section:

(i) All pairs (λ, h) in the set {(λ∗α, h∗α+κ1)|κ ∈ <} are solutions to Bellman’s equation, h = Tαh−λ1.
(ii) A stationary policy u∗α is optimal (among all policies — stationary or nonstationary) if and only

if
Tα,u∗αh

∗
α = Tαh

∗
α.

Let u∗α be an optimal stationary policy. The following optimization problem is essentially equivalent
to (1):

maximize λ
subject to Tαh− h− λ1 ≥ 0

πTα,u∗α |h| <∞.
(3)

The following result is the analog to Theorem 2.1.

Theorem 2.2 If u∗α is an optimal stationary policy and πTα,u∗αh
∗
α + λ∗ < ∞, then the set of optimal

solutions to (3) is {(λ∗α, h∗α + κ1)|κ ∈ <}.
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3. A Linear Programming Approximation Solving Bellman’s equation for MDPs with infinite
state spaces is infeasible in the absence of special structure. It requires computing and storing the
differential cost function for each of the infinitely many states. In addition, even in the case of finite
state spaces, solving Bellman’s equation is often intractable due to the curse of dimensionality — the
number of states grows exponentially in the number of state variables. We consider approximating h∗α,
the differential cost function of an (α, x)-perturbed MDP, using a linear combination

∑K
k=1 rkφk of fixed

basis functions φ1, . . . , φK : S 7→ <.

We make the following assumption:

Assumption 3.1 For some optimal policy u∗α,

πTα,u∗α

[
J∗ +

K∑
k=1

|φk|+ ψ

]
<∞.

Recall from Theorem 2.2 that a sufficient condition for the solution of (3) to be a solution (λ∗α, h
∗
α+κ1) to

Bellman’s equation is that h∗α satisfy πTα,u∗αh
∗
α. The previous assumption requires that the basis functions

φk, which are being used to approximate h∗α, satisfy the same assumption.

We now formulate and analyze a optimization problem for computing weights r ∈ <K . Though the
problem is not written as an LP, it is well known that it can be converted into one. For simplicity, we
refer to it as an LP. It is useful to define a matrix Φ ∈ <|S|×K so that our approximation to h∗α can be
written as Φr. Our problemtakes as input several pieces of problem data:

(i) MDP parameters: g(x, a) and (Pu)xy for all x, y ∈ S, a ∈ A, u : S 7→ A.

(ii) Perturbation parameters: α ∈ [0, 1] and c : S 7→ [0, 1] with
∑
x c(x) = 1.

(iii) Basis functions: Φ = [φ1 · · ·φK ] ∈ <|S|×K .

(iv) Slack function and penalty: ψ : S 7→ [1,∞) and η > 0.

The behavior of the new optimization problem as well as the performance bound we derive depend
on the choice of parameters α, c, ψ and η, in addition to the basis functions Φ. Note that there is
potentially a very large number of parameters: α and η are scalars, however both c and ψ are functions
of the state. How to set such parameters automatically is still an open question. Appropriate choices
may be obtained through a combination of problem-specific knowledge and insight derived from the error
and performance analysis of ALP. We illustrate some key insights and rules of thumb in Section 6, in the
context of queueing control.

We have defined all these terms except for the slack function and penalty, which we will explain after
introducing the new ALP formulation. The optimizes decision variables r ∈ <K and s1, s2 ∈ < according
to

minimizer,s1,s2 s1 + ηs2 (4)
subject to TαΦr − Φr + s11 + s2ψ ≥ 0

s2 ≥ 0.

It is easy to see that (4) is feasible. It can also be shown that (4) is bounded, provided that η is large
enough; the following lemma provides a sufficient condition.

Lemma 3.1 If η ≥ πTα,u∗αψ, then (4) is bounded.

We denote an optimal solution by (r̃, s̃1, s̃2). Though the first |S| constraints are nonlinear, each
involves a minimization over actions and therefore can be decomposed into |A| constraints. This results
in a total of |S| × |A| + 1 constraints, which is unmanageable if the state space is large. We anticipate,
however, that the solution to (4) can be approximated effectively through use of constraint sampling
techniques along the lines discussed in [6].
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3.1 Relation to Bellman Error Minimization. Problem (4) can be viewed as a method for
minimizing a form of Bellman error, as we now explain. Suppose that s2 = 0. Then, minimization of s1
corresponds to minimization of

max
x

((Φr)(x)− λ∗α − (TαΦr)(x)) ,

which can be viewed as a measure of (one-sided) Bellman error. Measuring the maximum one-sided error
over all states is problematic, however, when the state space is large. In the extreme case, when there
is an infinite number of states and an unbounded cost function, such errors are typically infinite and
therefore do not provide a meaningful objective for optimization. This shortcoming is addressed by the
slack term s2ψ. To understand its role, consider constraining s1 to be −λ∗α and minimizing s2. This
corresponds to minimization of

max
x

(Φr)(x)− λ∗α − (TαΦr)(x)
ψ(x)

.

This term can be viewed as a measure of weighted, one-sided Bellman error, with weights 1/ψ(x). One
important factor that distinguishes our formulation from other approaches to Bellman error minimization
[2, 17, 26] is a theoretical performance guarantee, which we develop next.

3.2 A Performance Bound For any r, let

uα,r(x) ∈ arg min
u
{gu(x) + (Pα,uΦr)(x)}.

Let πα,r = πα,uα,r and λα,r = πTα,rguα,r . Also define the weighted maximum norm

‖h‖∞,ζ = max
x

ζ(x)|h(x)|,

where ζ : S 7→ <+.

The following theorem establishes that the difference between the average cost λα,r̃ associated with an
optimal solution (r̃, s̃1, s̃2) to problem (4) and the optimal average cost λ∗α is proportional to the minimal
error that can be attained given the choice of basis functions.

Theorem 3.1 If η ≥ (2− α)πTα,u∗αψ then

λα,r̃ − λ∗α ≤
(1 + β)ηmax(θ, 1)

1− α
min
r∈<K

‖h∗α − Φr‖∞,1/ψ,

where

β = max
u
‖I − αPu‖∞,1/ψ ≡ max

u,h

‖(I − αPu)h‖∞,1/ψ

‖h‖∞,1/ψ
,

θ =
πTα,r̃(TαΦr̃ − Φr̃ + s̃11 + s̃2ψ)
cT (TαΦr̃ − Φr̃ + s̃11 + s̃2ψ)

.

Theorem 3.1 offers insight as to how the algorithm parameters should be chosen. We postpone the
discussion on the reset probabiliy to Section 4. We show that 1− α should be chosen in order to ensure
that policies for the perturbed MDP offer similar performance when applied to the original MDP. This
issue is related to mixing times of the policies of interest.

We discuss the choice of parameters c, ψ and η in turn. The discussion also gives insight as to the
meaning and behavior of the constants involved in the performance bound.

