MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Civil and Environmental Engineering

1.017 Computing and Data Analysis for Environmental Applications

Quiz 3 (Solutions provided at the end of each problem)

Tuesday, December 10, 2002

Please answer all questions on a separate piece(s) of paper with your name clearly identified:

Problem 1 (15 points)

A field survey attempts to relate nitrogen runoff (in 1000 kg/year) in a small watershed to 2 factors: A) pesticide use (none, light, moderate, or heavy) and B) soil type (sandy, sand-silt, silty clay, or clay). Answer the following questions about the two-way ANOVA table given below:

Source	SS	df	MS=SS/df	\mathcal{F}	р
Factor A	0.0403	3	0.0134	0.6992	0.5661
Factor B	0.3044	3	0.1015	5.2856	0.0100
Interaction AB	0.3265	9	0.0363	1.8896	0.1278
Error	0.3072	16	0.0192		
Total	0.9783	31			

- 1. Which, if any, of the two factors contributes significantly to nitrogen runoff? Why?
- 2. Are interactions between factors A and B significant? Why?

Problem 1 Solution:

- 1.) Soil type contributes significantly to nitrogen runoff because it has a small p value (<0.05).
- 2.) The interactions are not that significant since p is larger than 0.05. But 0.1278 is not that large, so you can say that there may be some interaction.

Problem 2 (15 points)

Species diversity indices are frequently used to measure the health of natural ecosystems. Suppose that you are given the following two sets of unitless diversity indices for a control site and a site affected by human activity:

Control: 2.72 1.98 8.13 0.42 4.17 6.66 Affected: 2.78 3.02 0.93 3.21 Use the normal probability plot provided at the end of this quiz to determine the *p* value for a twosided large-sample test of the null hypothesis that the two means are the same. Do you think the control and affected populations are significantly different? Why? Is the large-sample assumption valid here? Why?

Problem 2 Solution:

Calculations may be expressed in terms of MATLAB syntax:

```
control = [2.72 1.98 8.13 .42 4.17 6.66]
affected = [2.78 3.02 .93 3.21]
mc = mean(control) = 4.013
ma = mean(affected) = 2.485
vc = var(control) = 1.11
va = var(affected) = 8.54
sc = std(control) = 2.92
sa = std(affected) = 1.05
zo = (mc-ma)/sqrt(vc/6+va/4) = 1.17
p = 2 * (1-normcdf (zo) ) = .24
```

The control and affected populations are not significantly different because p is not small. Although we used the unit normal CDF in this problem, the large-sample assumption is probably not valid here since there are only four affected data points.

Problem 3 (25 points)

Provide specific one-sentence answers to the following questions:

- a) Why did we use the transformation $C_T = ln(C+1)$ when carrying out an ANOVA of Boston Harbor coliform data?
- b) Explain the difference between independent and dependent variables in a regression analysis.
- c) Why is the sum-of-squared differences between the observed and modeled dependent variables a reasonable measure of "goodness-of-fit"? Suggest at least one other measure that could also be reasonable in some applications.
- d) Suppose that there is a significant linear relationship between the area of a temperate watershed and the average annual runoff. Is a set of average annual runoff values selected at random from temperate watersheds of different sizes a random sample? Why?
- e) Suppose that the sample mean of a set of 5 data points x1,...,x5 is 6.0 and the sample standard deviation is 2.5. Compare the *p* values obtained from small and large sample tests of the hypothesis H0: *E*[x]=0 (i.e. which test will give a larger p value?). You do not need to compute the actual p values just rank the two possibilities.

Problem 3 Solution:

- a.) We used the transformation because the original data is not normally distributed, but the log of the data is nearly normal.
- b.) The independent variable varies with the dependent variable in a specific way determined by the regression parameters.

- c.) The sum of squared differences is a reasonable measure of goodness of fit because it can only be zero when all the deviations are zero. One other possible measure is the absolute value of the deviation.
- d.) This is not a random sample because they are not independent.
- e.) The p value from the large sample test will be smaller than the p from the small sample test because the normal distribution is narrower than the t-distribution.

Problem 4 (20 points)

Consider the EPA NOx (nitrous oxide) emissions data set attached to this quiz. Organize the data into groups appropriate for a one-way analysis of variance that tests the influence of fuel type on NOx emissions. Use only three replicates for each treatment level. Indicate directly on the data sheet (by writing two numbers at the end of the appropriate row) the treatment level and replicate for each of the sample you select for your ANOVA.

Next use your annotated data sheet to read off the values of the input data array required by the MATLAB function anoval (documentation attached). Please read the documentation carefully to make sure that you define the array properly.

Finally, construct a one-way ANOVA table with the degree of freedom values filled in for all table rows. Identify the quantity (e.g. sum-of-squares, etc.) that goes in each of the remaining table entries but do not compute numerical values for any quantities other than the number of degrees of freedom.

