1.017/1.010 Class 21 Multifactor Analysis of Variance

Multifactor Models

We often wish to consider several factors contributing to variability ratherr than just one. Extend concepts of single factor ANOVA to multiple factors. Focus on the two-factor case.

Suppose there *I* treatments for Factor *A* and *J* treatments for factor *B*., giving *IJ* random variables described by CDFs $F_{xij}(x_{ij})$. The different $F_{xij}(x_{ij})$ are assumed **identical** (except for their means) and **normally distributed** (check this, as in single factor case).

A random sample $[x_{ij1}, x_{ij2}, ..., x_{ijK}]$ of size *K* is obtained for treatment combination (*i*, *j*). Two-factor model describing x_{ijk} :

$$\boldsymbol{x}_{ijk} = \boldsymbol{\mu}_{ij} + \boldsymbol{e}_{ijk} = \boldsymbol{\mu} + a_i + b_j + c_{ij} + \boldsymbol{e}_{ijk}$$

 $\mu_{ij} = E[\mathbf{x}_{ijk}] = \mu + a_i + b_j + c_{ij} = \text{unknown mean of } \mathbf{x}_{ijk} \text{ (for all } k\text{)}$

 μ = unknown grand mean (average of μ_i 's).

 a_i = unknown main effects of Factor A

b_i = unknown **main effects** of **Factor** *B*

 c_{ij} = unknown interactions between Factors A and B

 e_{ijk} = random residual for treatment *i*, replicate *j*

 $E[\mathbf{e}_{ijk}] = 0, Var[\mathbf{e}_{ijk}] = \sigma^2$, for all i, j, k

Note that c_{ij} can only be distinguished from e_{ijk} if number of replicates K>1. Constraints:

$$\sum_{i=1}^{I} a_i = \sum_{j=1}^{J} b_j = 0 \quad \sum_{i=1}^{I} c_{ij} = 0 \quad \forall j \qquad \sum_{j=1}^{J} c_{ij} = 0 \quad \forall i$$

Objective is to estimate/test values of a_i 's, b_j 's, and c_{ij} 's, which are distributional parameters for the $F_{xij}(x_{ij})$'s.

Formulating the Problem as a Hypothesis Test

Formulate three sum-of-squares hypotheses that insure that all a_i 's, all b_i 's, or all c_{ij} 's are zero:

HOA:
$$\sum_{i=1}^{I} a_i^2 = 0$$

HOB: $\sum_{j=1}^{J} b_i^2 = 0$
HOAB: $\sum_{j=1}^{J} \sum_{i=1}^{I} c_i^2 = 0$

Derive test statistics based on sums-of-squares of data.

Sums-of-Squares Computations

Define treatment and grand sample means:

$$m_{xi} = \frac{1}{JK} \sum_{j=1}^{J} \sum_{k=1}^{K} x_{ijk} = \bar{x}_{i..} \quad m_{xj} = \frac{1}{IK} \sum_{i=1}^{I} \sum_{k=1}^{K} x_{ijk} = \bar{x}_{.j.}$$
$$m_{xij} = \frac{1}{K} \sum_{j=1}^{K} x_{ijk} = \bar{x}_{ij.}$$
$$m_{x} = \frac{1}{IJK} \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} x_{ijk} = \bar{x}_{...}$$

Test statistics are computed from sums-of-squares:

$$SSE = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (x_{ijk} - m_{xij})^{2}$$

$$SSA = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (m_{xi} - m_{x})^{2} \quad SSB = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (m_{xj} - m_{x})^{2}$$

$$SSAB = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (m_{xij} - m_{xi} - m_{xj} + m_{x})^{2}$$
$$SST = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (x_{ijk} - m_{x})^{2} = SSE + SSA + SSB + SSAB$$

Corresponding mean-sums-of-squares are:

$$MSE = \frac{SSE}{IJ(K-1)}$$
$$MSA = \frac{SSA}{I-1} \qquad MSB = \frac{SSB}{J-1}$$
$$MSAB = \frac{SSAB}{(I-1)(J-1)}$$

Expected values of these mean-sums-of-squares show depends on main effects and interactions:

$$E[MSE] = \sigma^{2}$$

$$E[MSA] = \sigma^{2} + \frac{JK}{I-1} \sum_{i=1}^{I} a_{i}^{2} \quad E[MSB] = \sigma^{2} + \frac{IK}{I-1} \sum_{j=1}^{J} b_{j}^{2}$$

$$E[MSAB] = \sigma^{2} + \frac{K}{(I-1)(J-1)} \sum_{i=1}^{I} \sum_{j=1}^{J} c_{ij}^{2}$$

Test Statistic

Use ratios as test statistics for the three hypotheses:

$$\mathcal{F}_{A} (MSA, MSE) = \frac{MSA}{MSE}$$
$$\mathcal{F}_{B} (MSB, MSE) = \frac{MSB}{MSE}$$
$$\mathcal{F}_{AB} (MSAB, MSE) = \frac{MSAB}{MSE}$$

When H0 is true each statistic follows **F** distribution with degree of freedom parameters $v_A = I - 1$, $v_B = J - 1$, $v_{AB} = (I - 1)(J - 1)$, and $v_E = IJ(K-1)$.

One-sided rejection regions

$$R0A: \mathcal{F}(MSA, MSE) \ge F_{\mathcal{F}, v_A, v_E}^{-1} [\alpha]$$

$$R0B: \mathcal{F}(MSB, MSE) \ge F_{\mathcal{F}, v_B, v_E}^{-1} [\alpha] \qquad :$$

$$R0AB: \mathcal{F}(MSAB, MSE) \ge F_{\mathcal{F}, v_{AB}, v_E}^{-1} [\alpha]$$

One-sided p-values:

$$p_{A} = 1 - F_{\mathbf{F}, v_{A}, v_{E}} [\mathcal{F} (MSA, MSE)]$$

$$p_{B} = 1 - F_{\mathbf{F}, v_{A}, v_{E}} [\mathcal{F} (MSB, MSE)]$$

$$p_{AB} = 1 - F_{\mathbf{F}, v_{AB}, v_{E}} [\mathcal{F} (MSAB, MSE)]$$

Unbalanced ANOVA problems with **different sample sizes for different treatments** can be handled by modifying formulas slightly.

Source	SS	df	MS	\mathcal{F}	р
Factor A	SSA	$v_A = I - 1$	MSA=	$\mathcal{F}_A =$	<i>p</i> =
			SSA/v_A	MSA/MSE	$1-F_{\mathcal{F},vA,vE}(\mathcal{F})$
Factor B	SSB	$v_B = J - 1$	MSB=	FB =	<i>p</i> =
			SSB/v_B	MSB/MSE	$1-F_{\mathcal{F}, vB, vE}(\mathcal{F})$
Interaction AB	SSAB	$v_{AB} = (I-1)(J-1)$	MSAB=	$\mathcal{F}_{AB} =$	<i>p</i> =
			$SSAB/v_{AB}$	MSAB/MSE	$1-F_{\mathcal{F},vAB,vE}(\mathcal{F})$
Error	SSE	$v_E = IJ(K-1)$	MSE=		
			SSE/v_E		
Total	SST	$v_T = IJK-1$			

Two-Factor ANOVA Tables

Copyright 2003 Massachusetts Institute of Technology Last modified Oct. 8, 2003