The choice of restart probability distribution c is related to constant θ. The bound suggests that the
restart probability distribution c should be chosen to keep θ as small as possible. We can interpret the
term TαΦr̃−Φr̃+ s̃11+ s̃2ψ, which appears in the definition of θ, as the Bellman error associated with the
ALP approximation Φr̃, for the perturbed problem with cost shaping. This term is always nonnegative,
since (Φr̃, s̃1, s̃2) is a feasible solution to (4). Hence θ can be interpreted as the ratio between two
norms/expected values of the Bellman error, according to the reset distribution c and the stationary
distribution πα,r̃. The ideal choice for c is c = πα,r̃, which gives the tightest bound in Theorem 3.1.
This leads to a fixed point problem since the solution r̃ depends on c itself. It is still an open problem
whether such a fixed point exists and can be found efficiently. However, having the reset distribution and
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the stationary distribution coincide is only a sufficient condition for making θ small; it is only important
that the Bellman error as measured by each of these distributions be comparable. It is possible in some
cases to use a priori knowledge about properties of stationary distributions in the application of interest
to choose c so that θ remains within an acceptable range. In Section 6, we show how c can be chosen in
the context of a queueing application so that θ is uniformly bounded on the size of the state space.

The bound suggests that the slack function ψ should be chosen so that the basis functions can offer a
reasonable approximation error ‖h∗α−Φr‖∞,1/ψ. At the same time, this choice affects the magnitudes of
η and β. The theorem requires that the penalty η be at least (2− α)πTα,u∗αψ. When dealing with specific
classes of problems it may be possible to select ψ so that the norm ‖h∗α−Φr‖∞,1/ψ as well as the terms β
and πTα,u∗αψ scale gracefully with the number of states and/or state variables. Often, a good compromise
is having a function ψ that matches the growth of h∗α. This ensures that ‖h∗α−Φr‖∞,1/ψ remains bounded
and may lead to acceptable values of πTα,u∗αψ. This approach will be illustrated in Section 6. Note that,
in general, with a certain state x has small stationary probability πα,u∗α(x) under an optimal policy, then
we can accordingly make ψ(x) large. This captures the fact that such approximation errors over rarely
visited portions of the state space are not as important and can be discounted by a large value of ψ. This
is essential to the good scaling properties of ALP and the performance bound itself. Finally, it is worth
pointing out that β, which also depends on the choice of ψ, is generally not of great concern. Specifically,
it is easy to show that

β ≤ 1 + αmax
u,x

(Puψ)(x)
ψ(x)

.

The second term in the right-hand side involves the ratio between the expected value of ψ at the next
time step (Puψ)(x) and its current value ψ(x). We expect this term to be moderate for a wide range of
problems and choices of ψ.

We conclude the discussion with the penalty term η. The main requirement is that η ≥ (2−α)πTα,u∗αψ.
The performance bound in Theorem 3.1 is proportional to η, hence it would be optimal to make η equal
to the lower bound. Nevertheless, we do not know πα,u∗α , so that choosing η optimally or even ensuring
that it satisfies the inequality may be difficult. One approach to selecting η is to perform a line search
over possible values of η, solving (4) in each case, and choosing the value of η that results in the best-
performing control policy. A simple line search algorithm solves (4) successively for η = 1, 2, 4, 8, . . .,
until the optimal solution is such that s̃2 = 0. It is easy to show that (4) is unbounded for all η < 1
and that there is a finite η = inf{η|s̃2 = 0} such that for each η ≥ η, the solution is identical and
s̃2 = 0. This search process delivers a policy that is at least as good as a policy generated by (4) for
some η ∈ [(2− α)πTα,u∗αψ, 2(2− α)πTα,u∗αψ], and the performance bound of Theorem 3.1 would hold with
η replaced by 2(2− α)πTα,u∗αψ.

4. The Impact of Perturbation In Theorem 3.1 we compare the average costs λα,ũ and λ∗α in
the perturbed MDP. Under appropriate conditions, we expect that average costs of the perturbed MDP
should converge to the average costs in the original policy, as α converges to one. Noting that the
performance bound in Theorem 3.1 is proportional to 1/(1 − α), a relevant question is how large α has
to be in order for the perturbed MDP to be an appropriate approximation. The answer is related to the
notion of mixing time, which we define as follows:

Definition 4.1 The mixing time of policy u is given by

zu = inf

{
z :

∣∣∣∣∣1t
t−1∑
t′=0

cTP t
′

u gu − λu

∣∣∣∣∣ ≤ z

t
, ∀t

}
, (5)

where inf ∅ = +∞.

Condition (5) ensures that the average cost over a horizon of length zu

ε is within ε of the long-run
average cost for that policy, when the initial state is distributed according to c. It is interesting to
compare this with existing definitions of mixing time. For instance, [20] defines the ε-mixing time of a
policy u to be the shortest time horizon after which the average cost is guaranteed to be within ε of
the long-run average cost, at all times, for all initial states. Hence their condition is weaker in the sense
that it does not require that the difference between finite-horizon and infinite-horizon average costs be
inversely proportional to the horizon, but it is stronger in the sense that it requires uniform mixing over
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all initial states. Indeed, we expect that in most problems the presence of the reset distribution in (5)
is essential in ensuring that the mixing time will scale gracefully with problem size and lead to similarly
graceful performance bounds.

When the state space is finite, condition (5) is always satisfied for some zu < ∞. We expect that, in
many practical contexts involving infinite state spaces, a suitable choice of c will also ensure that zu <∞
exists.

The following theorem gives a bound on the difference between the average costs of policy u in the
original and perturbed MDPs as a function of its mixing time zu.

Theorem 4.1 For any stationary policy u, we have

|λα,u − λu| ≤ zu(1− α).

Based on Theorems 3.1 and 4.1, we have the following bound on the difference between the average
cost of policy ũ and the optimal average cost in the original MDP:

Corollary 4.1 Let
z∗ = lim

δ↓0
inf{zu : λu ≤ λ∗ + δ}.

Then

λr̃ − λ∗ ≤ (1 + β)ηmax(θ, 1)
1− α

min
r∈<K

‖h∗α − Φr‖∞,1/ψ + (1− α)(z∗ + zur̃
). (6)

Proof. Take an arbitrary δ > 0 and any policy u such that λu ≤ λ∗ + δ. Then

λr̃ − λ∗ ≤ λr̃ − λu + δ

≤ λα,r̃ + |λr̃ − λα,r̃| − λα,u + |λα,u − λu|+ δ

≤ λα,r̃ − λ∗α + |λα,r̃ − λr̃|+ |λu − λα,u|+ δ

≤ (1 + β)ηmax(θ, 1)
1− α

min
r∈<K

‖h∗α − Φr‖∞,1/ψ + (1− α)(zu + zur̃
) + δ

The third inequality follows from λ∗α ≤ λα,u, and the fourth inequality follows from Theorems 3.1 and
4.1. Since δ is arbitrary, the result follows. �

Corollary 4.1 casts some light onto the question of how to choose the reset probability 1 − α. As
expected, a tradeoff must be made. The larger the reset probability, the easier the perturbed problem
becomes, whereas the relationship between average costs in the original and perturbed problems becomes
weaker. In terms of the performance bound (6), the choice of α must strike a balance between two factors:
the coefficient of 1/(1− α) in the first term of (6) and the loss of

(1− α)(z∗ + zur̃
) (7)

associated with the perturbation. Corollary 4.1 implies that, in order for the absolute loss (7) to be less
than or equal to ε, the coefficient 1/(1−α) must be on the order of z∗ + zur̃

. To simplify the discussion,
let us assume that there is a policy u∗ such that λu∗ = λ∗. In this case, z∗ ≤ zu∗ . It follows that 1/(1−α)
must be roughly proportional to the mixing times of policies ur̃ and u∗.