Problem 4 Solution:

```
% Factor = fuel type, 4 treatments
PNG = [53.7,18.8,0]
C = [1032,927.1,2411.6]
Oil = [136.6,1407.9 8.5]
DSL = [7.6,2.3,15.1]
matrix = [PNG',C',oil',DSL']
anoval(matrix)
```

Problem 5 (25 points)

Suppose that you are given the following data describing the concentration (in mg/L) of decaying organic carbon remaining in a treatment tank after the indicated time has passed:

Time	10	12	15	17	22	24
concentration	1.77	0.88	1.08	0.23	0.43	0.34

Also, suppose that you model the decaying organic carbon by the following exponential function:

$$C(t) = C(0)e^{-rt}$$

This equation can be expressed as a linear regression model (with dependent variable y(t) =

 $log_e C(t)$ and unknown regression parameters $a_1 = log_e C(0)$ and $a_2 = -r$) if you take the log_e of each side and add a random measurement error to the result. You can use a regression approach to estimate the unknown regression parameters from the tabulated data and then to check the model's ability to explain observed temporal changes in concentration. The results of this regression are summarized in the ANOVA table provided below.

Source	SS	df	MS=SS/df	Ŧ	р
Regression	1.09	1	1.09	7.15	0.056
Error	0.61	4	0.15		
Total	1.70	5			

Carry out the following tasks:

- 1) Define the arrays needed to carry out the regression analysis with the MATLAB function regress (documentation attached). Provide specific numerical values inferred from the data.
- 2) Use the \mathcal{F} and p values in the table to determine whether the regression for this problem is significant (i.e. does the exponential model provide a good explanation of observed temporal variability).
- 3) Calculate the R^2 value for this regression. Does it suggest that the exponential fit is good or bad?

Problem 5 Solution:

```
1.)
time = [10 12 15 17 22 24]
conc = [1.77 .88 1.08 .23 .43 .34]
lnconc = log(conc);
x=[ones(6,1), time'];
[B,BINT,R,RINT,STATS] =regress(lnconc',x)
```

2.) $\mathcal{F} = 7.15, p = .056$:

The F and p values are borderline, but the model provides a fair explanation of the observed temporal variability.

3.) $R^2 = SSR/SST = 1.09/1.70 = 0.641$ -- the exponential fit is pretty good but not great.

Data for Problem 4

U.S.EPA - EMISSIONS TRACKING SYSTEM (ETS) Preliminary Ozone Season Values for May to September, 2002 Report for Massachusetts

	Unit/ Stack ID	Boiler Type	Primary Fuel	NOx Monitoring Methodology	NOx Controls	Operating Time (hours)	Heat Input (mmBtu)	NOx Emissions (tons)
ANP Bellingham Energy Proj.	1	CC	PNG	CEM	DI NB	759	993533	53.7
	2	CC	PNG	CEM	SCR	175	70315	25.9
ANP Blackstone Energy Co.	1	CC	PNG	CEM	DLNB	2610	3949647	18.8
	2	CC	PNG	CEM	DLNB	2733	4123868	20.3
Bellingham	CP1					3672	9220740	0
	CS1					3672	9220740	394.7
	1	CC	PNG	CEM	STM	3668	4724269	0
	2	CC	PNG	CEM	STM	3672	4496471	0
Berkshire Power	1	CC	PNG	CEM	H2O	2412	3764556	19.5
Blackstone	CP2					30	2746	0
	CS2					1324	71668	6.3
	11	DB	PNG	CEM	CM	825	43473	0
	12	DB	PNG	CEM	CM	619	28195	0
Brayton Point	1	Т	С	CEM	LNC3	3593	7215909	1032
	2	Т	С	CEM	LNC3	3522	6927859	927.1
	3	DB	С	CEM	LNBO	2438	11878591	2411.6
	4	DB	OIL	CEM	LNB	843	1364761	136.6
Canal Station	1	DB	OIL	CEM	LNBO	3348	11782280	1407.9
	2	DB	OIL	CEM	LNBO	2296	5761147	654.5
Cleary Flood	8	DB	OIL	CEM	LNB	255	63200	8.5
	9	OB	PNG	CEM	LNBO	1362	1258594	87.4
Dartmouth Power	1	CC	PNG	CEM	H2O	2602	1364167	20.6
Deer Island Treatment	S42	CT	DSL	AE	H2O	103	20330	7.6
	S43	CT	DSL	AE	H2O	26	3275	2.3
Dighton	1	CC	PNG	CEM	SCR	3518	4139225	23.9
Doreen	10	CT	DSL	NOXG		14	3416	2
Framingham Station	FJ-1	CT	DSL	NOXU		41	7293	2.3
	FJ-2	CT	DSL	NOXU		62	8718	3.5
	FJ-3	CT	DSL	NOXG		150	25155	15.1
GE Aircraft Engines Lynn	3	DB	PNG	CEM	LNBO	3595	875932	68.6
	5	CC	PNG	CEM	STM	684	136049	9.4
Indeck Pepperell	CC1	CC	PNG	CEM	STM	1389	348406	22.8