Sparse Model Matrices

Martin Maechler
R Core Development Team
maechler@R-project.org

Jlﬂy 2007, 2008 (typeset on November 16, 2017)

Introduction

Model matrices in the very widely used (generalized) linear models of statistics, (typically fit via 1m() or
glm() in R) are often practically sparse — whenever categorical predictors, factors in R, are used.

We show for a few classes of such linear models how to construct sparse model matrices using sparse
matrix (S4) objects from the Matrix package, and typically without using dense matrices in intermediate
steps.

1 One factor: y ~ f1

Let’s start with an artifical small example:

> (ff <- factor(strsplit("statistics_is_a_task", "")[[1]], levels=c("_",letters)))

[l] statistics_1is_a_task

Levels: abcdefghijklmnopgrstuvwxyz

> factor(ff) # drops the levels that do not occur

[1] statistics_is_a_task
Levels: _acikst

> f1 <- ff[, drop=TRUE] # the same, more transparently

and now assume a model

Yi = B+ o) + Ei,
for i = 1,...,n = length(f1)= 20, and «;(;) with a constraint such as Zj a; =0 (“sum”) or a3 =0
(“treatment”) and j(i) =as.numeric(£1[i]) being the level number of the i-th observation. For such a
“design”, the model is only estimable if the levels ¢ and k are merged, and

> levels(f1) [match(c("c","k"), levels(f1))] <- "ck"
> library(Matrix)
> Matrix(contrasts(f1)) # "treatment" contrasts by default -- level "_" = baseline

6 x 5 sparse Matrix of class "dgCMatrix"
ackist

mailto:maechler@R-project.org

t1
> Matrix(contrasts(C(f1, sum)))
6 x b sparse Matrix of class "dgCMatrix"
1
.. .1
s J L |
t -1 -1-1-1-1
> Matrix(contrasts(C(f1, helmert)), sparse=TRUE) # S-plus default; much less sparse

6 x 5 sparse Matrix of class "dgCMatrix"

_ -1-1-1-1-1
a 1-1-1-1-1

ck . 2-1-1-1
i .. 3-1-1
s ... 4 -
t b

where contrasts() is (conceptually) just one major ingredient in the well-known model.matrix() function
to build the linear model matrix X of so-called “dummy variables”. Since 2007, the Matrix package has
been providing coercion from a factor object to a sparseMatrix one to produce the transpose of the model
matrix corresponding to a model with that factor as predictor (and no intercept):

> as(f1, "sparseMatrix")

6 x 20 sparse Matrix of class "dgCMatrix"

which is really almost the transpose of using the above sparsification of contrasts() (and arranging for nice
printing),

> printSpMatrix(t(Matrix(contrasts(f1)) [as.character(f1) ,]),
+ col.names=TRUE)
statisticks_1is a_tasck

ck 000000001

and that is the same as the “sparsification” of model.matrix (), apart from the column names (here trans-
posed),

> t(Matrix(model.matrix(~ O+ f1))) # model with*OUT* intercept

6 x 20 sparse Matrix of class "dgCMatrix"

s A

fila . .1 00001001
B o |
e e e
fis 2. ...1...1..1.....1
fit .t .1 . .1 00001

A more realistic small example is the chickwts data set,

> str(chickwts)# a standard R data set, 71 x 2

'data.frame’: 71 obs. of 2 variables:
$ weight: num 179 160 136 227 217 168 108 124 143 140 ...
$ feed : Factor w/ 6 levels '"casein","horsebean",..: 2 222222222 ...

> x.feed <- as(chickwts$feed, "sparseMatrix")
> x.feed[, (1:72)[c(TRUE,FALSE,FALSE)]] ## every 3rd column:

6 x 24 sparse Matrix of class "dgCMatrix"

casein OO N A A
horsebean 1 1 1 1

linseed ..o 1111
meatmeal1111
soybean e A A A |

sunflower1111

>

2 One factor, one continuous: y ~ f1 + x

To create the model matrix for the case of one factor and one continuous predictor—called “analysis of
covariance” in the historical literature— we can adopt the following simple scheme.