In order for the performance bound (6) to scale gracefully with problem size, the mixing times zur̃

and z∗ must also scale gracefully. An important characteristic of the mixing time is that it is defined
with respect to the restart distribution. Therefore relatively fast mixing is required only on average over
the possible initial states, rather than uniformly over all initial states in the system. This is important
because, if the state space is large, the mixing time starting from certain states could be very large. With
a suitable choice of the reset distribution, this issue is bypassed.

Note that when c ≈ πα,r̃ ≈ πr̃, we have λα,r̃ ≈ λr̃, and 1/(1 − α) must only be proportional to the
mixing time of the optimal policy. An important open question is whether it is possible to design an
approximate DP algorithm such that c ≈ πα,r̃ ≈ πr̃.
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5. Continuous-Time MDPs The previous results extend naturally to continuous-time systems.
Under a control policy u : S 7→ A, the system dynamics in a continuous-time MDP are defined by an
infinitesimal generator Au ∈ <|S|×|S|, where each xth row of Au depends only on u(x). In particular, the
probability mass function µt of xt evolves according to

µ̇Tt = −µTt Au.

Let
Ā = max

u,x,y
|Au(x, y)|,

and assume that Ā <∞.

A cost rate g(x, a) is associated with each state-action pair (x, a). As in the discrete case, we define
gu(x) = g(x, u(x)). Each stationary policy leads to an average cost λu given by

λu(x) = lim
T→∞

E

[
1
T

∫ T

t=0

gu(xt)dt|x0 = x

]
,

and we assume that λu(x) = λu for all x and some λu. A standard reduction from continuous to
discrete-time, known as uniformization [24], implies that results on the existence of solutions to Bellman’s
equations and optimality of the greedy policy with respect to the optimal cost-to-go function follow
immediately from discrete-time counterparts.

We will consider an ALP formulation that fits the differential cost function in a perturbed version of
the continuous-time MDP. For each policy u, we let

Aγ,u = Au + γ(I − 1cT ),

where γ is a reset rate and c is a restart distribution. Associated with each policy u is a stationary
distribution πγ,u, which satisfies πγ,uATγ,u = 0, πTγ,u1 = 1. We denote by λγ,u = πTγ,ugu the average cost
of policy u in the perturbed MDP. We define the discounted cost-to-go function

Ju(x) = E
[∫ ∞

t=0

e−γtgu(xt)dt|x0 = x

]
and the optimal discounted cost-to-go function J∗ = infu Ju. Also define the differential cost functions

hγ,u = Ju −
λγ,u
γ

and

h∗γ = J∗ −
λ∗γ
γ
,

where λ∗γ = infu λγ,u.

It can be shown that a policy u∗γ satisfies both λγ,u∗γ = λ∗γ and Ju∗γ = J∗. Moreover, all pairs (λ, h) in
the set {(λγ,u∗γ , h

∗
γ + κ1)|κ ∈ <} satisfy the continuous-time version of Bellman’s equation

Fγh = λ1,

where the operator Fγ is defined by

Fγh = min
u
{gu −Aγ,uh} ,

and h∗γ + κ1, for any κ ∈ <, are the only solutions satisfying πTγ,u∗α |h| <∞.

We consider the following optimization problem for generating an approximation to h∗γ . It is entirely
analogous to the discrete-time version (4).

minimizer,s1,s2 s1 + ηs2 (8)
subject to FγΦr + s11 + s2ψ ≥ 0.

Let (r̃, s̃1, s̃2) denote an optimal solution.

As in the discrete-time case, we make the following assumption on the basis functions and cost-shaping
term:
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Assumption 5.1 For some optimal policy u∗γ ,

πTγ,u∗γ

[
J∗ +

K∑
k=1

|φk|+ ψ

]
<∞.

We have the following performance bound.

Theorem 5.1 If η ≥ Ā+2γ
Ā+γ

πTγ,u∗γψ then

λγ,r̃ − λ∗γ ≤
(Ā+ γ)2(1 + β)ηmax(θ, 1)

γ
min
r∈<K

‖h∗γ − Φr‖∞,1/ψ,

where

β = max
u

∥∥∥∥γI −Au
Ā+ γ

∥∥∥∥
∞,1/ψ

≡ max
u,h

∥∥∥γI−Au

Ā+γ
h
∥∥∥
∞,1/ψ

‖h‖∞,1/ψ
,

θ =
πTγ,r̃(FγΦr̃ + s̃11 + s̃2ψ)
cT (FγΦr̃ + s̃11 + s̃2ψ)

.

The significance of the bound and the interpretation of terms η, β and θ is entirely analogous to that of
the discrete-time case. We expect no substantial difference in the qualitative behavior of these quantities
and, more generally, in the behavior of the continuous-time ALP.

6. Application: A Queueing System In this section, we consider application of ALP to a class
of problems of service-rate control in a single-queue system. Our discussion is motivated by two main
considerations. First, it illustrates how a combination of insights given by the performance analysis and
exploitation of certain knowledge about the problem structure may lead to suitable choices for the ALP
parameters. In particular, we state our results for specific choices of c, ψ and η, leaving only the choice
of basis functions Φ and reset rate γ generic. Second, the application illustrates how the performance
analysis developed in the previous sections can be specialized to provide a priori guarantees for specific
classes of problems.

We consider an infinite-buffer queue with Poisson arrivals at rate `. There is a single server that can
operate at m distinct service rates µ1, . . . , µi. A service rate of µi is associated with a usage cost of
δi per unit time. The state of the system is the current queue length xt, and at each time, a decision
at ∈ {µ1, . . . , µm} needs to be made on which service rate to choose. The total cost incurred at time t is
g(xt, at) = xt + δat

.

A policy is a mapping from queue length to service rate index. For each policy u : Z+ 7→ {µ1, . . . , µm},
the infinitesimal generator is given by

(Au)0y =


` if y = 0
−` if y = 1
0 otherwise,

and for x > 0,

(Au)xy =


−u(x) if y = x− 1
`+ u(x) if y = x
−` if y = x+ 1
0 otherwise.

We assume that ` < µ1 < µ2 < . . . < µm, i.e., the service rate of each server exceeds the arrival rate.
Under this assumption, the process generated by each policy has a unique steady-state distribution πu.
For simplicity, we also assume Ā = `+ µm = 1.

We define an auxiliary, fictitious service rate µ0 =
√
`µ1. Note that ` < µ0 < µ1. We let δ̄ =

max1≤i≤m δi = δm and

ρi =
`

µi
, i = 0, . . . ,m.
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We use continuous-time ALP to approximate the differential cost function. To do this, we must specify
the algorithm parameters: g,Au, γ,Φ, c, ψ, η. The cost function g and infinitesimal generators Au are as
defined above. Let

ψ(x) = x2 + 1,
c(x) = (1− ρ0) ρx0 ,

η =
3 + 6γ

(1 + γ)(1− ρ0)2
.

