kronecker-methods {Matrix} | R Documentation |
Computes Kronecker products for objects inheriting from
"Matrix"
.
In order to preserver sparseness, we treat 0 * NA
as 0
,
not as NA
as usually in R (and as used for the
base function kronecker
).
signature(X = "Matrix", Y = "ANY")
.......
signature(X = "ANY", Y = "Matrix")
.......
signature(X = "diagonalMatrix", Y = "ANY")
.......
signature(X = "sparseMatrix", Y = "ANY")
.......
signature(X = "TsparseMatrix", Y = "TsparseMatrix")
.......
signature(X = "dgTMatrix", Y = "dgTMatrix")
.......
signature(X = "dtTMatrix", Y = "dtTMatrix")
.......
signature(X = "indMatrix", Y = "indMatrix")
.......
(t1 <- spMatrix(5,4, x= c(3,2,-7,11), i= 1:4, j=4:1)) # 5 x 4 (t2 <- kronecker(Diagonal(3, 2:4), t1)) # 15 x 12 ## should also work with special-cased logical matrices l3 <- upper.tri(matrix(,3,3)) M <- Matrix(l3) (N <- as(M, "nsparseMatrix")) # "ntCMatrix" (upper triangular) N2 <- as(N, "generalMatrix") # (lost "t"riangularity) MM <- kronecker(M,M) NN <- kronecker(N,N) # "dtTMatrix" i.e. did keep NN2 <- kronecker(N2,N2) stopifnot(identical(NN,MM), is(NN2, "sparseMatrix"), all(NN2 == NN), is(NN, "triangularMatrix"))