The final model matrix is the concatenation of:

1) create the sparse 0-1 matrix m1 from the f1 main-effect

2) the single row/column 'x’ == ’x’ main-effect

3) replacing the values 1 in m1@x (the x-slot of the factor model matrix), by the values of x (our continuous
predictor).

3 Two (or more) factors, main effects only: y ~ f1 + £2

Let us consider the warpbreaks data set of 54 observations,

> data(warpbreaks)# a standard R data set
> str(warpbreaks) # 2 x 3 (x 9) balanced two-way with 9 replicates:

'data.frame': 54 obs. of 3 variables:

$ breaks : num 26 30 54 25 70 52 51 26 67 18 ...
$ wool : Factor w/ 2 levels "A","B": 1 111111111 ...
$ tension: Factor w/ 3 levels "L","M","H": 1111111112 ...

> xtabs(~ wool + tension, data = warpbreaks)

tension
wool L M H
A999
B999

This example depicts how a model matrix would be built for the model breaks wool + tension.
Since this is a main effects model (no interactions), the desired model matrix is simply the concatenation of
the model matrices of the main effects. There are two here, but the principle applies to general main effects
of factors.

The most sparse matrix is reached by not using an intercept, (which would give an all-1-column) but
rather have one factor fully coded (aka “swallow” the intercept), and all others being at "treatment" contrast,
i.e., here, the transposed model matrix, tmm, is

> tmm <- with(warpbreaks,

+ rBind(as (tension, "sparseMatrix"),

+ as (wool, "sparseMatrix") [-1, ,drop=FALSE]))
> print(image(tmm)) # print(.) the lattice object

Row
AOWNEF

10 20 30 40 50

Column
Dimensions: 4 x 54

The matrices are even sparser when the factors have more than just two or three levels, e.g., for the morley
data set,

> data(morley) # a standard R data set
> morley$Expt <- factor (morley$Expt)

> morley$Run <- factor (morley$Run)

> str(morley)

'data.frame': 100 obs. of 3 variables:

$ Expt : Factor w/ 5 levels "1","2" "3" /"4" ..: 1111111111 ...
$ Run : Factor w/ 20 levels "1","2" ,"3","4" ..: 123456789 10 ...
$ Speed: int 850 740 900 1070 930 850 950 980 980 880 ...

> t.mm <- with(morley,

+ rBind(as (Expt, "sparseMatrix"),

+ as(Run, ‘'"sparseMatrix")[-1,]))
> print(image(t.mm)) # print(.) the lattice object

(@]
T 15
20
20 40 60 80

Column
Dimensions: 24 x 100

4 Interactions of two (or more) factors,.....

In situations with more than one factor, particularly with interactions, the model matrix is currently not
directly available via Matrix functions — but we still show to build them carefully. The easiest—but not at
memory resources efficient—way is to go via the dense model.matrix () result:

data(npk, package="MASS")
npk.mf <- model.frame(yield ~ block + N*P*K, data = npk)
str(npk.mf) # the data frame + "terms" attribute

m.npk <- model.matrix(attr(npk.mf, "terms"), data = npk)
class(M.npk <- Matrix(m.npk))

V V.V Vv VvyVv

[1] "dgCMatrix"
attr(, "package")
[1] "Matrix"

> dim(M.npk)# 24 x 13 sparse Matrix
[1] 24 13
> t(M.npk) # easier to display, column names readably displayed as row.names(t(.))

13 x 24 sparse Matrix of class "dgCMatrix"

(Intercept) 1 1 1 1
block?2 e e
block3 e e e 1 111 ..

block4 O M A A ..
blockb s A A e
block6 PO N A A
N1
P1
K1 ..
Ni:P1 1.
N1:K1 .o 1.
P1:K1 1
N1:P1:K1

1111111111111 1111111
1111

11

=
=
e e e
[= T S S Sy S
e e e
[
-

Another example was reported by a user on R-help (July 15, 2008, https://stat.ethz.ch/pipermail/
r-help/2008-July/167772.html) about an “aov error with large data set”.