The motivation for these particular choices is as follows. It is well known that the differential cost function
for this class of problems has asymptotic quadratic growth. Hence the choice of quadratic ψ ensures that
minr ‖h∗α−Φr‖∞,1/ψ is not too large. It is interesting to note that the weighted maximum norm ‖·‖∞,1/ψ

with quadratic ψ has also been used previously to analyze convergence of policy iteration for queueing
control problems [22]. It can also be shown that stationary distributions for this problem have exponential
decay. The reset distribution c is chosen to exhibit the same structure, having exponential decay as well.
Moreover, we choose the decay so that c decreases at a slower rate than any of the stationary distributions.
This allows us to establish an a priori bound on θ. Finally, we exploit the fact that c decays slower than
any stationary distribution to derive an upper bound on (2−α)πTα,u∗αψ. We choose η equal to this upper
bound.

Note that we have not specified γ or Φ. The following theorems provide error bounds that depend on
these two pieces of problem data. We only make the following assumption about Φ:

Assumption 6.1 cT |φk| <∞, k = 1, 2, . . . ,K.

Theorem 6.1 establishes a bound on the loss in performance when the optimality criterion is the
infinite-horizon discounted cost, with discount rate γ.

Theorem 6.1 For any m ≥ 1, ` > 0, ` < µi, i = 1, . . . ,m, δ1, . . . , δm ≥ 0 and γ > 0, each bounded
optimal solution r̃ to (4) satisfies

cT (Jr̃ − J∗) ≤ 24(1 + 2γ)3

µ1(1− ρ0)4γ2
min
r∈<K

‖h∗γ − Φr‖∞,1/ψ.

Theorem 6.2 establishes a bound on the loss in performance when the optimality criterion is the
infinite-horizon average cost.

Theorem 6.2 For any m ≥ 1, ` > 0, ` < µi, i = 1, . . . ,m, δ1, . . . , δm ≥ 0 and γ > 0, each bounded
optimal solution r̃ to (4) satisfies

λr̃ − λ∗ ≤ 24(1 + 2γ)3

µ1(1− ρ0)4γ
min
r∈<K

‖h∗γ − Φr‖∞,1/ψ + γ
5 + 4δ̄

2µ2
1(1− ρ0)4

.

7. Relation to Prior Work Our approximation method builds on the development of linear pro-
gramming formulations for infinite-state average cost dynamic programming (see, e.g., [4, 19]). Earlier
literature has also considered linear programming approximations for infinite-state problems in a spirit
similar to what we present [15, 18, 27, 28]. However, none of these papers make note of the absolute inte-
grability requirement on basis functions, which is important for ensuring meaningful solutions. Further,
in this paper, we offer a somewhat different algorithm together with performance bounds significantly
stronger than those previously available.

In closing, it is worth discussing how our new algorithm and results relate to our prior work on LP
approaches to approximate DP [7, 8]. We will see that the slack function ψ serves a role that is equivalent
to the role of Lyapunov functions in [8]. Consider the following optimization problem, which results from
removing s2 from (4):

minimize s1 (9)
subject to TαΦr − Φr + s11 ≥ 0.
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Let (ŝ1, r̂) be an optimal solution to (9). For any function V : S 7→ <+, let

βV = α‖max
u

PuV ‖∞,1/V .

We call V a Lyapunov function if βV < 1. An analysis that parallels that of [8] would lead to the following
result:

Theorem 7.1 If βΦv < 1 and Φv′ = 1 for some v, v′ ∈ <K , then,

λα,r̂ − λ∗α ≤
2 max(θ, 1)cTΦv

1− βΦv
min
r∈<K

‖h∗α − Φr‖∞,1/Φv.

A comparison of Theorems 3.1 and 7.1 reveals benefits afforded by the slack function. We consider
the situation where ψ = Φv, which makes the bounds directly comparable. An immediate observation
is that, even though ψ and Φv play analogous roles in the bounds, ψ is not required to be a Lyapunov
function. In this sense, Theorem 3.1 is stronger than Theorem 7.1. Moreover, if η = πTα,u∗αψ, we have

η

1− α
= cT

∞∑
t=0

αtP tu∗αψ ≤ max
u

cT
∞∑
t=0

αtP tuΦv ≤
cTΦv

1− βV
.

The final term — which appears in the bound of Theorem 7.1 — grows with the largest mixing time
among all policies, whereas the first term — which appears in the bound of Theorem 3.1 — only depends
on the mixing time of an optimal policy. Hence, the coefficient of Theorem 3.1 should generally be much
smaller than that of Theorem 7.1.

As discussed in [8], appropriate choice of c — there referred to as state-relevance weights — can be
important for the error bound of Theorem 7.1 to scale well with the number of states. In [7], it is argued
that some form of weighting of states in terms of a metric of relevance should continue to be important
when considering average cost problems. An LP-based algorithm is also presented in [7], but the results
are far weaker than the ones we have presented in this paper, and we suspect that the that LP-based
algorithm of [7] will not scale well to high-dimensional problems.

In closing, we point out that the analysis in Section 6, which illustrates how suitable ALP parameters
may be chosen for a class of problems in queueing control, is in no way exhaustive. In general, the
choice of the various parameters involved in ALP, as well as the basis functions, should involve problem-
specific analysis and experimentation. Part of the merit of the performance analysis, aside from providing
guarantees for ALP, is that it suggests desirable properties for these parameters. It is an important open
question whether automated or semi-automated methods for parameter selection could be developed.

Acknowledgments This research was supported in part by the NSF under CAREER Grant ECS-
9985229 and by the ONR under grant MURI N00014-00-1-0637.

Appendix A. Proofs

Theorem 2.1 If u∗α is an optimal stationary policy and πTα,u∗αJ
∗ < ∞ then J∗ is the unique optimal

solution to (1).

Proof. Let J be an arbitrary feasible solution to (1). Note that∑
x∈S

c(x)
∑
y∈S

∑
z∈S

∞∑
t=0

∣∣∣αtP tu∗α(x, y)(I(y, z)− αPu∗α(y, z))J(z)
∣∣∣

=
1

1− α

∑
y∈S

∑
z∈S

πu∗α(y)
∣∣(I(y, z)− αPu∗α(y, z))J(z)

∣∣
≤ 1

1− α

∑
y∈S

πu∗α(y) |J(y)|+ α

1− α

∑
y∈S

∑
z∈S

πu∗α(y)
∣∣Pu∗α(y, z)J(z)

∣∣
=

1
1− α

πTu∗α |J |+
α

1− α
πTu∗αPu∗α |J |

≤ 2
1− α

πTu∗α |J |

< ∞.
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Since c(x) > 0 for all x, it follows that, for each x,∑
y∈S

∑
z∈S

∞∑
t=0

∣∣∣αtP tu∗α(x, y)(I(y, z)− αPu∗α(y, z))J(z)
∣∣∣ <∞.

Therefore, we can use the Tonelli-Fubini Theorem to arrive at
∞∑
t=0

αtP tu∗α

(
(I − αPu∗α)J

)
=

( ∞∑
t=0

αtP tu∗α(I − αPu∗α)

)
J = J.

The constraint HαJ ≥ J implies that

(I − αPu∗α)J ≤ gu∗α ,

and it follows that

J =
∞∑
t=0

αtP tu∗α(I − αPu∗α)J ≤
∞∑
t=0

αtP tu∗αgu∗α = J∗.

