G. Design Equations and Procedure for Beam-Columns (Braced Frame)

There is no standard set of design steps but the following procedure may be suggested.

Step 1: Design Load

Moments should be computed at both the top and bottom of the column. $M_{n t x}$ and $M_{n t y}$ are the maximum design moments in the x - and y-axis of the member.

$$
\begin{aligned}
P_{u} & =1.2 P_{D}+1.6 P_{L} \\
M_{n t x} & =1.2 M_{D x}+1.6 M_{L x} \\
M_{n t y} & =1.2 M_{D y}+1.6 M_{L y}
\end{aligned}
$$

Step 2: Initial Member Selection. (Equivalent Axial Load Method)
Beam-column design is a trial and error process in which a trial section is checked for compliance with the AISC interaction equations (H1-1a) and (H1-1b). Initial guess of the member is made by using AISC Table 3-2 and the Column Tables. AISC/LRFD Specification (H1-a) can be rewritten, by multiplying each term by ϕP_{n}, as

$$
P_{u}+\frac{8 \phi P_{n}}{9 \phi_{b} M_{n x}} M_{u x}+\frac{8 \phi P_{n}}{9 \phi_{b} M_{n y}} M_{u y} \leq \phi P_{n}
$$

or at the limit state,

$$
P_{u}+\frac{8 \phi P_{n}}{9 \phi_{b} M_{n x}} M_{u x}+\frac{8 \phi P_{n}}{9 \phi_{b} M_{n y}} M_{u y}=\phi P_{n}
$$

Multiplication of the third term by $M_{n x} / M_{n x}$ and letting

$$
m=\frac{8 \phi P_{n}}{9 \phi_{b} M_{n x}} \quad \text { and } \quad u=\frac{M_{n x}}{M_{n y}}
$$

the equivalent load $\left(P_{\text {ueq }}\right)$ is obtained

$$
P_{u}+m M_{u x}+m u M_{u y}=\phi P_{n}=P_{u e q}
$$

where the values m (bending factor) are found in the AISC Table 3-2 and u are obtained by guessing from the Column Tables.

Step 3: Check member.

(a) Column Effect: Calculate the axial strength $=\phi_{c} P_{n}$. It is useful to compute the slenderness parameter λ_{c} for both the x - and y-axis for steps (d) and (e):

$$
\begin{aligned}
& \lambda_{c x}=\frac{K_{x} L_{x}}{r_{x}} \sqrt{\frac{F_{y}}{\pi^{2} E}} \\
& \lambda_{c y}=\frac{K_{y} L_{y}}{r_{y}} \sqrt{\frac{F_{y}}{\pi^{2} E}}
\end{aligned}
$$

(b) Beam Effect (x-direction): Calculate the bending design strength $=\phi_{b} M_{n x}$ for the x-axis. Check both LB and LTB.
(c) Beam Effect (y-direction): Calculate the bending design strength $=\phi_{b} M_{n y}$ for the y-axis. This analysis is similar to step (b) except that y-axis properties (S_{y} and Z_{y}) are used. Consider only LB in the flange since there will be no LTB in the y-axis.
(d) Moment Magnification (x-axis direction): Calculate $C_{m x}$ for the x-axis moments using:

$$
\begin{equation*}
C_{m x}=0.6-0.4\left(\frac{M_{1}}{M_{2}}\right)_{x} \tag{H1-4}
\end{equation*}
$$

Here, M_{1} and M_{2} are the end moments with the condition $\left|M_{1}\right| \leq\left|M_{2}\right|$ and the sign of the value M_{1} / M_{2} is:

$$
\begin{array}{ll}
\left(M_{1} / M_{2}\right)_{x}>0 & \text { for reverse curvature } \\
\left(M_{1} / M_{2}\right)_{x} \leq 0 & \text { for single curvature }
\end{array}
$$

Calculate $B_{1 x}$ for the x-axis using the formula:

$$
\begin{equation*}
B_{1 x}=\frac{C_{m x}}{1-P_{u} / P_{e 1 x}} \geq 1 \tag{H1-3}
\end{equation*}
$$

The Euler buckling load, $P_{e 1 x}$, is calculated using the x-axis properties regardless of which axis is weaker:

$$
P_{e 1 x}=\frac{\pi^{2} E A_{g}}{K_{x} L_{x}}=\frac{F_{y} A_{g}}{\lambda_{c x}^{2}}
$$

(e) Moment Magnification (y-axis direction): Repeat step (d) for the y-axis using the formulas:

$$
\begin{align*}
C_{m y} & =0.6-0.4\left(\frac{M_{1}}{M_{2}}\right)_{y} \tag{H1-4}\\
B_{1 y} & =\frac{C_{m y}}{1-P_{u} / P_{e 1 y}} \geq 1 \tag{H1-3}
\end{align*}
$$

The Euler buckling load, $P_{e 1 y}$, is calculated using the y-axis properties regardless of which axis is weaker:

$$
P_{e 1 y}=\frac{\pi^{2} E A_{g}}{K_{y} L_{y}}=\frac{F_{y} A_{g}}{\lambda_{c y}^{2}}
$$

(f) Interaction:

If $P_{u} / \phi_{c} P_{n} \geq 0.2$ then

$$
\begin{equation*}
\frac{P_{u}}{\phi_{c} P_{n}}+\frac{8}{9}\left(\frac{M_{u x}}{\phi_{b} M_{n x}}+\frac{M_{u y}}{\phi_{b} M_{n y}}\right)=\text { interaction ratio } \leq 1 \tag{H1-1a}
\end{equation*}
$$

If $P_{u} / \phi_{c} P_{n}<0.2$ then

$$
\begin{equation*}
\frac{P_{u}}{2 \phi_{c} P_{n}}+\left(\frac{M_{u x}}{\phi_{b} M_{n x}}+\frac{M_{u y}}{\phi_{b} M_{n y}}\right)=\text { interaction ratio } \leq 1 \tag{H1-1a}
\end{equation*}
$$

(g) Redesign: If the interaction ratio falls in the range between 0.95 and 1.0 , then no redesign may be necessary. Otherwise, it is necessary to check a new section using the general formula:

New Weight $=$ Old Weight $\times \frac{\text { Load }}{\text { Capacity }}=$ Old Weight \times Interaction