'm looking to analyze a large data set: a within-Ss 2*¥2*1500 design with 20 Ss. However, aov() gives me
an error.

And gave the following code example (slightly edited):

id <- factor(1:20)

a <- factor(1:2)

b <- factor(1:2)

d <- factor(1:1500)

aDat <- expand.grid(id=id, a=a, b=b, d=d)

aDat$y <- rnorm(length(aDat[, 1])) # generate some random DV data
dim(aDat) # 120'000 x 5 (120'000 = 2*2%1500 * 20 = 6000 * 20)

vV VVVVVYyV

[1] 120000 5

and then continued with
m.aov <- aov(y ~ a*b*d + Error(id/(a*bxd)), data=aDat)

which yields the following error:
Error in model.matrix.default(mt, mf, contrasts)
allocMatrix: too many elements specified
to which he got the explanation by Peter Dalgaard that the formal model matrix involved was much too
large in this case, and that PD assumed, lme4 would be able to solve the problem. However, currently there
would still be a big problem with using lme4, because of the many levels of fized effects:

Specifically]

dim(model .matrix(~ a*bx*d, data = aDat)) # 120'000 x 6000

where we note that 120’000 x 6000 = 720mio, which is 720'000'000 * 8/22° ~ 5500 Megabytes.
Unfortunately lmed does not use a sparse X-matrix for the fixed effects (yet), it just uses sparse matrices
for the Z-matrix of random effects and sparse matrix operations for computations related to Z.
Let us use a smaller factor d in order to investigate how sparse the X matrix would be:

> d2 <- factor(1:150) # 10 times smaller
> tmp2 <- expand.grid(id=id, a=a, b=b, d=d2)
> dim(tmp2)

[1] 12000 4

lthe following is not run in R on purpose, rather just displayed here

https://stat.ethz.ch/pipermail/r-help/2008-July/167772.html
https://stat.ethz.ch/pipermail/r-help/2008-July/167772.html

Row

> dim(mm <- model.matrix(~ a*b*d, data=tmp2))
[1] 12000 600

> ## is 100 times smaller than original example
>
> class(smm <- Matrix(mm)) # automatically coerced to sparse

[1] "dgCMatrix"
attr(, "package")
[1] "Matrix"

> round(object.size(mm) / object.size(smm), 1)

43 bytes

shows that even for the small d here, the memory reduction would be more than an order of magnitude

> image(t(smm), aspect = 1/3, 1wd=0, col.regions = "red")
B | . ,
100 T e o
200 4
300 —
400 —
500 —
I I I I e
2000 4000 6000 8000 10000
Column
Dimensions: 600 x 12000
and working with the sparse instead of the dense model matrix is considerably faster as well,
> x <- 1:600

> system.time(y <- smm 7*J, x) ## sparse is much faster

user
0.001

system elapsed
0.000 0.001

> system.time(y. <- mm 7*J, x) ## than dense

user
0.009

system elapsed
0.000 0.009

> identical(as.matrix(y), y.) ## TRUE
[1] TRUE
> tolLatex(sessionInfo())

e R version 3.4.2 Patched (2017-11-10 r73707), x86_64-pc-linux-gnu

e Locale: LC_CTYPE=de_CH.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=de_CH.UTF-8, LC_PAPER=de_CH.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=de_CH.UTF-8, LC_IDENTIFICATION=C

e Running under: Fedora 26 (Twenty Six)

e Matrix products: default

e BLAS: /scratch/users/maechler/R/D/r-patched/F26-64-inst/1ib/1libRblas.so

e LAPACK: /scratch/users/maechler/R/D/r-patched/F26-64-inst/1ib/1ibRlapack.so
e Base packages: base, datasets, grDevices, graphics, methods, stats, utils

e Other packages: Matrix 1.2-12

e Loaded via a namespace (and not attached): compiler 3.4.2, grid 3.4.2, lattice 0.20-35, tools 3.4.2

	One factor: y f1
	One factor, one continuous: y f1 + x
	Two (or more) factors, main effects only: y f1 + f2
	Interactions of two (or more) factors,.....