Recall that J∗ = HαJ
∗ and πTα,u∗αJ

∗ < ∞. Hence, J∗ is a feasible solution to (1). Further, J∗ is the
unique optimum because J ≤ J∗ (for any feasible solution J) and c(x) ≥ 0 for all x. �

Theorem 2.2 If u∗α is an optimal stationary policy and πTα,u∗αJ
∗ <∞ then the set of optimal solutions

to (3) is {(λ∗α, h∗α + κ1)|κ ∈ <}.

Proof. Consider (1), but with a change of variables J = h+ λ1/(1− α) where cTh = 0. This gives

maximize λ

subject to Hα

(
h+ λ

1−α1
)
≥ h+ λ

1−α1

cTh = 0
πTα,u∗α

∣∣∣h+ λ
1−α1

∣∣∣ <∞.

From Theorem 2.1, the unique solution to this problem satisfies h + λ
1−α = J∗, cTh = 0, which yields

h = J∗ − cTJ∗1 = h∗α and λ = (1− α)cTJ∗ = λ∗α. Some straightforward manipulations show that this is
equivalent to

maximize λ
subject to Tαh− h− λ1 ≥ 0

cTh = 0
πTα,u∗α |h| <∞.

We conclude that the unique solution to this optimization problem is (λ∗α, h
∗
α). Since Tα(h+κ1) = Th+κ1

for any κ ∈ <, removing the constraint cTh = 0 results in a set of optimal solutions {(λ∗α, h∗α+κ1)|κ ∈ <}.
�

Lemma 3.1 If η ≥ πTα,u∗αψ, then (4) is bounded.

Proof. Let (r, s1, s2) be any feasible solution to (4). Consider a Markov process with costs gu∗α +s2ψ
and transition probability matrix Pu∗α . Consider problem (3) for the α-perturbed version of this Markov
process. Then (r, s1) is a feasible solution, since it satisfies

gu∗α + s2ψ + Pα,u∗αΦr ≥ −s11.

Let Jψ denote the cost-to-go function for this Markov process. Then we have

πTα,u∗αJψ = πTα,u∗α

[
J∗ +

∞∑
t=0

αtP tu∗αψ

]
< ∞,

by Assumption 3.1. We conclude that Theorem 2.2 holds for this Markov process and

−s1 ≤ λ∗α + s2π
T
α,u∗α

ψ.

It follows that

s1 + ηs2 ≥ −λ∗α − s2π
T
α,u∗α

ψ + s2π
T
α,u∗α

ψ

= −λ∗α.
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�

Theorem 3.1 If η ≥ (2− α)πTα,u∗αψ then

λα,r̃ − λ∗α ≤
(1 + β)ηmax(θ, 1)

1− α
min
r∈<K

‖h∗α − Φr‖∞,1/ψ,

where

β = max
u
‖I − αPu‖∞,1/ψ ≡ max

u

‖(I − αPu)h‖∞,1/ψ

‖h‖∞,1/ψ
,

θ =
πTα,r̃(TαΦr̃ − Φr̃ + s̃11 + s̃2ψ)
cT (TαΦr̃ − Φr̃ + s̃11 + s̃2ψ)

.

Before proving Theorem 3.1, we present the following lemma.

Lemma A.1 For every policy u, we have

πα,u ≥ (1− α)c.

Proof. We have

1πTα,u = lim
T→∞

1
T

T∑
t=1

P tα,u

= lim
T→∞

1
T

T∑
t=1

P t−1
α,u (αPu + (1− α)1cT )

≥ (1− α) lim
T→∞

1
T

T∑
t=1

P t−1
α,u 1cT

= (1− α)1cT .

The lemma follows. �

We also have the following lemma.

Lemma A.2 Let (r, s1, s2) be any feasible solution to (4). Then

λα,r − λ∗α ≤
max(θ, 1)

1− α
(λ∗α + s1 + ηs2).

Proof. First note that∑
x∈S

∑
y∈S

|πα,u∗α(x)Pα,u∗α(x, y)φk(y)rk| ≤
∑
x∈S

∑
y∈S

πα,u∗α(x)Pα,u∗α(x, y)|φk(y)||rk|

= πTα,u∗α |φk||rk|
< ∞,

since by Assumption 3.1 πTα,u∗α |φk| <∞. It follows from the Tonelli-Fubini theorem that

πTα,u∗α(Pα,u∗αΦr) = (πTα,u∗αPα,u∗α)Φr

= πTα,u∗αΦr

and πTα,u∗α(Tα,u∗αΦr − Φr) = λ∗α.

Since TαΦr − Φr + s11 + s2ψ ≥ 0, we have that

0 ≤ πTα,u∗α (TαΦr − Φr + s11 + s2ψ)

≤ πTα,u∗α

(
Tα,u∗αΦr − Φr + s11 + s2ψ

)
= λ∗α + s1 + πTα,u∗αψs2.
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It follows that

λα,r − λ∗α = πTα,r(gur
− λ∗α1)

= πTα,r(TαΦr − Φr − λ∗α1)

≤ πTα,r(TαΦr − Φr + s11 + s2ψ) + πTα,u∗αψs2

≤ θcT (TαΦr − Φr + s11 + s2ψ) + πTα,u∗αψs2

≤ θ

1− α
πTα,u∗α(TαΦr − Φr + s11 + s2ψ) + πTα,u∗αψs2

≤ θ

1− α
πTα,u∗α(Tα,u∗αΦr − Φr + s11 + s2ψ) + πTα,u∗αψs2

=
θ

1− α
(λ∗α + s1 + πTα,u∗αψs2) + πTα,u∗αψs2

≤ max(θ, 1)
1− α

(λ∗α + s1 + ηs2).

The third inequality follows from Lemma A.1. �

Proof of Theorem 3.1. Consider an optimal solution (r̃, s̃1, s̃2) to (4). Since for any r ∈ <K , the
triplet (r,−λ∗α+(1−α)cT (h∗α−Φr), ‖TαΦr−Φr−λ∗α1+(1−α)cT (h∗α−Φr)1‖∞,1/ψ) is a feasible solution
to (4), we have

λα,r̃ − λ∗α ≤ max(θ, 1)
1− α

(λ∗α + s̃1 + ηs̃2)

≤ max(θ, 1)
1− α

min
r∈<K

[
(1− α)cT (h∗α − Φr)+

+η‖TαΦr − Φr − λ∗α1 + (1− α)cT (h∗α − Φr)1‖∞,1/ψ

]
≤ max(θ, 1)

1− α
min
r∈<K

[
(1− α)cTψ‖h∗α − Φr‖∞,1/ψ+

+η‖min
u
{gu + αPuΦr} − Φr −min

u
{gu + αPuh

∗
α}+ h∗α‖∞,1/ψ

]
≤ max(θ, 1)

1− α

[
πTα,u∗αψ + ηβ

]
min
r∈<K

‖h∗α − Φr‖∞,1/ψ

≤ (β + 1)max(θ, 1)η
1− α

min
r∈<K

‖h∗α − Φr‖∞,1/ψ

The first inequality follows from Lemma A.2. The second inequality follows from optimality of (r̃, s̃1, s̃2).
The fourth inequality follows from Lemma A.1 and the definition of β. �

Theorem 4.1 For any stationary policy u, we have

|λα,u − λu| ≤ zu(1− α).

Proof. We have

|λα,u − λu| =

∣∣∣∣∣(1− α)
∞∑
t=0

αtcTP t(gu − λu1)

∣∣∣∣∣
= (1− α)

∣∣∣∣∣
∞∑
τ=0

(ατ − ατ+1)
τ∑
t=0

cTP t(gu − λu1)

∣∣∣∣∣
= (1− α)2

∣∣∣∣∣
∞∑
τ=0

ατ (τ + 1)

(
1

τ + 1

τ∑
t=0

cTP tgu − λu

)∣∣∣∣∣
≤ (1− α)2

∞∑
τ=0

ατ (τ + 1)
zu
τ + 1

= zu(1− α).

�
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Theorem 5.1 If η ≥ Ā+2γ
Ā+γ

πTγ,u∗γψ then

λγ,r̃ − λ∗γ ≤
(Ā+ γ)2(1 + β)ηmax(θ, 1)

γ
min
r∈<K

‖h∗γ − Φr‖∞,1/ψ,

where

β = max
u

∥∥∥∥γI −Au
Ā+ γ

∥∥∥∥
∞,1/ψ

≡ max
u

∥∥∥γI−Au

Ā+γ
h
∥∥∥
∞,1/ψ

‖h‖∞,1/ψ
,

θ =
πTγ,r̃(FγΦr̃ + s̃11 + s̃2ψ)
cT (FγΦr̃ + s̃11 + s̃2ψ)

.

Proof. Let

Pu = I − Au
Ā
,

α =
Ā

Ā+ γ
,

Pα,u = αPu + (1− α)1cT .

It is easy to show that

Pα,u = I − Aγ,u
Ā+ γ

.

The constraints of the continuous-time ALP problem (8) are equivalent to

gu + Pα,u[(Ā+ γ)Φr] + s11 + s2ψ ≥ [(Ā+ γ)Φr].

It follows that (r̃, s̃1, s̃2) solves (8) iff ((Ā+ γ)r̃, s̃1, s̃2) solves (4). Moreover,

FγΦr̃ = TΦ(Ā+ γ)r̃ − Φ(Ā+ γ)r̃

and uγ,r̃ = uα,(Ā+γ)r̃.

Consider the stationary distribution πγ,u for each policy u under the continuous-time perturbed MDP.
Then

πTγ,uAγ,u = 0 ⇔
πTγ,u(I − Pα,u) = 0.

We conclude that πγ,u = πα,u, and it follows that λγ,u = λα,u for all policies u. In particular, we may
assume u∗γ = u∗α. Also note that (λ, h) solve

Fγh = λ1

iff
Tα(Ā+ γ)h = (Ā+ γ)h+ λ1,

and we conclude that h∗α = (Ā+ γ)h∗γ .

Let

β = max
u

∥∥∥∥γI −Au
Ā+ γ

∥∥∥∥
∞,1/ψ

= max
u
‖I − αPu‖∞,1/ψ ,

θ =
πTγ,r̃(FγΦr̃ + s̃11 + s̃2ψ)
cT (FγΦr̃ + s̃11 + s̃2ψ)

=
πT
α,(Ā+α)r̃

(TαΦ(Ā+ α)r̃ + s̃11 + s̃2ψ)

cT (TαΦ(Ā+ α)r̃ + s̃11 + s̃2ψ)
.
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Note that η ≥ Ā+2γ
Ā+γ

πTγ,u∗γψ is equivalent to η ≥ (2 − α)πTα,u∗αψ. Hence we can apply Theorem 3.1 to

conclude that, if η ≥ Ā+2γ
Ā+γ

πTγ,u∗γψ, we have

λγ,r̃ − λ∗γ = λα,(Ā+γ)r̃ − λ∗α

≤ (1 + β)ηmax(θ, 1)
1− α

min
r∈<K

‖h∗α − Φr‖∞,1/ψ

=
(Ā+ γ)2(1 + β)ηmax(θ, 1)

γ
min
r∈<K

‖h∗γ − Φr‖∞,1/ψ.

The second equality follows from h∗α = (Ā+ γ)h∗γ and 1− α = 1
1+γ . �

Theorem 6.1 For any m ≥ 1, ` > 0, ` < µi, i = 1, . . . ,m, δ1, . . . , δm ≥ 0 and γ > 0, each bounded
optimal solution r̃ to (4) satisfies

cT (Jr̃ − J∗) ≤ 24(1 + 2γ)3

µ1(1− ρ0)4γ2
min
r∈<K

‖h∗γ − Φr‖∞,1/ψ.

In order to prove Theorem 6.1, we start with a series of auxiliary lemmas.

For all u, let

Pu = I −Au, (10)

α =
1

1 + γ
, (11)

Pα,u = αPu + (1− α)1cT = I − Aγ,u
1 + γ

. (12)

Since Ā = `+µm = 1, Pu and Pα,u are transition probability matrices for discrete-time MDPs. Moreover,

πTγ,u = (1− α)cT
∞∑
t=0

αtP tu (13)

for all policies u.

Lemma A.3 πTγ,u∗γψ <
3

(1−ρ0)2 .

Proof. Let P0 be the transition probability matrix associated with the (fictitious) policy û(x) = µ0

for all x > 0, and let

J0 =
∞∑
t=0

αtP t0ψ.

It is easy to show that J0 is well-defined and J0 > maxu
∑∞
t=0 α

tP tu, for all u : S 7→ {µ1, . . . , µm}. It
follows that

πTγ,u∗γψ = (1− α)cT
∞∑
t=0

αtP tuψ

< (1− α)cT
∞∑
t=0

αtP t0ψ

= cTψ,

where the last equality follows from the fact that c is the stationary distribution associated with P0, i.e.,
cTP0 = cT .

It follows from simple algebra that

cTψ =
ρ0(ρ0 + 1)
(1− ρ0)2

+ 1

<
3

(1− ρ0)2
.

�
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Lemma A.4 β ≤ 3
1+γ .

Proof. We have

β =
1

1 + γ
max
u,h

‖(γI −Au)h‖∞,1/ψ

‖h‖∞,1/ψ

=
1

1 + γ
max
u,x

(|γI −Au|ψ) (x)
ψ(x)

=
1

1 + γ
max
x

(`+ u(x)− γ) (x2 + 1) + u(x)(x2 − 2x+ 2) + `(x2 + 2x+ 2)
x2 + 1

<
1

1 + γ
max
x

(`+ µm) (x2 + 1) + µm(x2 − 2x+ 2) + `(x2 + 2x+ 2)
x2 + 1

=
2

1 + γ
+ max

x

2x(`− µm) + 1
(1 + γ)(x2 + 1)

≤ 3
1 + γ

,

where we have used `+ µm = 1 and ` < µm. �

Lemma A.5 θ ≤ 2(1+γ)
µ1(1−ρ0)2 .

Proof. Since FγΦr̃ + s̃11 + s̃2ψ ≥ 0, we have

θ =
πTγ,r̃(FγΦr̃ + s̃11 + s̃2ψ ≥ 0)
cT (FγΦr̃ + s̃11 + s̃2ψ ≥ 0)

≤ max
x

πγ,r̃(x)
c(x)

.

Recall that, for each u, πγ,u is the stationary distribution associated with the (discrete-time) transition
probability matrix Pα,u = αPu + (1 − α)1cT . Hence πγ,u must satisfy the following balance equations
P (xt+1 > x, xt ≤ x) = P (xt+1 ≤ x, xt > x):

απγ,u(x)`+ (1− α)
∑
y≤x

πγ,u(y)
∑
y>x

c(y)

= απγ,u(x+ 1)u(x+ 1) + (1− α)
∑
y>x

πγ,u(y)
∑
y≤x

c(y).

Using
∑
y>x c(y) = ρx+1

0 and rearranging terms to isolate πγ,u(x+ 1), it follows that

πγ,u(x+ 1) =
`

u(x+ 1)
πγ,u(x) +

(1− α)ρx+1
0

αu(x+ 1)
− 1− α

αu(x+ 1)

1−
∑
y≤x

πγ,u(y)


≤ `

µ1
πγ,u(x) + κρx+1

0

= ρ2
0πγ,u(x) + κρx+1

0

where κ = 1−α
αu . Noting that πγ,u(0) ≤ 1, we have for all x

πγ,u(x) ≤ ρ2x
0 + κ

x∑
y=1

ρy0ρ
2(x−y)
0

= ρ2x
0 + κ

ρx0 − ρ2x
0

1− ρ0
,

and

πγ,u(x)
c(x)

≤ ρx0
1− ρ0

+ κ
1− ρx0

(1− ρ0)2
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≤ 1
1− ρ0

+
1− α

αµ1(1− ρ0)2

=
(1− ρ0)αµ1 + 1− α

αµ1(1− ρ0)2

<
2

αµ1(1− ρ0)2

=
2(1 + γ)

µ1(1− ρ0)2

�

Proof of Theorem 6.1: From Lemma A.3, we have

η =
3 + 6γ

(1 + γ)(1− ρ0)2
≥ Ā+ 2γ

Ā+ γ
πTγ,u∗γψ.

Therefore Theorem 5.1 holds and we have

λγ,r̃ − λ∗γ ≤ (1 + γ)2(1 + β)ηθ
γ

min
r
‖h∗γ − Φr‖∞,1/ψ

≤ 6(1 + 2γ)(4 + γ)(1 + γ)
µ1(1− ρ0)4γ

min
r
‖h∗γ − Φr‖∞,1/ψ

<
24(1 + 2γ)3

αµ1(1− ρ0)4γ
min
r
‖h∗γ − Φr‖∞,1/ψ. (14)

The second inequality follows from Lemmas A.4 and A.5.

Finally, recall that for all u,

cTJu =
λu
γ
.

It follows that

cT (Jr̃ − J∗) =
λγ,r̃ − λ∗γ

γ
.

Applying (14), the theorem follows. �

Theorem 6.2 For any m ≥ 1, ` > 0, ` < µi, i = 1, . . . ,m, δ1, . . . , δm ≥ 0 and γ > 0, each bounded
optimal solution r̃ to (4) satisfies

λr̃ − λ∗ ≤ 24(1 + 2γ)3

µ1(1− ρ0)4γ
min
r∈<K

‖h∗γ − Φr‖∞,1/ψ + γ
5 + 4δ̄

2µ2
1(1− ρ0)4

.

As before, we will consider the discrete-time version of the MDP, using the identities (10)-(13).

Lemma A.6 Let J(x) > 0 be a nondecreasing function of x, and let u1(x) = µ1 for all x > 0. Suppose
that πTu1

J <∞. Then
max
u

πTu J = πTu1
J < cTJ.

Proof. First note that
πu(x+ 1) =

`

u(x)
πu(x),

and
πu(x+ 1)
πu1(x+ 1)

=
u1(x+ 1)
u(x+ 1)

πu(x)
πu1(x)

≤ πu(x)
πu1(x)

.

It follows that, for all x be such that πu(x) ≥ πu1(x),
x∑
y=0

πu(x) ≥
x∑
y=0

πu1(x),
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and for all x such that πu(x) < πu1(x),
x∑
y=0

πu(x) = 1−
∞∑

y=x+1

πu(x)

≥ 1−
∞∑

y=x+1

πu1(x)

=
x∑
y=0

πu1(x).

Now

πTu1
J − πTu J = J(0) +

∞∑
x=1

(J(x)− J(x− 1))

( ∞∑
y=x

πu1(y)− πu(y)

)
≥ 0.

The inequality follows from J(x− 1) < J(x), ∀x and
∑∞
y=x πu1(y)− πu(y) ≥ 0.

Finally,

πu1(x+ 1)
c(x+ 1)

=

√
`

µ1

πu1(x)
c(x)

≤ πu1(x)
c(x)

.

We conclude by an entirely analogous argument that πTu1
J < cTJ . �

Lemma A.7 For each policy u, consider the discrete-time MDP with transition probabilities Pu, as given
in (10). Let

T = inf{t ≥ 0 : xt = 0}
τ = inf{t > 0 : xt = 0}.

Then for all policies u,

(i) E [T |x0 = x, at = u(xt)∀t] ≤ x
µ1−` ,

(ii) E [τ |x0 = 0, at = u(xt)∀t] ≤ µ1
µ1−` ,

(iii) E
[∑T

t=0 xt|x0 = x, at = u(xt)∀t
]
≤ x2

2(µ1−`) + x
2(µ1−`)2 , and

(iv) λu ≤ ρ1
1−ρ1 + δ̄.

Proof.

(i) Let Ĵ(x) = x
µ1−` . Then Ĵ satisfies

Ĵ(x) =
{

1 + `Ĵ(x+ 1) + µ1Ĵ(x− 1) + (1− `− µ1)Ĵ(x), x > 0
0, x = 0.

Let û(x) = µ1 for all x > 0. Then πTû Ĵ <∞, and it follows from Theorem 2.1 that

Ĵ = E [T |x0 = x, at = û(xt)∀t] .

We have, for any other policy u,

Ĵ(x) ≥
{

1 + `Ĵ(x+ 1) + u(x)Ĵ(x− 1) + (1− `− u(x))Ĵ(x), x > 0
0, x = 0.

It follows from standard dynamic programming arguments that

E [T |x0 = x, at = u(xt)∀t] ≤ Ĵ(x).
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(ii) For any policy u,
E [τ |x0 = 0, , at = u(xt)∀t] = 1 + `E [T |x0 = 1, at = u(xt)∀t]

≤ 1 +
`

µ1 − `

=
µ1

µ1 − `
.

(iii) Let

Ĵ(x) =
x2

2(µ1 − `)
+

x(µ1 + `)
2(µ1 − `)2

.

Then Ĵ satisfies

Ĵ(x) =
{
x+ `Ĵ(x+ 1) + µ1Ĵ(x− 1) + (1− `− µ1)Ĵ(x), x > 0
0, x = 0.

Using an argument entirely analogous to that in part 1 of this proof, we conclude that, for any
policy u,

E

[ T∑
t=0

xt|x0 = x, at = u(xt)∀t

]
≤ x2

2(µ1 − `)
+

x(µ1 + `)
2(µ1 − `)2

,

and the result follows from µ1 + ` ≤ µm + ` = 1.
(iv) We have

max
u

λu(x) ≤ max
u

∑
x

πu(x)x+ δ̄

=
∑
x

πu1(x)x+ δ̄

=
ρ1

1− ρ1
+ δ̄,

where the first inequality follows from Lemma A.6.

�

Lemma A.8 For all policies u and all γ > 0,

λγ,u − λu ≤ γ
5 + 4δ̄

2µ2
1(1− ρ0)4

Proof. Let Pu and α be as given in (10) and (11). For each u, let Ju =
∑∞
t=0 α

tP tugu. Then
λγ,u − λu = πTγ,ugu − πTu gu

= (1− α)(c− πu)T
∞∑
t=0

αtPTu gu

= (1− α)(c− πu)TJu. (15)
Consider the discrete-time MDP with transition probabilities Pu. Define the following sequence of stop-
ping and interarrival times relative to when the system reaches state 0:

Tk+1 = inf{t > Tk : xt = 0}, k = 0, 1, . . . ,
T0 = −1
τk = Tk+1 − Tk, k = 1, 2, . . . .

Then we can rewrite Ju(x) as

Ju(x) = E

[ T1∑
t=0

αtgu(xt)|x0 = x

]
+ E

 ∞∑
k=1

Tk+1∑
t=Tk+1

αtgu(xt)|x0 = x


= E

[ T1∑
t=0

αtgu(xt)|x0 = x

]
+

∞∑
k=0

E
[
αT1 |x0 = x

]
E [ατ1 ]k E

[ T2∑
t=T1+1

αtgu(xt)

]

= E

[ T1∑
t=0

αtgu(xt)|x0 = x

]
+ E

[
αT1 |x0 = x

] E
[∑T2

t=T1+1 α
tgu(xt)

]
1− E [ατ1 ]

(16)
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We have ∣∣∣∣∣∑
x

(c(x)− πu(x))E

[ T1∑
t=0

αtgu(xt)|x0 = x

]∣∣∣∣∣
≤ max

[
E

[ T1∑
t=0

αtgu(xt)|x0 ∼ c

]
,E

[ T1∑
t=0

αtgu(xt)|x0 ∼ πu

]]

≤ max

[
E

[ T1∑
t=0

gu(xt)|x0 ∼ c

]
,E

[ T1∑
t=0

gu(xt)|x0 ∼ πu

]]

= E

[ T1∑
t=0

gu(xt)|x0 ∼ c

]

≤ E

[ T1∑
t=0

(xt + δ̄)|x0 ∼ c

]

≤ E
[

x2
0

2(µ1 − `)
+

x0

2(µ1 − `)2
+

δ̄x0

µ1 − `
|x0 ∼ c

]
=

ρ0(1 + ρ0)
2(µ1 − `)(1− ρ0)2

+
ρ0

2(µ1 − `)2(1− ρ0)
+

δ̄ρ0

(µ1 − `)(1− ρ0)

≤ 3 + 2δ̄
2µ2

1(1− ρ0)3
. (17)

The equality follows from Lemma A.6 and the fourth inequality follows from Lemma A.7.

We also have

0 ≤
∑
x

(πu(x)− c(x))E
[
αT1 |x0 = x

] E
[∑T2

t=T1+1 α
tgu(xt)

]
1− E [ατ1 ]

≤
∑
x

(πu(x)− c(x))E
[
αT1 |x0 = x

] E
[∑T2

t=T1+1 gu(xt)
]

1− E [ατ1 ]

=
E
[
αT1 |x0 ∼ πu

]
− E

[
αT1 |x0 ∼ c

]
1− E [ατ ]

E [τ ]λu

≤
E
[
1− αT1 |x0 ∼ c

]
1− α

E [τ ]λu

≤ E [(1− α)T1|x0 ∼ c]
1− α

E [τ ]λu

≤ ρ0

(µ1 − `)(1− ρ0)
µ1

µ1 − `

[
ρ1

1− ρ1
+ δ̄

]
≤ 1 + δ̄

µ1(1− ρ0)4
. (18)

The first inequality follows from Lemma A.6 and the fact that E[αT1 |x0 = x] is decreasing in x. The
first equality follows from E

[∑T2
t=T1+1 gu(xt)

]
= E [τ ]λu (for a proof, see, e.g. [2]). The fourth inequality

follows from

1− αT1 =
T1−1∑
t=0

(1− α)αt ≤ (1− α)T1.

The fifth inequality follows from Lemma A.7.

From (15), (16), (17) and (18), we conclude that

λγ,u − λu = (1− α)(c− πu)TJu

≤ (1− α)

∣∣∣∣∣∑
x

(c(x)− πu(x))E

[ T1∑
t=0

αtgu(xt)|x0 = x

]∣∣∣∣∣+
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+(1− α)
∑
x

(πu(x)− c(x))E
[
αT1 |x0 = x

] E
[∑T2

t=T1+1 α
tgu(xt)

]
1− E [ατ1 ]

≤ (1− α)
5 + 4δ̄

2µ2
1(1− ρ0)4

=
γ

1 + γ

5 + 4δ̄
2µ2

1(1− ρ0)4

≤ γ
5 + 4δ̄

2µ2
1(1− ρ0)4

�

Proof of Theorem 6.2: The result follows immediately from (14) and Lemma A.8.

Theorem 7.1 If βΦv < 1 and Φv′ = 1 for some v, v′ ∈ <K . Then,

λα,r̂ − λ∗α ≤
2 max(θ, 1)cTΦv

1− βΦv
min
r∈<K

‖h∗α − Φr‖∞,1/Φv.

Proof. It follows from straightforward algebraic manipulations that problem (9) can be rewritten
as

minimize −(1− α)cTΦ
[
r −

(
cTΦr +

s1
1− α

)
v′
]

subject to HαΦ
[
r −

(
cTΦr +

s1
1− α

)
v′
]
− Φ

[
r −

(
cTΦr +

s1
1− α

)
v′
]
≥ 0.

Denote an optimal solution to this problem by (ŝ1, r̂), and let r̄ be an optimal solution to

minimize −(1− α)cTΦr (19)
subject to HαΦr − Φr ≥ 0.

It is clear that both problems have the same value, i.e.,

ŝ1 = −(1− α)cTΦr̄. (20)

We now have

λα,r̂ − λ∗α ≤ max(θ, 1)
1− α

(λ∗α + ŝ1)

= max(θ, 1)cT (J∗ − Φr̄)
= max(θ, 1)‖J∗ − Φr̄‖1,c

≤ 2 max(θ, 1)cTΦv
1− βΦv

min
r∈<k

‖J∗ − Φr‖∞,1/Φv

≤ 2 max(θ, 1)cTΦv
1− βΦv

min
r∈<k

‖hα ∗ −Φr‖∞,1/Φv

The first inequality follows from Lemma A.2 and the fact that (r̂, ŝ1, 0) is a feasible solution to (4). The
first equality follows from λ∗α = (1 − α)cTJ∗ and (20). The second equality follows from J∗ ≥ Φr̄. The
second inequality follows from Theorem 4.2 in [8] — which can be shown to hold in the case of infinite
state spaces as long as parts 1 and 2 of Assumption 3.1 are satisfied — applied to problem(19). The third
inequality follows from h∗α = J∗ − cTJ∗1 and the fact that 1 is in the span of Φ. �
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